dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Regular_triangulation_2.h

2309 lines
72 KiB
C++

// Copyright(c) 1997 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Triangulation_2/include/CGAL/Regular_triangulation_2.h $
// $Id: Regular_triangulation_2.h 9f2eafd 2020-03-26T19:17:02+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Frederic Fichel, Mariette Yvinec, Julia Floetotto
#ifndef CGAL_REGULAR_TRIANGULATION_2_H
#define CGAL_REGULAR_TRIANGULATION_2_H
#include <CGAL/license/Triangulation_2.h>
#include <CGAL/Triangulation_2.h>
#include <CGAL/Regular_triangulation_face_base_2.h>
#include <CGAL/Regular_triangulation_vertex_base_2.h>
#include <CGAL/utility.h>
#include <CGAL/Object.h>
#include <CGAL/internal/Has_nested_type_Bare_point.h>
#include <boost/bind.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/utility/result_of.hpp>
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#include <CGAL/Spatial_sort_traits_adapter_2.h>
#include <CGAL/internal/info_check.h>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/mpl/and.hpp>
#include <boost/property_map/function_property_map.hpp>
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
namespace CGAL {
template < class Gt,
class Tds = Triangulation_data_structure_2 <
Regular_triangulation_vertex_base_2<Gt>,
Regular_triangulation_face_base_2<Gt> > >
class Regular_triangulation_2
: public Triangulation_2<Gt, Tds>
{
typedef Regular_triangulation_2<Gt, Tds> Self;
typedef Triangulation_2<Gt, Tds> Base;
public:
typedef Self Triangulation;
typedef Triangulation_2<Gt, Tds> Triangulation_base;
typedef Tds Triangulation_data_structure;
typedef Gt Geom_traits;
// Traits are not supposed to define Bare_point, but leaving below
// for backward compatibility
typedef typename boost::mpl::eval_if_c<
internal::Has_nested_type_Bare_point<Gt>::value,
typename internal::Bare_point_type<Gt>,
boost::mpl::identity<typename Gt::Point_2>
>::type Bare_point;
typedef typename Gt::Weighted_point_2 Weighted_point;
typedef typename Gt::FT Weight;
typedef typename Gt::Construct_weighted_point_2 Construct_weighted_point_2;
typedef typename Base::size_type size_type;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Vertex Vertex;
typedef typename Base::Edge Edge;
typedef typename Base::Locate_type Locate_type;
typedef typename Base::Face_circulator Face_circulator;
typedef typename Base::Edge_circulator Edge_circulator;
typedef typename Base::Vertex_circulator Vertex_circulator;
typedef typename Base::Finite_edges_iterator Finite_edges_iterator;
typedef typename Base::All_edges_iterator All_edges_iterator;
typedef typename Base::Finite_faces_iterator Finite_faces_iterator;
typedef typename Base::All_faces_iterator All_faces_iterator;
typedef typename Base::Face::Vertex_list Vertex_list;
typedef typename Vertex_list::iterator Vertex_list_iterator;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Base::cw;
using Base::ccw;
using Base::dimension;
using Base::geom_traits;
using Base::infinite_vertex;
using Base::finite_vertex;
using Base::create_face;
using Base::number_of_faces;
using Base::all_faces_begin;
using Base::all_faces_end;
using Base::all_edges_begin;
using Base::all_edges_end;
using Base::finite_faces_begin;
using Base::finite_faces_end;
using Base::finite_edges_begin;
using Base::finite_edges_end;
using Base::OUTSIDE_AFFINE_HULL;
using Base::VERTEX;
using Base::FACE;
using Base::EDGE;
using Base::OUTSIDE_CONVEX_HULL;
using Base::orientation;
using Base::locate;
#ifndef CGAL_NO_STRUCTURAL_FILTERING
using Base::inexact_locate;
#endif
using Base::incident_faces;
using Base::is_infinite;
using Base::degree;
using Base::delete_vertex;
using Base::delete_face;
using Base::incident_vertices;
using Base::make_hole;
using Base::mirror_index;
using Base::show_vertex;
using Base::test_dim_down;
using Base::oriented_side;
using Base::compare_x;
using Base::compare_y;
#endif
private:
typedef std::list<Face_handle> Faces_around_stack;
class Hidden_tester
{
public:
bool operator()(const typename Base::All_vertices_iterator& it){
return it->is_hidden();
}
bool operator()(const typename Base::Finite_vertices_iterator& it){
return it->is_hidden();
}
};
class Unhidden_tester
{
public:
bool operator()(const typename Base::Finite_vertices_iterator& it){
return ! it->is_hidden();
}
};
typedef typename Base::All_vertices_iterator All_vib;
typedef typename Base::Finite_vertices_iterator Finite_vib;
public:
// We derive in order to add a conversion to handle.
class All_vertices_iterator :
public Filter_iterator<All_vib, Hidden_tester>
{
typedef Filter_iterator<All_vib, Hidden_tester> Base;
typedef All_vertices_iterator Self;
public:
All_vertices_iterator() : Base() {}
All_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator Vertex_handle() const { return Base::base(); }
};
typedef Iterator_range<Prevent_deref<All_vertices_iterator> > All_vertex_handles;
class Finite_vertices_iterator :
public Filter_iterator<Finite_vib, Hidden_tester>
{
typedef Filter_iterator<Finite_vib, Hidden_tester> Base;
typedef Finite_vertices_iterator Self;
public:
Finite_vertices_iterator() : Base() {}
Finite_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator Vertex_handle() const { return Base::base(); }
};
typedef Iterator_range<Prevent_deref<Finite_vertices_iterator> > Finite_vertex_handles;
class Hidden_vertices_iterator :
public Filter_iterator<Finite_vib, Unhidden_tester>
{
typedef Filter_iterator<Finite_vib, Unhidden_tester> Base;
typedef Hidden_vertices_iterator Self;
public:
Hidden_vertices_iterator() : Base() {}
Hidden_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator Vertex_handle() const { return Base::base(); }
};
typedef Iterator_range<Prevent_deref<Hidden_vertices_iterator> > Hidden_vertex_handles;
//for backward compatibility
typedef Finite_faces_iterator Face_iterator;
typedef Finite_edges_iterator Edge_iterator;
typedef Finite_vertices_iterator Vertex_iterator;
//Tag to distinguish Delaunay from regular triangulations
typedef Tag_true Weighted_tag;
// Tag to distinguish periodic triangulations from others
typedef Tag_false Periodic_tag;
private:
size_type _hidden_vertices;
public:
Regular_triangulation_2()
: Base(), _hidden_vertices(0) {}
Regular_triangulation_2(const Gt& gt)
: Base(gt), _hidden_vertices(0) {}
Regular_triangulation_2(const Regular_triangulation_2 &rt);
template < class InputIterator >
Regular_triangulation_2(InputIterator first, InputIterator last,
const Gt& gt)
: Base(gt), _hidden_vertices(0)
{
insert(first, last);
}
template < class InputIterator >
Regular_triangulation_2(InputIterator first, InputIterator last)
: Base(), _hidden_vertices(0)
{
insert(first, last);
}
Regular_triangulation_2 & operator=(const Regular_triangulation_2 &tr);
size_type number_of_vertices() const {
return Base::number_of_vertices() - _hidden_vertices;
}
size_type number_of_hidden_vertices() const {
return _hidden_vertices;
}
// CHECK - QUERY
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r,
const Weighted_point &s, bool perturb) const;
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const;
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &r) const;
Oriented_side power_test(const Face_handle &f,
const Weighted_point &p, bool perturb=false) const;
Oriented_side power_test(const Face_handle& f, int i,
const Weighted_point &p) const;
