dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/K_neighbor_search.h

258 lines
9.1 KiB
C++

// Copyright (c) 2002,2011 Utrecht University (The Netherlands).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Spatial_searching/include/CGAL/K_neighbor_search.h $
// $Id: K_neighbor_search.h 8bb22d5 2020-03-26T14:23:37+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Hans Tangelder (<hanst@cs.uu.nl>),
// Clement Jamin (clement.jamin.pro@gmail.com)
#ifndef CGAL_K_NEIGHBOR_SEARCH_H
#define CGAL_K_NEIGHBOR_SEARCH_H
#include <CGAL/license/Spatial_searching.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/internal/K_neighbor_search.h>
#include <CGAL/internal/Get_dimension_tag.h>
#include <CGAL/internal/Search_helpers.h>
#include <iterator> // for std::distance
namespace CGAL {
template <class SearchTraits, class Distance,class Splitter,class Tree>
class K_neighbor_search;
template <class SearchTraits,
class Distance= typename internal::Spatial_searching_default_distance<SearchTraits>::type,
class Splitter= Sliding_midpoint<SearchTraits> ,
class Tree= Kd_tree<SearchTraits, Splitter, Tag_true, Tag_false> >
class K_neighbor_search: public internal::K_neighbor_search<SearchTraits,Distance,Splitter,Tree>
{
typedef internal::K_neighbor_search<SearchTraits,Distance,Splitter,Tree> Base;
typedef typename Tree::Point_d Point;
public:
typedef typename Base::FT FT;
typedef typename internal::Get_dimension_tag<SearchTraits>::Dimension D;
K_neighbor_search(const Tree& tree, const typename Base::Query_item& q,
unsigned int k=1, FT Eps=FT(0.0), bool Search_nearest=true, const Distance& d=Distance(),bool sorted=true)
: Base(q,k,Eps,Search_nearest,d),
m_distance_helper(this->distance_instance, tree.traits()),
m_tree(tree)
{
if (tree.empty()) return;
compute_neighbors_general(tree.root(),tree.bounding_box());
if (sorted) this->queue.sort();
};
private:
typedef typename Base::Node_const_handle Node_const_handle;
using Base::branch;
internal::Distance_helper<Distance, SearchTraits> m_distance_helper;
Tree const& m_tree;
void
compute_neighbors_general(typename Base::Node_const_handle N, const Kd_tree_rectangle<FT,D>& r)
{
if (!(N->is_leaf())) {
typename Tree::Internal_node_const_handle node =
static_cast<typename Tree::Internal_node_const_handle>(N);
this->number_of_internal_nodes_visited++;
int new_cut_dim=node->cutting_dimension();
FT new_cut_val=node->cutting_value();
Kd_tree_rectangle<FT,D> r_lower(r);
// modifies also r_lower to lower half
Kd_tree_rectangle<FT,D> r_upper(r_lower);
r_lower.split(r_upper, new_cut_dim, new_cut_val);
FT distance_to_lower_half;
FT distance_to_upper_half;
if (this->search_nearest) {
distance_to_lower_half =
this->distance_instance. min_distance_to_rectangle(this->query_object,
r_lower);
distance_to_upper_half =
this->distance_instance.min_distance_to_rectangle(this->query_object,
r_upper);
}
else
{
distance_to_lower_half =
this->distance_instance.max_distance_to_rectangle(this->query_object,
r_lower);
distance_to_upper_half =
this->distance_instance.max_distance_to_rectangle(this->query_object,
r_upper);
}
if ( (( this->search_nearest) &&
(distance_to_lower_half < distance_to_upper_half))
||
((!this->search_nearest) &&
(distance_to_lower_half >=
distance_to_upper_half)) )
{
compute_neighbors_general(node->lower(), r_lower);
if (branch(distance_to_upper_half))
compute_neighbors_general (node->upper(), r_upper);
}
else
{ compute_neighbors_general(node->upper(), r_upper);
if (branch(distance_to_lower_half))
compute_neighbors_general (node->lower(),
r_lower);
}
}
else
{
// n is a leaf
typename Tree::Leaf_node_const_handle node =
static_cast<typename Tree::Leaf_node_const_handle>(N);
this->number_of_leaf_nodes_visited++;
if (node->size() > 0)
{
typename internal::Has_points_cache<Tree, internal::has_Enable_points_cache<Tree>::type::value>::type dummy;
if (this->search_nearest)
