dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Kernel_d/Segment_d.h

247 lines
7.9 KiB
C++

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Kernel_d/include/CGAL/Kernel_d/Segment_d.h $
// $Id: Segment_d.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Seel
#ifndef CGAL_SEGMENT_D_H
#define CGAL_SEGMENT_D_H
#include <CGAL/Kernel_d/Pair_d.h>
#include <CGAL/Kernel_d/Point_d.h>
#include <CGAL/Kernel_d/Segment_d.h>
#include <CGAL/Kernel_d/Line_d.h>
#include <CGAL/Kernel_d/Ray_d.h>
#include <CGAL/Kernel_d/Aff_transformation_d.h>
#include <CGAL/Dimension.h>
namespace CGAL {
template <class R> std::istream& operator>>
(std::istream&, Segment_d<R>&);
template <class R> std::ostream& operator<<
(std::ostream&, const Segment_d<R>&);
/*{\Manpage {Segment_d}{R}{Segments in d-space}{s}}*/
template <class p_R>
class Segment_d : public Handle_for< Pair_d<p_R> > {
typedef Pair_d<p_R> Pair;
typedef Handle_for<Pair> Base;
typedef Segment_d<p_R> Self;
using Base::ptr;
/*{\Mdefinition
An instance $s$ of the data type |Segment_d| is a directed straight
line segment in $d$-dimensional Euclidian space connecting two points
$p$ and $q$. $p$ is called the source point and $q$ is called
the target point of $s$, both points are called endpoints of $s$. A
segment whose endpoints are equal is called \emph{degenerate}.}*/
public:
typedef CGAL::Dynamic_dimension_tag Ambient_dimension;
typedef CGAL::Dimension_tag<1> Feature_dimension;
/*{\Mtypes 5}*/
typedef p_R R;
/*{\Mtypemember the representation type.}*/
typedef typename p_R::RT RT;
/*{\Mtypemember the ring type.}*/
typedef typename p_R::FT FT;
/*{\Mtypemember the field type.}*/
typedef typename p_R::LA LA;
/*{\Mtypemember the linear algebra layer.}*/
friend class Line_d<R>;
friend class Ray_d<R>;
private:
Segment_d(const Base& b) : Base(b) {}
public:
/*{\Mcreation 3}*/
Segment_d() : Base( Pair() ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname|.}*/
Segment_d(const Point_d<R>& p, const Point_d<R>& q)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| which
is initialized to the segment $(p,q)$. }*/
: Base( Pair(p,q) ) {}
Segment_d(const Point_d<R>& p, const Vector_d<R>& v)
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| which
is initialized to the segment |(p,p+v)|. }*/
: Base( Pair(p,p+v) ) {}
/*{\Moperations 3 3}*/
int dimension() const { return (ptr()->_p[0].dimension()); }
/*{\Mop returns the dimension of the underlying space. }*/
Point_d<R> source() const { return ptr()->_p[0]; }
/*{\Mop returns the source point of segment |\Mvar|. }*/
Point_d<R> target() const { return ptr()->_p[1]; }
/*{\Mop returns the target point of segment |\Mvar|. }*/
// defined for historical reasons
Point_d<R> vertex(int i) const
/*{\Mop returns source or target of |\Mvar|: |vertex(0)| returns the
source, |vertex(1)| returns the target. The parameter $i$ is taken
modulo $2$, which gives easy access to the other vertex.