bool is_valid(bool verbose = false, int level = 0) const;
bool test_conflict(const Weighted_point &p, Face_handle fh) const;
void show_face(Face_handle fh) const;
void show_all() const;
// // template member functions, declared and defined at the end
// template <class OutputItFaces, class OutputItBoundaryEdges,
// class OutputItHiddenVertices>
// Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
// get_conflicts_and_boundary_and_hidden_vertices(const
// Weighted_point &p,
// OutputItFaces fit,
// OutputItBoundaryEdges eit,
// OutputItHiddenVertices vit,
// Face_handle start = Face_handle()) const;
// template <class OutputItFaces, class OutputItBoundaryEdges>
// std::pair<OutputItFaces,OutputItBoundaryEdges>
// get_conflicts_and_boundary(const Weighted_point &p,
// OutputItFaces fit,
// OutputItBoundaryEdges eit,
// Face_handle start) const;
// template <class OutputItFaces>
// OutputItFaces
// get_conflicts(const Weighted_point &p,
// OutputItFaces fit,
// Face_handle start) const;
// template <class OutputItBoundaryEdges>
// OutputItBoundaryEdges
// get_boundary_of_conflicts(const Weighted_point &p,
// OutputItBoundaryEdges eit,
// Face_handle start) const;
// template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
// std::pair<OutputItBoundaryEdges, OutputItHiddenVertices>
// get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point &p,
// OutputItBoundaryEdges eit,
// OutputItHiddenVertices vit,
// Face_handle start = Face_handle()) const;
// template <class OutputItHiddenVertices>
// OutputItHiddenVertices
// get_hidden_vertices(const Weighted_point &p,
// OutputItHiddenVertices vit,
// Face_handle start = Face_handle()) const;
// DUAL
Bare_point dual(Face_handle f) const;
Object dual(const Edge &e) const ;
Object dual(const Edge_circulator& ec) const;
Object dual(const Finite_edges_iterator& ei) const;
Bare_point weighted_circumcenter(Face_handle f) const;
Bare_point weighted_circumcenter(const Weighted_point& p0,
const Weighted_point& p1,
const Weighted_point& p2) const;
// Insertion, Deletion and Flip
Vertex_handle push_back(const Weighted_point &p);
Vertex_handle insert(const Weighted_point &p,
Face_handle f = Face_handle());
Vertex_handle insert(const Weighted_point &p,
Locate_type lt,
Face_handle loc, int li);
Vertex_handle insert_in_face(const Weighted_point &p, Face_handle f);
Vertex_handle insert_in_edge(const Weighted_point &p, Face_handle f, int i);
void flip(Face_handle f, int i);
void remove_degree_3(Vertex_handle v,
Face_handle f = Face_handle());
void remove(Vertex_handle v);
All_vertices_iterator all_vertices_begin() const;
All_vertices_iterator all_vertices_end() const;
All_vertex_handles all_vertex_handles() const;
Finite_vertices_iterator finite_vertices_begin() const;
Finite_vertices_iterator finite_vertices_end() const;
Finite_vertex_handles finite_vertex_handles() const;
Vertex_handle finite_vertex() const;
Hidden_vertices_iterator hidden_vertices_begin() const;
Hidden_vertices_iterator hidden_vertices_end() const;
Hidden_vertex_handles hidden_vertex_handles() const;
// Vertex_handle file_input(std::istream& is);
// void file_output(std::ostream& os) const;
public:
void clear();
void copy_triangulation(const Self& tr);
private:
void copy_triangulation_();
Vertex_handle reinsert(Vertex_handle v, Face_handle start);
void regularize(Vertex_handle v);
void remove_hidden(Vertex_handle v);
void remove_2D(Vertex_handle v);
void fill_hole_regular(std::list<Edge> & hole);
void set_face(Vertex_list& vl, const Face_handle& fh);
void update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3);
void update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2);
void update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3);
Vertex_handle hide_new_vertex(Face_handle f, const Weighted_point& p);
void hide_remove_degree_3(Face_handle fh, Vertex_handle vh);
void hide_vertex(Face_handle f, Vertex_handle v);
void exchange_incidences(Vertex_handle va, Vertex_handle vb);
void exchange_hidden(Vertex_handle va, Vertex_handle vb);
void stack_flip(Vertex_handle v, Faces_around_stack &faces_around);
void stack_flip_4_2(Face_handle f, int i, int j,
Faces_around_stack &faces_around);
void stack_flip_3_1(Face_handle f, int i, int j,
Faces_around_stack &faces_around);
void stack_flip_2_2(Face_handle f, int i,
Faces_around_stack &faces_around);
void stack_flip_dim1(Face_handle f, int i,
Faces_around_stack &faces_around);
bool is_valid_face(Face_handle fh) const;
bool is_valid_vertex(Vertex_handle fh) const;
public:
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert(InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
Weighted_point
>
>::type* = nullptr
)
#else
template < class InputIterator >
std::ptrdiff_t
insert(InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = number_of_vertices();
std::vector<Weighted_point> points(first, last);
// spatial sorting must use bare points, so we need an adapter
typedef typename Geom_traits::Construct_point_2 Construct_point_2;
typedef typename boost::result_of<const Construct_point_2(const Weighted_point&)>::type Ret;
typedef boost::function_property_map<Construct_point_2, Weighted_point, Ret> fpmap;
typedef CGAL::Spatial_sort_traits_adapter_2<Geom_traits, fpmap> Search_traits_2;
spatial_sort(points.begin(), points.end(),
Search_traits_2(
boost::make_function_property_map<Weighted_point, Ret, Construct_point_2>(
geom_traits().construct_point_2_object()), geom_traits()));
Face_handle hint;
for(typename std::vector<Weighted_point>::const_iterator p = points.begin(),
end = points.end();
p != end; ++p)
hint = insert(*p, hint)->face();
return number_of_vertices() - n;
}
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
private:
//top stands for tuple-or-pair
template <class Info>
const Weighted_point& top_get_first(const std::pair<Weighted_point,Info>& pair) const { return pair.first; }
template <class Info>
const Info& top_get_second(const std::pair<Weighted_point,Info>& pair) const { return pair.second; }
template <class Info>
const Weighted_point& top_get_first(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<0>(tuple); }
template <class Info>
const Info& top_get_second(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<1>(tuple); }
// Functor to go from an index of a container of Weighted_point to
// the corresponding Bare_point
template<class Construct_bare_point, class Container>
struct Index_to_Bare_point
{
typename boost::result_of<const Construct_bare_point(const Weighted_point&)>::type
operator()(const std::size_t& i) const
{
return cp(c[i]);
}
Index_to_Bare_point(const Container& c, const Construct_bare_point& cp)
: c(c), cp(cp) { }
const Container& c;
const Construct_bare_point cp;
};
template <class Tuple_or_pair,class InputIterator>
std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last)
{
size_type n = number_of_vertices();
std::vector<std::size_t> indices;
std::vector<Weighted_point> points;
std::vector<typename Triangulation_data_structure::Vertex::Info> infos;
std::size_t index=0;
for(InputIterator it=first;it!=last;++it){
Tuple_or_pair pair = *it;
points.push_back(top_get_first(pair));
infos.push_back(top_get_second(pair));
indices.push_back(index++);
}
// We need to sort the points and their info at the same time through
// the `indices` vector AND spatial sort can only handle Gt::Point_2.
