dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Classification/Planimetric_grid.h

375 lines
9.4 KiB
C++

// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Classification/include/CGAL/Classification/Planimetric_grid.h $
// $Id: Planimetric_grid.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot, Florent Lafarge
#ifndef CGAL_CLASSIFICATION_PLANIMETRIC_GRID_H
#define CGAL_CLASSIFICATION_PLANIMETRIC_GRID_H
#include <CGAL/license/Classification.h>
#include <vector>
#include <CGAL/Classification/Image.h>
#include <CGAL/assertions.h>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/cstdint.hpp>
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationDataStructures
\brief Class that precomputes a 2D planimetric grid.
The grid is composed of squared cells with a user-defined size,
each cell containing the list of indices of the points whose
projection along the Z-axis lies within this cell. The mapping
from each point to the cell it lies in is also stored.
\tparam GeomTraits model of \cgal Kernel.
\tparam PointRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator` and its value type is the key type of
`PointMap`.
\tparam PointMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `PointRange` and value type
is `GeomTraits::Point_3`.
*/
template <typename GeomTraits, typename PointRange, typename PointMap>
class Planimetric_grid
{
public:
typedef typename GeomTraits::Point_3 Point_3;
typedef typename GeomTraits::Iso_cuboid_3 Iso_cuboid_3;
private:
typedef Image<std::vector<boost::uint32_t> > Image_indices;
typedef Image<bool> Image_bool;
const PointRange* m_points;
PointMap m_point_map;
Iso_cuboid_3 m_bbox;
float m_resolution;
Image_indices m_grid;
Planimetric_grid* m_lower_scale;
std::size_t m_current_scale;
std::size_t m_width;
std::size_t m_height;
std::vector<bool> m_has_points;
public:
#ifdef DOXYGEN_RUNNING
typedef unspecified_type iterator; ///< A forward iterator with value type `std::size_t`.
#else
class iterator
: public boost::iterator_facade<iterator,
std::size_t,
std::forward_iterator_tag,
std::size_t> // Return value instead of reference
{
public:
friend class boost::iterator_core_access;
iterator(const Planimetric_grid* lowest_scale,
std::size_t scale,
std::size_t large_x,
std::size_t large_y,
bool end = false)
: m_lowest_scale (lowest_scale)
, m_idx(0)
{
std::size_t size = 1;
while (scale != 0)
{
size *= 2;
-- scale;
}
std::size_t xmin = large_x * size;
m_xmax = (large_x + 1) * size;
m_ymin = large_y * size;
m_ymax = (large_y + 1) * size;
m_pos_x = xmin;
m_pos_y = m_ymin;
bool found_one = false;
for (std::size_t x = xmin; x < m_xmax; ++ x)
{
for (std::size_t y = m_ymin; y < m_ymax; ++ y)
if (lowest_scale_has_points(x,y))
{
m_pos_x = x;
m_pos_y = y;
found_one = true;
break;
}
if(found_one)
break;
}
if (end && found_one)
{
m_pos_x = m_xmax;
m_pos_y = m_ymax;
}
}
void increment()
{
++ m_idx;
if (m_idx == m_lowest_scale->m_grid(m_pos_x, m_pos_y).size())
{
m_idx = 0;
do
{
++ m_pos_y;
if (m_pos_y == m_ymax)
{
m_pos_y = m_ymin;
++ m_pos_x;
if (m_pos_x == m_xmax) // end() reached
{
m_pos_y = m_ymax; // put y to max so that this == end()
break;
}
}
}
while (!(lowest_scale_has_points(m_pos_x, m_pos_y)));
}
}
bool equal (const iterator& other) const
{
return (m_pos_x == other.m_pos_x &&
m_pos_y == other.m_pos_y &&
m_idx == other.m_idx);
}
std::size_t dereference() const
{
return static_cast<std::size_t>(m_lowest_scale->m_grid(m_pos_x, m_pos_y)[m_idx]);
}
private:
const Planimetric_grid* m_lowest_scale;
std::size_t m_xmin, m_xmax, m_ymin, m_ymax;
std::size_t m_size;
std::size_t m_idx;
std::size_t m_pos_x;
std::size_t m_pos_y;
bool lowest_scale_has_points (std::size_t x, std::size_t y) const
{
if (x >= m_lowest_scale->width() || y >= m_lowest_scale->height())
return false;
return m_lowest_scale->has_points (x, y);
}
};
#endif
/// \cond SKIP_IN_MANUAL
Planimetric_grid () { }
/// \endcond
/*!
\brief Constructs a planimetric grid based on the input range.
\param input point range.