search_nearest_in_leaf(node, dummy);
else
search_furthest_in_leaf(node, dummy);
}
}
}
// With cache
void search_nearest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_true)
{
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
int dim = m_tree.dim();
typename std::vector<FT>::const_iterator cache_point_begin = m_tree.cache_begin() + dim*(it_node_point - m_tree.begin());
// As long as the queue is not full, the node is just inserted
for (; !this->queue.full() && it_node_point != it_node_point_end; ++it_node_point)
{
this->number_of_items_visited++;
FT distance_to_query_object =
m_distance_helper.transformed_distance_from_coordinates(
this->query_object, *it_node_point, cache_point_begin, cache_point_begin + dim);
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
cache_point_begin += dim;
}
// Now that the queue is full, we can gain time by keeping track
// of the current worst distance to interrupt the distance computation earlier
FT worst_dist = this->queue.top().second;
for (; it_node_point != it_node_point_end; ++it_node_point)
{
this->number_of_items_visited++;
FT distance_to_query_object =
m_distance_helper.interruptible_transformed_distance(
this->query_object, *it_node_point, cache_point_begin, cache_point_begin + dim, worst_dist);
if (distance_to_query_object < worst_dist)
{
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
worst_dist = this->queue.top().second;
}
cache_point_begin += dim;
}
}
// Without cache
void search_nearest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_false)
{
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
// As long as the queue is not full, the node is just inserted
for (; !this->queue.full() && it_node_point != it_node_point_end; ++it_node_point)
{
this->number_of_items_visited++;
FT distance_to_query_object =
this->distance_instance.transformed_distance(this->query_object, *it_node_point);
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
}
// Now that the queue is full, we can gain time by keeping track
// of the current worst distance to interrupt the distance computation earlier
FT worst_dist = this->queue.top().second;
for (; it_node_point != it_node_point_end; ++it_node_point)
{
this->number_of_items_visited++;
FT distance_to_query_object =
m_distance_helper.interruptible_transformed_distance(
this->query_object, *it_node_point, worst_dist);
if (distance_to_query_object < worst_dist)
{
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
worst_dist = this->queue.top().second;
}
}
}
// With cache
void search_furthest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_true)
{
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
int dim = m_tree.dim();
typename std::vector<FT>::const_iterator cache_point_begin = m_tree.cache_begin() + dim*(it_node_point - m_tree.begin());
// In furthest search mode, the interruptible distance cannot be used to optimize
for (; it_node_point != it_node_point_end; ++it_node_point)
{
this->number_of_items_visited++;
FT distance_to_query_object =
m_distance_helper.transformed_distance_from_coordinates(
this->query_object, *it_node_point, cache_point_begin, cache_point_begin + dim);
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
cache_point_begin += dim;
}
}
// Without cache
void search_furthest_in_leaf(typename Tree::Leaf_node_const_handle node, Tag_false)
{
typename Tree::iterator it_node_point = node->begin(), it_node_point_end = node->end();
// In furthest search mode, the interruptible distance cannot be used to optimize
for (; it_node_point != it_node_point_end; ++it_node_point)
{
this->number_of_items_visited++;
FT distance_to_query_object =
this->distance_instance.transformed_distance(this->query_object, *it_node_point);
this->queue.insert(std::make_pair(&(*it_node_point), distance_to_query_object));
}
}
}; // class
} // namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_K_NEIGHBOR_SEARCH_H