typedef typename Geom_traits::Construct_point_2 Construct_point_2;
typedef Index_to_Bare_point<Construct_point_2,
std::vector<Weighted_point> > Access_bare_point;
typedef typename boost::result_of<const Construct_point_2(const Weighted_point&)>::type Ret;
typedef boost::function_property_map<Access_bare_point, std::size_t, Ret> fpmap;
typedef CGAL::Spatial_sort_traits_adapter_2<Gt, fpmap> Search_traits_2;
Access_bare_point accessor(points, geom_traits().construct_point_2_object());
spatial_sort(indices.begin(), indices.end(),
Search_traits_2(
boost::make_function_property_map<
std::size_t, Ret, Access_bare_point>(accessor),
geom_traits()));
Face_handle hint;
Vertex_handle v_hint;
for(typename std::vector<std::size_t>::const_iterator
it = indices.begin(), end = indices.end();
it != end; ++it)
{
v_hint = insert(points[*it], hint);
if(v_hint!=Vertex_handle()){
v_hint->info()=infos[*it];
hint=v_hint->face();
}
}
return number_of_vertices() - n;
}
public:
template < class InputIterator >
std::ptrdiff_t
insert(InputIterator first,
InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type>
>
>::type* = nullptr
)
{return insert_with_info< std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
template <class InputIterator_1,class InputIterator_2>
std::ptrdiff_t
insert(boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
typename boost::enable_if<
boost::mpl::and_<
typename boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Weighted_point >,
typename boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type >
>
>::type* =nullptr
)
{return insert_with_info< boost::tuple<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class Stream>
Stream& draw_dual(Stream & ps) const
{
Finite_edges_iterator eit = finite_edges_begin();
for(; eit != finite_edges_end(); ++eit) {
Object o = dual(eit);
typename Geom_traits::Line_2 l;
typename Geom_traits::Ray_2 r;
typename Geom_traits::Segment_2 s;
if(CGAL::assign(s,o)) ps << s;
if(CGAL::assign(r,o)) ps << r;
if(CGAL::assign(l,o)) ps << l;
}
return ps;
}
template <class OutputItFaces, class OutputItBoundaryEdges,
class OutputItHiddenVertices>
Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
get_conflicts_and_boundary_and_hidden_vertices(const Weighted_point &p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
OutputItHiddenVertices vit,
Face_handle start =
Face_handle()) const
{
CGAL_triangulation_precondition(dimension() == 2);
int li;
Locate_type lt;
Face_handle fh = locate(p,lt,li, start);
switch(lt) {
case OUTSIDE_AFFINE_HULL:
return make_triple(fit, eit, vit);
case VERTEX:
case FACE:
case EDGE:
case OUTSIDE_CONVEX_HULL:
//test whether p is not in conflict
// with the first face:
// this includes the cases that p is located
// on a vertex and either equal or no conflict
if(!test_conflict(p,fh))
return make_triple(fit, eit, vit);
// region includes all faces in conflict so far detected
// stack includes the faces in the region whose neighbors
// have not yet been looked at
std::set<Face_handle> region;
std::stack<Edge> st;
//collection of all boundary_vertices:
std::set< Vertex_handle> boundary_vertices;
//collection of potential_intern_vertices = vertices incident
// to an edge incident to two faces in conflict and met
// twice during the "walk":
std::set< Vertex_handle> potential_intern_vertices;
*fit++ = fh; //put fh in OutputItFaces
region.insert(fh);
st.push(Edge(fh,2));
st.push(Edge(fh,1));
st.push(Edge(fh,0));
while(! st.empty()){
Edge e = st.top();
st.pop();
Face_handle fh = e.first;
Face_handle fn = fh->neighbor(e.second);
int i = fn->index(fh);
if(region.find(fn) == region.end()){
if(test_conflict(p,fn))
{
region.insert(fn);
st.push(Edge(fn, cw(i)));
st.push(Edge(fn,ccw(i)));
*fit++ = fn;
}
else{
e = Edge(fn,i);
*eit++ = e;
if(!is_infinite(fn->vertex(cw(i))))
boundary_vertices.insert(fn->vertex(cw(i)));
if(!is_infinite(fn->vertex(ccw(i))))
boundary_vertices.insert(fn->vertex(ccw(i)));
}
}
else {
//insert the vertices of the last edge into the set of
// potential intern vertices:
potential_intern_vertices.insert(fn->vertex(ccw(i)));
potential_intern_vertices.insert(fn->vertex(cw(i)));
}
}
if(!potential_intern_vertices.empty()){
//determine the hidden vertices:
std::set_difference(potential_intern_vertices.begin(),
potential_intern_vertices.end(),
boundary_vertices.begin(),
boundary_vertices.end(),
vit);
}
return make_triple(fit, eit, vit);
}
CGAL_triangulation_assertion(false);
return make_triple(fit, eit, vit);
}
template <class OutputItFaces, class OutputItBoundaryEdges>
std::pair<OutputItFaces,OutputItBoundaryEdges>
get_conflicts_and_boundary(const Weighted_point &p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
Face_handle start = Face_handle()) const
{
Triple<OutputItFaces, OutputItBoundaryEdges, Emptyset_iterator>
pp = get_conflicts_and_boundary_and_hidden_vertices(p, fit, eit,
Emptyset_iterator(),
start);
return std::make_pair(pp.first, pp.second);
}
template <class OutputItFaces, class OutputItHiddenVertices>
std::pair<OutputItFaces, OutputItHiddenVertices>
get_conflicts_and_hidden_vertices(const Weighted_point &p,
OutputItFaces fit,
OutputItHiddenVertices vit,
Face_handle start = Face_handle()) const
{
Triple<OutputItFaces, Emptyset_iterator, OutputItHiddenVertices>
pp = get_conflicts_and_boundary_and_hidden_vertices(p,fit,
Emptyset_iterator(),
vit,
start);
return std::make_pair(pp.first,pp.third);
}
template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
std::pair<OutputItBoundaryEdges, OutputItHiddenVertices>
get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point &p,
OutputItBoundaryEdges eit,
OutputItHiddenVertices vit,
Face_handle start =
Face_handle()) const
{
Triple<Emptyset_iterator, OutputItBoundaryEdges, OutputItHiddenVertices>
pp = get_conflicts_and_boundary_and_hidden_vertices(p,
Emptyset_iterator(),
eit,vit,
start);
return std::make_pair(pp.second,pp.third);
}
template <class OutputItFaces>
OutputItFaces
get_conflicts(const Weighted_point &p,
OutputItFaces fit,
Face_handle start= Face_handle()) const
{
Triple<OutputItFaces, Emptyset_iterator, Emptyset_iterator>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p, fit,
Emptyset_iterator(),
Emptyset_iterator(),
start);
return pp.first;
}
template <class OutputItBoundaryEdges>
OutputItBoundaryEdges
get_boundary_of_conflicts(const Weighted_point &p,
OutputItBoundaryEdges eit,
Face_handle start= Face_handle()) const
{
Triple<Emptyset_iterator, OutputItBoundaryEdges, Emptyset_iterator>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p,
Emptyset_iterator(),
eit,
Emptyset_iterator(),
start);
return pp.second;
}
template <class OutputItHiddenVertices>
OutputItHiddenVertices
get_hidden_vertices(const Weighted_point &p, OutputItHiddenVertices vit,
Face_handle start= Face_handle()) const
{
Triple<Emptyset_iterator, Emptyset_iterator, OutputItHiddenVertices>
pp = get_conflicts_and_boundary_and_hidden_vertices(p, Emptyset_iterator(),
Emptyset_iterator(),
vit,
start);
return pp.third;
}
// nearest power vertex query
Vertex_handle nearest_power_vertex(const Bare_point& p) const;
};
template < class Gt, class Tds >
inline bool
Regular_triangulation_2<Gt,Tds>::
test_conflict(const Weighted_point &p, Face_handle fh) const
{
return(power_test(fh,p) == ON_POSITIVE_SIDE);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
clear()
{
Base::clear();
_hidden_vertices = 0;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation_()
{
// the list of vertices have been copied member for member and are
// not good
// clear them and next
// scan the hidden vertices to retablish the list in faces
typename Tds::Face_iterator baseit = this->_tds.face_iterator_base_begin();
for(; baseit != this->_tds.face_iterator_base_end(); baseit++){
baseit->vertex_list().clear();
}
Hidden_vertices_iterator hvit = hidden_vertices_begin();
for(; hvit != hidden_vertices_end() ; ++hvit){
hvit->face()->vertex_list().push_back(hvit);
}
CGAL_triangulation_postcondition(is_valid());
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation(const Self &tr)
{
Base::copy_triangulation(tr);
_hidden_vertices = tr._hidden_vertices;
copy_triangulation_();
}
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::
Regular_triangulation_2(const Self &tr)
: Base(tr), _hidden_vertices(tr._hidden_vertices)
{
copy_triangulation_();
}
template <class Gt, class Tds >
Regular_triangulation_2<Gt,Tds> &
Regular_triangulation_2<Gt, Tds>::
operator=(const Self &tr)
{
copy_triangulation(tr);
return *this;
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle &f, const Weighted_point &p, bool perturb) const
{
// p is supposed to be a finite point
// if f is a finite face,
// return ON_NEGATIVE_SIDE if p is above f
//(p has to be hidden)
if(dimension() == 1)
return power_test(f->vertex(0)->point(), f->vertex(1)->point(), p);
int i;
if(! f->has_vertex(infinite_vertex(), i))
return power_test(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point(), p, perturb);
Orientation o = orientation(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point(),
p);
if(o==COLLINEAR)
return power_test(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point(),p);
return o;
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle& f, int i, const Weighted_point &p) const
{
// f,i is supposed to be a finite edge
// p is supposed to be on edge(f,i)
// return ON_NEGATIVE_SIDE if p is above(f,i)
// (p has to be hidden)
CGAL_triangulation_precondition(!is_infinite(f,i) &&
orientation(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point(),
p) == COLLINEAR);
return power_test(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point(),
p);
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p,
bool perturb) const
{
CGAL_triangulation_precondition(orientation(p0, p1, p2) == POSITIVE);
using namespace boost;
Oriented_side os = geom_traits().power_side_of_oriented_power_circle_2_object()(p0, p1, p2, p);
if((os != ON_ORIENTED_BOUNDARY) ||(! perturb))
return os;
// We are now in a degenerate case => we do a symbolic perturbation.