\precond $i \geq 0$.}*/
{ CGAL_assertion(i>=0); return ptr()->_p[i%2]; }
Point_d<R> point(int i) const { return vertex(i); }
/*{\Mop returns |vertex(i)|.}*/
Point_d<R> operator[](int i) const { return vertex(i); }
/*{\Marrop returns |vertex(i)|.}*/
Point_d<R> min BOOST_PREVENT_MACRO_SUBSTITUTION () const
/*{\Mop returns the lexicographically smaller vertex.}*/
{ typename R::Compare_lexicographically_d cmp;
if (cmp(source(),target()) == CGAL::SMALLER) return source();
else return target();
}
Point_d<R> max BOOST_PREVENT_MACRO_SUBSTITUTION () const
/*{\Mop returns the lexicographically larger vertex.}*/
{ typename R::Compare_lexicographically_d cmp;
if (cmp(source(),target()) == SMALLER) return target();
else return source();
}
Segment_d<R> opposite() const
/*{\Mop returns the segment |(target(),source())|.}*/
{ return Segment_d<R>(target(),source()); }
Direction_d<R> direction() const
/*{\Mop returns the direction from source to target.\\
\precond |\Mvar| is non-degenerate. }*/
{ CGAL_assertion_msg((!is_degenerate()),
"Segment_d::direction(): degenerate segment cannot be converted.");
return ptr()->direction();
}
Vector_d<R> vector() const
/*{\Mop returns the vector from source to target.}*/
{ return ptr()->vector(); }
FT squared_length() const
/*{\Mop returns the square of the length of |\Mvar|.}*/
{ return (target()-source()).squared_length(); }
bool has_on(const Point_d<R>& p) const
/*{\Mop returns true if $p$ lies on |\Mvar| and false otherwise. }*/
{ if (is_degenerate()) return (source() == p);
typename R::Position_on_line_d pos; FT l;
if ( pos(p,source(),target(),l) ) return (FT(0)<=l && l<=FT(1));
return false;
}
inline Line_d<R> supporting_line() const;
/*{\Mop returns the supporting line of |\Mvar|.
\precond |\Mvar| is non-degenerate. }*/
Segment_d<R>
transform(const Aff_transformation_d<R>& t) const
/*{\Mop returns $t(s)$.}*/
{ return Segment_d<R>(source().transform(t),
target().transform(t)); }
Segment_d<R> operator+(const Vector_d<R>& v) const
/*{\Mbinop returns $s+v$, i.e., |\Mvar| translated by vector $v$.}*/
{ return Segment_d<R>(source()+v,target()+v); }
bool is_degenerate() const
/*{\Mop returns true if |\Mvar| is degenerate i.e.
|\Mvar.source()=\Mvar.target()|. }*/
{ return ptr()->is_degenerate(); }
bool operator==(const Segment_d<R>& t) const
{ if (this->identical(t)) return true;
return ((source() == t.source() &&
target() == t.target())); }
bool operator!=(const Segment_d<R>& t) const
{ return !operator==(t); }
friend std::istream& operator>> <>
(std::istream&, Segment_d<R>&);
friend std::ostream& operator<< <>
(std::ostream&, const Segment_d<R>&);
}; // end of class
/*{\Mtext \headerline{Non-Member Functions} }*/
template <class R>
bool weak_equality(const Segment_d<R>& s, const Segment_d<R>& t)
/*{\Mfunc Test for equality as unoriented segments.}*/
{ return (s==t || s==t.opposite()); }
template <class R>
bool parallel(const Segment_d<R>& s1, const Segment_d<R>& s2)
/*{\Mfunc return true if one of the segments is trivial or
if the unoriented supporting lines are parallel. }*/
{ return s1.is_degenerate() || s2.is_degenerate() ||
s1.direction() == s2.direction() ||
s1.direction() == -s2.direction(); }
template <class R>
bool common_endpoint(const Segment_d<R>& s1, const Segment_d<R>& s2,
Point_d<R>& common)
/*{\Mfunc if |s1| and |s2| touch in a common end point, this point
is assigned to |common| and the result is |true|, otherwise the
result is |false|. }*/
{ if (s1.source() == s2.source()) { common = s1.source(); return true; }
if (s1.source() == s2.target()) { common = s1.source(); return true; }
if (s1.target() == s2.source()) { common = s1.target(); return true; }
if (s1.target() == s2.target()) { common = s1.target(); return true; }
return false;
}
template <class R>
std::istream& operator>>(std::istream& I, Segment_d<R>& s)
{ s.copy_on_write(); s.ptr()->read(I);
CGAL_assertion_msg(s.source().dimension()==s.target().dimension(),
"Segment_d::operator>>: dimensions disagree.");
return I;
}
template <class R>
std::ostream& operator<<(std::ostream& O, const Segment_d<R>& s)
{ s.ptr()->print(O,"Segment_d"); return O; }
/*{\Mimplementation
Segments are implemented by a pair of points as an item type. All
operations like creation, initialization, tests, the calculation of
the direction and source - target vector, input and output on a
segment $s$ take time $O(|s.dimension()|)$. |dimension()|, coordinate
and end point access, and identity test take constant time. The
operations for intersection calculation also take time
$O(|s.dimension()|)$. The space requirement is $O(|s.dimension()|)$.
}*/
} //namespace CGAL
#endif // CGAL_SEGMENT_D_H
//----------------------- end of file ----------------------------------