\param point_map property map to access the input points.
\param bbox bounding box of the input range.
\param grid_resolution resolution of the planimetric grid.
*/
Planimetric_grid (const PointRange& input,
PointMap point_map,
const Iso_cuboid_3& bbox,
float grid_resolution)
: m_points (&input), m_point_map (point_map)
, m_bbox (bbox), m_resolution (grid_resolution), m_lower_scale(nullptr), m_current_scale(0)
{
m_width = (std::size_t)((bbox.xmax() - bbox.xmin()) / grid_resolution) + 1;
m_height = (std::size_t)((bbox.ymax() - bbox.ymin()) / grid_resolution) + 1;
m_grid = Image_indices (m_width, m_height);
for (std::size_t i = 0; i < input.size(); ++ i)
{
const Point_3& p = get(point_map, *(input.begin()+i));
std::size_t x = (boost::uint32_t)((p.x() - bbox.xmin()) / grid_resolution);
std::size_t y = (boost::uint32_t)((p.y() - bbox.ymin()) / grid_resolution);
m_grid(x,y).push_back (boost::uint32_t(i));
}
}
/// \cond SKIP_IN_MANUAL
Planimetric_grid (Planimetric_grid* lower_scale)
: m_resolution (lower_scale->resolution() * 2), m_lower_scale (lower_scale)
{
m_current_scale = lower_scale->m_current_scale + 1;
m_width = (m_lower_scale->width() + 1) / 2;
m_height = (m_lower_scale->height() + 1) / 2;
m_has_points.reserve(m_width * m_height);
for (std::size_t x = 0; x < m_width; ++ x)
for (std::size_t y = 0; y < m_height; ++ y)
{
bool has_points = false;
for (std::size_t i = 0; i <= 1; ++ i)
{
std::size_t xi = x*2 + i;
if (xi >= m_lower_scale->width())
continue;
for (std::size_t j = 0; j <= 1; ++ j)
{
std::size_t yi = y*2 + j;
if (yi >= m_lower_scale->height())
continue;
if (m_lower_scale->has_points(xi,yi))
{
has_points = true;
break;
}
}
if (has_points)
break;
}
m_has_points.push_back (has_points);
}
}
/// \endcond
/*!
\brief Returns the resolution of the grid.
*/
float resolution() const
{
return m_resolution;
}
/*!
\brief Returns the number of cells along the X-axis.
*/
std::size_t width() const
{
return m_width;
}
/*!
\brief Returns the number of cells along the Y-axis.
*/
std::size_t height() const
{
return m_height;
}
/// \cond SKIP_IN_MANUAL
const Planimetric_grid* lowest_scale() const
{
if (m_current_scale == 0)
return this;
// else
return m_lower_scale->lowest_scale();
}
/// \endcond
/*!
\brief Returns the begin iterator on the indices of the points
lying in the cell at position `(x,y)`.
*/
iterator indices_begin(std::size_t x, std::size_t y) const
{
CGAL_assertion (x < m_width && y < m_height);
return iterator (lowest_scale(), m_current_scale, x, y);
}
/*!
\brief Returns the past-the-end iterator on the indices of the points
lying in the cell at position `(x,y)`.
*/
iterator indices_end(std::size_t x, std::size_t y) const
{
CGAL_assertion (x < m_width && y < m_height);
return iterator (lowest_scale(), m_current_scale, x, y, true);
}
/*!
\brief Returns `false` if the cell at position `(x,y)` is empty, `true` otherwise.
*/
bool has_points(std::size_t x, std::size_t y) const
{
CGAL_assertion (x < m_width && y < m_height);
if (m_current_scale == 0)
return (!(m_grid(x,y).empty()));
// else
return m_has_points[x * m_height + y];
}
/*!
\brief Returns the `x` grid coordinate of the point at position `index`.
*/
std::size_t x(std::size_t index) const
{
if (m_lower_scale == nullptr)
{
const Point_3& p = get(m_point_map, *(m_points->begin()+index));
return (std::size_t)((p.x() - m_bbox.xmin()) / m_resolution);
}
// else
return m_lower_scale->x(index) / 2;
}
/*!
\brief Returns the `y` grid coordinate of the point at position `index`.
*/
std::size_t y(std::size_t index) const
{
if (m_lower_scale == nullptr)
{
const Point_3& p = get(m_point_map, *(m_points->begin()+index));
return (std::size_t)((p.y() - m_bbox.ymin()) / m_resolution);
}
// else
return m_lower_scale->y(index) / 2;
}
};
}
}
#endif // CGAL_CLASSIFICATION_PLANIMETRIC_GRID_H