// We sort the points lexicographically.
const Weighted_point * points[4] = {&p0, &p1, &p2, &p};
std::sort(points, points + 4, typename Base::Perturbation_order(this));
// We successively look whether the leading monomial, then 2nd monomial
// of the determinant has non null coefficient.
// 2 iterations are enough(cf paper)
for(int i=3; i>1; --i) {
if(points[i] == &p)
return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear
// and positively oriented
Orientation o;
if(points[i] == &p2 &&(o = orientation(p0,p1,p)) != COLLINEAR)
return o;
if(points[i] == &p1 &&(o = orientation(p0,p,p2)) != COLLINEAR)
return o;
if(points[i] == &p0 &&(o = orientation(p,p1,p2)) != COLLINEAR)
return o;
}
CGAL_triangulation_assertion(false);
return ON_NEGATIVE_SIDE;
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const
{
return geom_traits().power_side_of_oriented_power_circle_2_object()(p,q,r);
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
const Weighted_point &r) const
{
return geom_traits().power_side_of_oriented_power_circle_2_object()(p,r);
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_face(Face_handle fh) const
{
bool result = true;
if(is_infinite(fh)) result = result && fh->vertex_list().empty();
if(!result) { show_face(fh);}
CGAL_triangulation_assertion(result);
typename Vertex_list::iterator vlit = fh->vertex_list().begin(),
vldone = fh->vertex_list().end();
for(; vlit != vldone; vlit++) {
result = result && power_test(fh,(*vlit)->point()) == ON_NEGATIVE_SIDE;
result = result &&((*vlit)->face() == fh);
if(!result) show_face(fh);
CGAL_triangulation_assertion(result);
}
return result;
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_vertex(Vertex_handle vh) const
{
bool result = true;
if(vh->is_hidden()) {
Locate_type lt;
int li;
Face_handle loc = locate(vh->point(), lt, li, vh->face());
if(dimension() == 0) {
result = result && lt == Base::VERTEX;
result = result && power_test(vh->face()->vertex(0)->point(), vh->point()) <= 0;
} else {
result = result && (!is_infinite(vh->face()));
result = result && (loc == vh->face() ||
(lt == Base::VERTEX &&
vh->face()->has_vertex(loc->vertex(li))) ||
(lt == Base::EDGE && vh->face() ==
loc->neighbor(li)));
result = result && power_test(vh->face(),vh->point()) == ON_NEGATIVE_SIDE;
// if(!result) {
// std::cerr << " from is_valid_vertex " << std::endl;
// std::cerr << "sommet cache " << &*(vh)
// << "vh_point " <<vh->point() << " " << std::endl;
// std::cerr << "vh_>face " << &*(vh->face()) << " " << std::endl;
// std::cerr << "loc " << &*(loc)
// << " lt " << lt << " li " << li << std::endl;
// show_face(vh->face());
// show_face(loc);
// }
}
}
else { // normal vertex
result = result && vh->face()->has_vertex(vh);
// if(!result) {
// std::cerr << " from is_valid_vertex " << std::endl;
// std::cerr << "normal vertex " << &(*vh) << std::endl;
// std::cerr << vh->point() << " " << std::endl;
// std::cerr << "vh_>face " << &*(vh->face()) << " " << std::endl;
// show_face(vh->face());
// }
}
CGAL_triangulation_assertion(result);
return result;
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid(bool verbose, int /* level */) const
{
// cannot call for is_valid() of Base Triangulation class
// because 1) number of vertices of base class does not match
// tds.is_valid calls is_valid for each vertex
// and the test is not fulfilled by hidden vertices ...
