dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/poisson_surface_reconstruct...

143 lines
5.6 KiB
C++

// Copyright (c) 2017 GeometryFactory (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Poisson_surface_reconstruction_3/include/CGAL/poisson_surface_reconstruction.h $
// $Id: poisson_surface_reconstruction.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot
#ifndef CGAL_POISSON_SURFACE_RECONSTRUCTION_H
#define CGAL_POISSON_SURFACE_RECONSTRUCTION_H
#include <CGAL/license/Poisson_surface_reconstruction_3.h>
#include <CGAL/Surface_mesh_default_triangulation_3.h>
#include <CGAL/make_surface_mesh.h>
#include <CGAL/Implicit_surface_3.h>
#include <CGAL/IO/facets_in_complex_2_to_triangle_mesh.h>
#include <CGAL/Poisson_reconstruction_function.h>
#include <CGAL/property_map.h>
namespace CGAL {
/*!
\ingroup PkgPoissonSurfaceReconstruction3Ref
Performs surface reconstruction as follows:
- compute the Poisson implicit function, through a conjugate
gradient solver, represented as a piecewise linear function
stored on a 3D Delaunay mesh generated via Delaunay refinement
- meshes the function with a user-defined precision using another
round of Delaunay refinement: it contours the isosurface
corresponding to the isovalue of the median of the function
values at the input points
- outputs the result in a polygon mesh
This function relies mainly on the size parameter `spacing`. A
reasonable solution is to use the average spacing of the input
point set (using `compute_average_spacing()` for example). Higher
values increase the precision of the output mesh at the cost of
higher computation time.
Parameters `sm_angle`, `sm_radius` and `sm_distance` work
similarly to the parameters of `SurfaceMeshFacetsCriteria_3`. The
latest two are defined with respect to `spacing`.
\tparam PointInputIterator is a model of `InputIterator`.
\tparam PointMap is a model of `ReadablePropertyMap` with value
type `Point_3<Kernel>`.
\tparam NormalMap is a model of `ReadablePropertyMap` with value
type `Vector_3<Kernel>`.
\tparam PolygonMesh a model of `MutableFaceGraph` with an internal
point property map.
\tparam Tag is a tag whose type affects the behavior of the
meshing algorithm (see `make_surface_mesh()`).
\param begin iterator on the first point of the sequence.
\param end past the end iterator of the point sequence.
\param point_map property map: value_type of `InputIterator` -> Point_3.
\param normal_map property map: value_type of `InputIterator` -> Vector_3.
\param output_mesh where the reconstruction is stored.
\param spacing size parameter.
\param sm_angle bound for the minimum facet angle in degrees.
\param sm_radius bound for the radius of the surface Delaunay balls (relatively to the `average_spacing`).
\param sm_distance bound for the center-center distances (relatively to the `average_spacing`).
\param tag surface mesher tag.
\return `true` if reconstruction succeeded, `false` otherwise.
*/
template <typename PointInputIterator,
typename PointMap,
typename NormalMap,
typename PolygonMesh,
typename Tag = CGAL::Manifold_with_boundary_tag>
bool
poisson_surface_reconstruction_delaunay (PointInputIterator begin,
PointInputIterator end,
PointMap point_map,
NormalMap normal_map,
PolygonMesh& output_mesh,
double spacing,
double sm_angle = 20.0,
double sm_radius = 30.0,
double sm_distance = 0.375,
Tag tag = Tag())
{
typedef typename boost::property_traits<PointMap>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
typedef typename Kernel::Sphere_3 Sphere;
typedef CGAL::Poisson_reconstruction_function<Kernel> Poisson_reconstruction_function;
typedef CGAL::Surface_mesh_default_triangulation_3 STr;
typedef CGAL::Surface_mesh_complex_2_in_triangulation_3<STr> C2t3;
typedef CGAL::Implicit_surface_3<Kernel, Poisson_reconstruction_function> Surface_3;
Poisson_reconstruction_function function(begin, end, point_map, normal_map);
if ( ! function.compute_implicit_function() )
return false;
Point inner_point = function.get_inner_point();
Sphere bsphere = function.bounding_sphere();
double radius = std::sqrt(bsphere.squared_radius());
double sm_sphere_radius = 5.0 * radius;
double sm_dichotomy_error = sm_distance * spacing / 1000.0;
Surface_3 surface(function,
Sphere (inner_point, sm_sphere_radius * sm_sphere_radius),
sm_dichotomy_error / sm_sphere_radius);
CGAL::Surface_mesh_default_criteria_3<STr> criteria (sm_angle,
sm_radius * spacing,
sm_distance * spacing);
STr tr;
C2t3 c2t3(tr);
CGAL::make_surface_mesh(c2t3,
surface,
criteria,
tag);
if(tr.number_of_vertices() == 0)
return false;
CGAL::facets_in_complex_2_to_triangle_mesh(c2t3, output_mesh);
return true;
}
}
#endif // CGAL_POISSON_SURFACE_RECONSTRUCTION_H