// result = result && Triangulation_2<Gt,Tds>::is_valid(verbose, level);
bool result = true;
for(All_faces_iterator fit = all_faces_begin();
fit != all_faces_end(); ++fit) {
result = result && is_valid_face(fit);
}
for(All_vertices_iterator vit = all_vertices_begin();
vit != all_vertices_end(); ++vit) {
result = result && is_valid_vertex(vit);
}
for(Hidden_vertices_iterator hvit = hidden_vertices_begin();
hvit != hidden_vertices_end(); ++hvit) {
result = result && is_valid_vertex(hvit);
}
switch(dimension()) {
case 0 :
break;
case 1:
if(number_of_vertices() > 2) {
Finite_vertices_iterator it1 = finite_vertices_begin(),
it2(it1), it3(it1);
++it2;
++it3; ++it3;
while(it3 != finite_vertices_end()) {
Orientation s = orientation(it1->point(),
it2->point(),
it3->point());
result = result && s == COLLINEAR ;
CGAL_triangulation_assertion(result);
++it1 ; ++it2; ++it3;
}
}
break;
case 2 :
for(Finite_faces_iterator it=finite_faces_begin();
it!=finite_faces_end(); it++) {
CGAL_triangulation_assertion(! is_infinite(it));
Orientation s = orientation(it->vertex(0)->point(),
it->vertex(1)->point(),
it->vertex(2)->point());
CGAL_triangulation_assertion(s == LEFT_TURN);
result = result && (s == LEFT_TURN);
for(int i = 0 ; i < 3 ; i++) {
if(!is_infinite(it->vertex(i)))
result = result && ON_POSITIVE_SIDE !=
power_test(it->neighbor(i), it->vertex(i)->point());
CGAL_triangulation_assertion(result);
}
}
Vertex_circulator start = incident_vertices(infinite_vertex());
Vertex_circulator pc(start);
Vertex_circulator qc(start); ++qc;
Vertex_circulator rc(start); ++rc; ++rc;
do{
Orientation s = orientation(pc->point(),
qc->point(),
rc->point());
CGAL_triangulation_assertion(s != LEFT_TURN);
result = result && (s != LEFT_TURN);
++pc ; ++qc ; ++rc;
} while(pc != start);
// check number of faces. This cannot be done by the Tds
// which does not know the number of components nor the genus
result = result && (number_of_faces() == 2*(number_of_vertices()+1)
- 4
- degree(infinite_vertex()));
CGAL_triangulation_assertion(result);
break;
}
// in any dimension
if(verbose) {
std::cerr << " nombres de sommets " << number_of_vertices() << "\t"
<< "nombres de sommets caches " << number_of_hidden_vertices()
<< std::endl;
}
result = result && (Base::number_of_vertices() ==
number_of_vertices() + number_of_hidden_vertices());
CGAL_triangulation_assertion(result);
return result;
}
template <class Gt, class Tds >
void
Regular_triangulation_2<Gt, Tds>::
show_face(Face_handle fh) const
{
Base::show_face(fh);
typename Vertex_list::iterator current;
std::cerr << " +++++>>> ";
for(current= fh->vertex_list().begin();
current!= fh->vertex_list().end() ; current++) {
std::cerr <<"[ "<< ((*current)->point()) << " ] , ";
}
std::cerr <<std::endl;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
show_all() const
{
std::cerr << "PRINT THE FULL TRIANGULATION :" << std::endl;
std::cerr << std::endl << "====> "<< this ;
std::cerr << " dimension " << dimension() << std::endl;
std::cerr << " nb of vertices " << number_of_vertices()
<< " nb of hidden vertices " << number_of_hidden_vertices()
<< std::endl;
if(dimension() < 1) return;
if(dimension() == 1) {
std::cerr << " all edges " <<std::endl;
All_edges_iterator aeit;
for(aeit = all_edges_begin(); aeit != all_edges_end(); aeit++){
show_face(aeit->first);
}
}
else{ //dimension ==2
std::cerr << " finite faces " << std::endl;
Finite_faces_iterator fi;
for(fi = finite_faces_begin(); fi != finite_faces_end(); fi++) {
show_face(fi);
}
std::cerr << " infinite faces " << std::endl;
All_faces_iterator afi;
for(afi = all_faces_begin(); afi != all_faces_end(); afi++) {
if(is_infinite(afi)) show_face(afi);
}
}
if(number_of_vertices()>1) {
std::cerr << "printing vertices of the regular triangulation" << std::endl;
All_vertices_iterator vi;
for(vi = all_vertices_begin(); vi != all_vertices_end(); vi++){
show_vertex(vi);
std::cerr << " / associated face : "
<< &*(vi->face()) << std::endl;
}
std::cerr << std::endl;
}
std::cerr << "hidden vertices " << std::endl;
Hidden_vertices_iterator hvi = hidden_vertices_begin();
for(; hvi != hidden_vertices_end(); hvi++) {
show_vertex(hvi);
std::cerr << " / associated face : "
<< &*(hvi->face()) << std::endl;
}
return;
}
//DUALITY
template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
dual(Face_handle f) const
{
return weighted_circumcenter(f);
}
template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(Face_handle f) const
{
CGAL_triangulation_precondition(dimension() == 2 || !is_infinite(f));
return weighted_circumcenter(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point());
}
template<class Gt, class Tds>
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(const Weighted_point& p0,
const Weighted_point& p1,
const Weighted_point& p2) const
{
return geom_traits().construct_weighted_circumcenter_2_object()(p0,p1,p2);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge &e) const
{
typedef typename Geom_traits::Line_2 Line;
typedef typename Geom_traits::Ray_2 Ray;
typedef typename Geom_traits::Segment_2 Segment;
CGAL_triangulation_precondition(! is_infinite(e));
if(dimension() == 1){
const Weighted_point& p = (e.first)->vertex(cw(e.second))->point();
const Weighted_point& q = (e.first)->vertex(ccw(e.second))->point();
Line l = geom_traits().construct_radical_axis_2_object()(p,q);
return make_object(l);
}
// dimension==2
if((! is_infinite(e.first)) &&
(! is_infinite(e.first->neighbor(e.second)))) {
Segment s = geom_traits().construct_segment_2_object()(
dual(e.first),dual(e.first->neighbor(e.second)));
return make_object(s);
}
// one of the adjacent faces is infinite
Face_handle f; int i;
if(is_infinite(e.first)) {
f = e.first->neighbor(e.second);
i = f->index(e.first);
}
else {
f = e.first;
i = e.second;
}
const Weighted_point& p = f->vertex(cw(i))->point();
const Weighted_point& q = f->vertex(ccw(i))->point();
Line l = geom_traits().construct_radical_axis_2_object()(p,q);
Ray r = geom_traits().construct_ray_2_object()(dual(f), l);
return make_object(r);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge_circulator& ec) const
{
return dual(*ec);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Finite_edges_iterator& ei) const
{
return dual(*ei);
}
//INSERTION-REMOVAL
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
push_back(const Weighted_point &p)
{
return insert(p);
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Face_handle start)
{
Locate_type lt;
int li;
Face_handle loc = locate(p, lt, li, start);
return insert(p, lt, loc, li);
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Locate_type lt, Face_handle loc, int li)
{
Vertex_handle v;
switch(lt) {
case Base::VERTEX:
{
CGAL_precondition(dimension() >= 0);
if(dimension() == 0) {
// in this case locate() oddly returns loc = nullptr and li = 4,
// so we work around it.
loc = finite_vertex()->face();
li = 0;
}
Vertex_handle vv = loc->vertex(li);
CGAL::Oriented_side side = power_test(vv->point(), p);
switch(side) {
case ON_NEGATIVE_SIDE:
return hide_new_vertex(loc, p);
case ON_POSITIVE_SIDE:
v = this->_tds.create_vertex();
v->set_point(p);
exchange_incidences(v,vv);
hide_vertex(loc, vv);
regularize(v);
return v;
default: // that is ON_ORIENTED_BOUNDARY:
return vv;
}
}
case Base::EDGE:
{
CGAL_precondition(dimension() >= 1);
Oriented_side os = dimension() == 1 ? power_test(loc, li, p) :
power_test(loc, p, true);
if(os < 0) {
if(is_infinite(loc)) loc = loc->neighbor(li);
return hide_new_vertex(loc, p);
}
v = insert_in_edge(p, loc, li);
break;
}
case Base::FACE:
{
CGAL_precondition(dimension() >= 2);
if(power_test(loc, p, true) < 0) {
return hide_new_vertex(loc,p);
}
v = insert_in_face(p, loc);
break;
}
default:
v = Base::insert(p, lt, loc, li);
}
if(lt == OUTSIDE_AFFINE_HULL) {
//clear vertex list of infinite faces which have been copied
for(All_faces_iterator afi = all_faces_begin();
afi != all_faces_end(); afi++) {
if(is_infinite(afi))
afi->vertex_list().clear();
}
}
regularize(v);
return v;
}
/*
The reinsert function insert a weighted point which was in a hidden
vertex.
The new and old vertices are then exchanged ; this is required
if the regular triangulation is used with a hierarchy because
the old vertex has its up and down pointers set and other vertices
pointing on him
*/
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
reinsert(Vertex_handle v, Face_handle start)
{
CGAL_triangulation_assertion(v->is_hidden());
v->set_hidden(false);
_hidden_vertices--;
// // to debug
// std::cerr << "from reinsert " << std::endl;
// show_vertex(v);
// Locate_type lt;
// int li;
// Face_handle loc = locate(v->point(), lt, li, start);
// std::cerr << "locate " << &(*loc) << "\t" << lt << "\t" << li << std::endl;
// show_face(loc);
// std::cerr << std::endl;
Vertex_handle vh = insert(v->point(), start);
if(vh->is_hidden())
exchange_hidden(v,vh);
else
exchange_incidences(v,vh);
this->_tds.delete_vertex(vh);
return v;
}
// push va instead of vb in the list of the face fb hiding vb
// vb must be the last inserted vertex in the list of fb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_hidden(Vertex_handle va, Vertex_handle vb)
{
CGAL_triangulation_assertion(vb->is_hidden());
CGAL_triangulation_assertion(vb == vb->face()->vertex_list().back());
// //to debug
// std::cerr << "from exchange hidden 1" << std::endl;
// show_vertex(vb);
// std::cerr << " / associated face : "
// << &*(vb->face()) << std::endl;
vb->face()->vertex_list().pop_back();
_hidden_vertices--;
hide_vertex(vb->face(), va);
// //to debug
// std::cerr << "from exchange hidden 1" << std::endl;
// show_vertex(va);
// std::cerr << " / associated face : "
// << &*(va->face()) << std::endl << std::endl;
}
// set to va the incidences of vb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_incidences(Vertex_handle va, Vertex_handle vb)
{
CGAL_triangulation_assertion(!vb->is_hidden());
std::list<Face_handle> faces;
if(dimension() == 0) {
faces.push_back(vb->face());
} else if(dimension() == 1) {
faces.push_back(vb->face());
int i = vb->face()->index(vb);
faces.push_back(vb->face()->neighbor(1-i));
}
else {
CGAL_triangulation_assertion(dimension() == 2);
Face_circulator fc = incident_faces(vb), done(fc);
do {
faces.push_back(fc);
fc++;
} while(fc != done);
}
va->set_face(*(faces.begin()));
for(typename std::list<Face_handle>::iterator it = faces.begin();
it != faces.end(); it++){
Face_handle fh = *it;
fh->set_vertex(fh->index(vb), va);
}
return;
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_face(const Weighted_point &p, Face_handle f)
{
Vertex_handle v = Base::insert_in_face(p,f);
update_hidden_points_1_3(f,
f->neighbor(ccw(f->index(v))),
f->neighbor(cw(f->index(v))));
return v;
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_edge(const Weighted_point &p, Face_handle f, int i)
{
Vertex_handle v;
if(dimension() == 1) {
v = Base::insert_in_edge(p,f,i);
Face_handle g = f->neighbor(1 - f->index(v));
update_hidden_points_2_2(f,g);
}
else { //dimension()==2
// don't use update_hidden_points_2_2 any more to split
// hidden vertices list because new affectation of f and n
// around new vertex is unknown
Face_handle n = f->neighbor(i);
Vertex_list p_list;
p_list.splice(p_list.begin(),f->vertex_list());
p_list.splice(p_list.begin(),n->vertex_list());
v = Base::insert_in_edge(p,f,i);
Face_handle loc;
while(! p_list.empty()){
loc = locate(p_list.front()->point(), n);
if(is_infinite(loc)) loc = loc->neighbor(loc->index(infinite_vertex()));
hide_vertex(loc, p_list.front());
p_list.pop_front();
}
}
return v;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
regularize(Vertex_handle v)
{
CGAL_triangulation_precondition(v != infinite_vertex());
Faces_around_stack faces_around;
if(dimension() < 1) return;
//initialise faces_around
if(dimension() == 1) {
faces_around.push_back(v->face());
faces_around.push_back(v->face()->neighbor(1- v->face()->index(v)));
}
else{ //dimension==2
Face_circulator fit = incident_faces(v), done(fit);
do {
faces_around.push_back(fit++);
} while(fit != done);
}
while(! faces_around.empty())
stack_flip(v, faces_around);
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
flip(Face_handle f, int i)
{
Face_handle n = f->neighbor(i);
Base::flip(f,i);
update_hidden_points_2_2(f,n);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_degree_3(Vertex_handle v, Face_handle f)
{
if(f == Face_handle())
f=v->face();
update_hidden_points_3_1(f,
f->neighbor(cw(f->index(v))),
f->neighbor(ccw(f->index(v))));
Base::remove_degree_3(v,f);
if(is_infinite(f)) { //the list of f is given to its finite neighbor
Face_handle fn = f->neighbor(f->index(infinite_vertex()));
set_face(f->vertex_list(),fn);
fn->vertex_list().splice(fn->vertex_list().begin(), f->vertex_list());
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_hidden(Vertex_handle v)
{
_hidden_vertices--;
v->face()->vertex_list().remove(v);
delete_vertex(v);
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove(Vertex_handle v)
{
CGAL_triangulation_precondition(v != Vertex_handle());
CGAL_triangulation_precondition(!is_infinite(v));
if(v->is_hidden())
return remove_hidden(v);
Face_handle hint;
int ihint = 0;
Vertex_list to_reinsert;
switch(dimension()) {
case 0:
to_reinsert.splice(to_reinsert.begin(), v->face()->vertex_list());
break;
case 1:
{
Face_handle f1 = v->face();
ihint = f1->index(v);
hint = f1->neighbor(ihint);
Face_handle f2 = f1->neighbor(1 - ihint);
ihint = mirror_index(f1, ihint);
to_reinsert.splice(to_reinsert.begin(), f1->vertex_list());
to_reinsert.splice(to_reinsert.begin(), f2->vertex_list());
break;
}
case 2:
{
Face_circulator f = incident_faces(v), end = f;
ihint = f->index(v);
hint = f->neighbor(ihint);
ihint = mirror_index(f, ihint);
do to_reinsert.splice(to_reinsert.begin(), f->vertex_list());
while(++f != end);
break;
}
}
if(number_of_vertices() <= 2) {
this->_tds.remove_dim_down(v);
} else if(dimension() < 2) {
Base::remove(v);
} else {
remove_2D(v);
}
if(hint != Face_handle()) hint = hint->neighbor(ihint);
for(typename Vertex_list::iterator i = to_reinsert.begin();
i != to_reinsert.end(); ++i)
{
hint = reinsert(*i, hint)->face();
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_2D(Vertex_handle v)
{
if(test_dim_down(v)) { this->_tds.remove_dim_down(v); }
else {
std::list<Edge> hole;
make_hole(v, hole);
fill_hole_regular(hole);
delete_vertex(v);
}
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
fill_hole_regular(std::list<Edge> & first_hole)
{
typedef std::list<Edge> Hole;
typedef std::list<Hole> Hole_list;
Hole hole;
Hole_list hole_list;
Face_handle ff, fn;
int i, ii, in;
hole_list.push_front(first_hole);
while(! hole_list.empty())
{
hole = hole_list.front();
hole_list.pop_front();
typename Hole::iterator hit = hole.begin();
// if the hole has only three edges, create the triangle
if(hole.size() == 3)
{
Face_handle newf = create_face();
hit = hole.begin();
for(int j=0; j<3; j++)
{
ff = (*hit).first;
ii = (*hit).second;
hit++;
ff->set_neighbor(ii,newf);
newf->set_neighbor(j,ff);
newf->set_vertex(newf->ccw(j),ff->vertex(ff->cw(ii)));
}
continue;
}
// else find an edge with two finite vertices
// on the hole boundary
// and the new triangle adjacent to that edge
// cut the hole and push it back
// first, ensure that a neighboring face
// whose vertices on the hole boundary are finite
// is the first of the hole
bool finite = false;
while(!finite)
{
ff = hole.front().first;
ii = hole.front().second;
if(is_infinite(ff->vertex(cw(ii))) ||
is_infinite(ff->vertex(ccw(ii))))
{
hole.push_back(hole.front());
hole.pop_front();
}
else
finite = true;
}
// take the first neighboring face and pop it;
ff = hole.front().first;
ii = hole.front().second;
hole.pop_front();
Vertex_handle v0 = ff->vertex(ff->cw(ii));
const Weighted_point& p0 = v0->point();
Vertex_handle v1 = ff->vertex(ff->ccw(ii));
const Weighted_point& p1 = v1->point();
Vertex_handle v2 = infinite_vertex();
Weighted_point p2;
Vertex_handle vv;
Weighted_point p;
typename Hole::iterator hdone = hole.end();
hit = hole.begin();
typename Hole::iterator cut_after(hit);
// if tested vertex is c with respect to the vertex opposite
// to nullptr neighbor,
// stop at the before last face;
hdone--;
while(hit != hdone)
{
fn = (*hit).first;
in = (*hit).second;
vv = fn->vertex(ccw(in));
if(is_infinite(vv))
{
if(is_infinite(v2))
cut_after = hit;
}
else
{ // vv is a finite vertex
p = vv->point();
if(orientation(p0,p1,p) == COUNTERCLOCKWISE)
{
if(is_infinite(v2))
{
v2=vv;
p2=p;
cut_after=hit;
}
else if(power_test(p0,p1,p2,p,true) == ON_POSITIVE_SIDE)
{
v2=vv;
p2=p;
cut_after=hit;
}
}
}
++hit;
}
// create new triangle and update adjacency relations
Face_handle newf = create_face(v0,v1,v2);
newf->set_neighbor(2,ff);
ff->set_neighbor(ii, newf);
//update the hole and push back in the Hole_List stack
// if v2 belongs to the neighbor following or preceding *f
// the hole remain a single hole
// otherwise it is split in two holes
fn = hole.front().first;
in = hole.front().second;
if(fn->has_vertex(v2, i) && i == (int)fn->ccw(in))
{
newf->set_neighbor(0,fn);
fn->set_neighbor(in,newf);
hole.pop_front();
hole.push_front(Edge(newf,1));
hole_list.push_front(hole);
}
else
{
fn = hole.back().first;
in = hole.back().second;
if(fn->has_vertex(v2, i) && i == (int)fn->cw(in))
{
newf->set_neighbor(1,fn);
fn->set_neighbor(in,newf);
hole.pop_back();
hole.push_back(Edge(newf,0));
hole_list.push_front(hole);
}
else
{ // split the hole in two holes
Hole new_hole;
++cut_after;
while(hole.begin() != cut_after)
{
new_hole.push_back(hole.front());
hole.pop_front();
}
hole.push_front(Edge(newf,1));
new_hole.push_front(Edge(newf,0));
hole_list.push_front(hole);
hole_list.push_front(new_hole);
}
}
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
set_face(Vertex_list& vl, const Face_handle& fh)
{
for(typename Vertex_list::iterator it = vl.begin(); it != vl.end(); it++)
(*it)->set_face(fh);
}
// add the vertex_list of f2 and f3 to the point list of f1
// for the 3-1 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3)
{
set_face(f2->vertex_list(), f1);
set_face(f3->vertex_list(), f1);
(f1->vertex_list()).splice(f1->vertex_list().begin(),f2->vertex_list());
(f1->vertex_list()).splice(f1->vertex_list().begin(),f3->vertex_list());
return;
}
// the points of the lists of 2 faces are sorted
// because of a 2-2 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2)
{
CGAL_triangulation_assertion(f1->has_neighbor(f2));
Vertex_list p_list;
p_list.splice(p_list.begin(), f1->vertex_list());
p_list.splice(p_list.begin(), f2->vertex_list());
// if one of the face is infinite,
// the other face hide all the points
if(is_infinite(f1)) {
set_face(p_list, f2);
(f2->vertex_list()).splice(f2->vertex_list().begin(), p_list);
return;
}
if(is_infinite(f2)) {
set_face(p_list, f1);
(f1->vertex_list()).splice(f1->vertex_list().begin(), p_list);
return;
}
if(dimension() == 1) {
const Weighted_point& a1 = f1->vertex(f1->index(f2))->point();
const Weighted_point& a = f1->vertex(1-f1->index(f2))->point();
while(! p_list.empty()) {
if(compare_x(a, p_list.front()->point()) ==
compare_x(a, a1) &&
compare_y(a, p_list.front()->point()) ==
compare_y(a, a1))
{
hide_vertex(f1, p_list.front());
} else {
hide_vertex(f2, p_list.front());
}
p_list.pop_front();
}
return;
}
// from here f1 and f2 are finite 2-dimensional faces
int idx2 = f1->index(f2);
Vertex_handle v0=f1->vertex(ccw(idx2));
Vertex_handle v1=f1->vertex(cw(idx2));
CGAL_triangulation_assertion(!is_infinite(v0) && !is_infinite(v1));
while(! p_list.empty())
{
if(orientation(v0->point(), v1->point(), p_list.front()->point()) ==
COUNTERCLOCKWISE)
hide_vertex(f1, p_list.front());
else
hide_vertex(f2, p_list.front());
p_list.pop_front();
}
}
// The point list of f1 is separated into 3 lists
// for a 1-3 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3)
{
CGAL_triangulation_assertion(f1->has_neighbor(f2) &&
f2->has_neighbor(f3) &&
f3->has_neighbor(f1));
Vertex_list p_list;
p_list.splice(p_list.begin(),f1->vertex_list());
if(p_list.empty())
return;
// the following does not work if
// two of f1,f2 and f3 are twice neighbors
// but this cannot appear taking the assertion into account;
int idx2 = f1->index(f2),
idx3 = f1->index(f3);
Vertex_handle v2 = f1->vertex(idx2),
v3 = f1->vertex(idx3),
v0 = f1->vertex(3-(idx2+idx3)),
v1 = f2->vertex(f2->index(f1));
CGAL_triangulation_assertion(f2->has_vertex(v0) && f1->has_vertex(v0));
CGAL_triangulation_assertion(f3->has_vertex(v1));
CGAL_triangulation_assertion(! is_infinite(v0));
// if two of f1, f2,and f3 are infinite
// the list goes entirely to the third finite face
// no orientation test necessary
// because the point list of an infinite face
// is only made of point projecting on its finite edge
if(is_infinite(f1) && is_infinite(f2)) {
set_face(p_list, f3);
f3->vertex_list().splice(f3->vertex_list().begin(), p_list);
return;
}
if(is_infinite(f1) && is_infinite(f3)) {
set_face(p_list, f2);
f2->vertex_list().splice(f2->vertex_list().begin(), p_list);
return;
}
if(is_infinite(f2) && is_infinite(f3)){
set_face(p_list, f1);
f1->vertex_list().splice(f1->vertex_list().begin(), p_list);
return;
}
// if here, v1,v2,v3 and v0 are finite vertices
while(! p_list.empty())
{
Vertex_handle v(p_list.front());
// if(orientation(v2->point(),v0->point(), v->point()) !=
// orientation(v2->point(),v0->point(),v3->point()))
// { // not in f1
// if(orientation(v1->point(), v0->point(), v->point()) !=
// orientation(v1->point(), v0->point(), v3->point()))
// // not in f2
// hide_vertex(f3, v);
// else
// hide_vertex(f2, v);
// }
// else
// hide_vertex(f1, v);
if(orientation(v2->point(),v0->point(), v->point()) ==
orientation(v2->point(),v0->point(),v3->point()) &&
orientation(v3->point(),v0->point(), v->point()) ==
orientation(v3->point(),v0->point(), v2->point()))
hide_vertex(f1, v);
else if(orientation(v1->point(), v0->point(), v->point()) ==
orientation(v1->point(), v0->point(), v3->point()))
hide_vertex(f2,v);
else
hide_vertex(f3,v);
p_list.pop_front();
}
}
// the vertex is a degree three vertex which has to removed
// and hidden
// create first a new hidden vertex and exchange with the vertex
// to be removed by the tds :
// this is required to keep up and down pointers right when using a hierarchy
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_remove_degree_3(Face_handle fh, Vertex_handle vh)
{
Vertex_handle vnew= this->_tds.create_vertex();
exchange_incidences(vnew,vh);
remove_degree_3(vnew, fh);
hide_vertex(fh,vh);
}
// create a vertex and hide it
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
hide_new_vertex(Face_handle f, const Weighted_point& p)
{
Vertex_handle v = this->_tds.create_vertex();
v->set_point(p);
hide_vertex(f, v);
return v;
}
// insert the vertex to the hidden vertex list
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_vertex(Face_handle f, Vertex_handle vh)
{
// no hidden vertex in infinite face
if(is_infinite(f) && dimension() > 0)
f = f->neighbor(f->index(infinite_vertex()));
if(! vh->is_hidden()) {
vh->set_hidden(true);
_hidden_vertices++;
}
vh->set_face(f);
f->vertex_list().push_back(vh);
}
// template < class Gt, class Tds >
// void
// Regular_triangulation_2<Gt,Tds>::
// hide_vertex(Face_handle f, void* ptr)
// {
// Vertex_handle v(static_cast<Vertex*>(ptr));
// hide_vertex(f, v);
// }
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip(Vertex_handle v, Faces_around_stack &faces_around)
{
Face_handle f=faces_around.front();
faces_around.pop_front();
int i = f->index(v);
Face_handle n = f->neighbor(i);
if(dimension() == 1) {
if(is_infinite(f) || is_infinite(n))
return;
if(power_test(v->point(),
n->vertex(n->index(f))->point(),
f->vertex(1-i)->point()) == ON_NEGATIVE_SIDE)
stack_flip_dim1(f,i,faces_around);
return;
}
// now dimension() == 2
//test the regularity of edge(f,i)
//if(power_test(n, v->point()) == ON_NEGATIVE_SIDE)
if(power_test(n, v->point(), true) != ON_POSITIVE_SIDE)
return;
if(is_infinite(f,i))
{
int j = 3 - (i + f->index(infinite_vertex()));
if(degree(f->vertex(j)) == 4)
stack_flip_4_2(f,i,j,faces_around);
return;
}
// now f and n are both finite faces
int ni = n->index(f);
Orientation occw = orientation(f->vertex(i)->point(),
f->vertex(ccw(i))->point(),
n->vertex(ni)->point());
Orientation ocw = orientation(f->vertex(i)->point(),
f->vertex(cw(i))->point(),
n->vertex(ni)->point());
if(occw == LEFT_TURN && ocw == RIGHT_TURN) {
// quadrilater(f,n) is convex
stack_flip_2_2(f,i, faces_around);
return;
}
if(occw == RIGHT_TURN && degree(f->vertex(ccw(i))) == 3) {
stack_flip_3_1(f,i,ccw(i),faces_around);
return;
}
if(ocw == LEFT_TURN && degree(f->vertex(cw(i))) == 3) {
stack_flip_3_1(f,i,cw(i),faces_around);
return;
}
if(occw == COLLINEAR && degree(f->vertex(ccw(i))) == 4) {
stack_flip_4_2(f,i,ccw(i),faces_around);
return;
}
if(ocw == COLLINEAR && degree(f->vertex(cw(i))) == 4)
stack_flip_4_2(f,i,cw(i),faces_around);
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_4_2(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
int k = 3-(i+j);
Face_handle g=f->neighbor(k);
if(!faces_around.empty())
{
if(faces_around.front() == g)
faces_around.pop_front();
else if(faces_around.back() == g)
faces_around.pop_back();
}
//union f with g and f->neihgbor(i) with g->f->neihgbor(i)
Face_handle fn = f->neighbor(i);
//Face_handle gn = g->neighbor(g->index(f->vertex(i)));
Vertex_handle vq = f->vertex(j);
this->_tds.flip(f, i); //not using flip because the vertex j is flat.
update_hidden_points_2_2(f,fn);
Face_handle h1 = (j == ccw(i) ? fn : f);
//hide_vertex(h1, vq);
hide_remove_degree_3(g,vq);
if(j == ccw(i)) {
faces_around.push_front(h1);
faces_around.push_front(g);
}
else {
faces_around.push_front(g);
faces_around.push_front(h1);
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_3_1(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
int k = 3-(i+j);
Face_handle g=f->neighbor(k);
if(!faces_around.empty())
{
if(faces_around.front()== g)
faces_around.pop_front();
else if(faces_around.back() == g)
faces_around.pop_back();
}
Vertex_handle vq= f->vertex(j);
//hide_vertex(f,vq);
hide_remove_degree_3(f,vq);
faces_around.push_front(f);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_2_2(Face_handle f, int i, Faces_around_stack & faces_around)
{
Vertex_handle vq = f->vertex(ccw(i));
flip(f,i);
if(f->has_vertex(vq)) {
faces_around.push_front(f->neighbor(ccw(i)));
faces_around.push_front(f);
}
else {
faces_around.push_front(f);
faces_around.push_front(f->neighbor(cw(i)));
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_dim1(Face_handle f, int i, Faces_around_stack &faces_around)
{
Vertex_handle va = f->vertex(1-i);
Face_handle n= f->neighbor(i);
int in = n->index(f);
Vertex_handle vb = n->vertex(in);
f->set_vertex(1-i, n->vertex(in));
vb->set_face(f);
f->set_neighbor(i, n->neighbor(1-in));
n->neighbor(1-in)->set_neighbor(n->neighbor(1-in)->index(n), f);
(f->vertex_list()).splice(f->vertex_list().begin(),n->vertex_list());
set_face(f->vertex_list(),f);
delete_face(n);
hide_vertex(f,va);
faces_around.push_front(f);
return;
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
all_vertices_begin() const
{
return CGAL::filter_iterator(Base::all_vertices_end(),
Hidden_tester(),
Base::all_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
all_vertices_end() const
{
return CGAL::filter_iterator(Base::all_vertices_end(),
Hidden_tester());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertex_handles
Regular_triangulation_2<Gt,Tds>::
all_vertex_handles() const
{
return make_prevent_deref_range(all_vertices_begin(),all_vertices_end());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
finite_vertices_begin() const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Hidden_tester(),
Base::finite_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
finite_vertex() const
{
CGAL_triangulation_precondition(number_of_vertices() >= 1);
return(finite_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
finite_vertices_end() const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Hidden_tester());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertex_handles
Regular_triangulation_2<Gt,Tds>::
finite_vertex_handles() const
{
return make_prevent_deref_range(finite_vertices_begin(),finite_vertices_end());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_begin() const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Unhidden_tester(),
Base::finite_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_end() const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Unhidden_tester());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertex_handles
Regular_triangulation_2<Gt,Tds>::
hidden_vertex_handles() const
{
return make_prevent_deref_range(hidden_vertices_begin(),hidden_vertices_end());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
nearest_power_vertex(const Bare_point& p) const
{
if(dimension() == -1) { return Vertex_handle(); }
if(dimension() == 0) { return finite_vertex(); }
typename Geom_traits::Compare_power_distance_2 cmp_power_distance =
geom_traits().compare_power_distance_2_object();
Vertex_handle vclosest;
Vertex_handle v = finite_vertex();
// if(dimension() == 1) {
// }
do {
vclosest = v;
Weighted_point wp = v->point();
Vertex_circulator vc_start = incident_vertices(v);
Vertex_circulator vc = vc_start;
do {
if(!is_infinite(vc)) {
if(cmp_power_distance(p, vc->point(), wp) == SMALLER) {
v = vc;
break;
}
}
++vc;
} while(vc != vc_start);
} while(vclosest != v);
return vclosest;
}
} //namespace CGAL
#endif // CGAL_REGULAR_TRIANGULATION_2_H