299 lines
11 KiB
C++
299 lines
11 KiB
C++
// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/remove_outliers.h $
|
|
// $Id: remove_outliers.h 0715654 2020-06-03T19:01:46+02:00 Mael Rouxel-Labbé
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Laurent Saboret and Nader Salman and Pierre Alliez
|
|
|
|
#ifndef CGAL_REMOVE_OUTLIERS_H
|
|
#define CGAL_REMOVE_OUTLIERS_H
|
|
|
|
#include <CGAL/license/Point_set_processing_3.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
#include <CGAL/Point_set_processing_3/internal/Neighbor_query.h>
|
|
#include <CGAL/Point_set_processing_3/internal/Callback_wrapper.h>
|
|
#include <CGAL/for_each.h>
|
|
#include <CGAL/property_map.h>
|
|
#include <CGAL/point_set_processing_assertions.h>
|
|
#include <functional>
|
|
|
|
#include <CGAL/boost/graph/Named_function_parameters.h>
|
|
#include <CGAL/boost/graph/named_params_helper.h>
|
|
|
|
#include <boost/iterator/zip_iterator.hpp>
|
|
|
|
#include <iterator>
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Private section
|
|
// ----------------------------------------------------------------------------
|
|
/// \cond SKIP_IN_MANUAL
|
|
namespace internal {
|
|
|
|
|
|
/// Utility function for remove_outliers():
|
|
/// Computes average squared distance to the K nearest neighbors.
|
|
///
|
|
/// \pre `k >= 2`
|
|
///
|
|
/// @tparam Kernel Geometric traits class.
|
|
/// @tparam Tree KD-tree.
|
|
///
|
|
/// @return computed distance.
|
|
template <typename NeighborQuery>
|
|
typename NeighborQuery::Kernel::FT
|
|
compute_avg_knn_sq_distance_3(
|
|
const typename NeighborQuery::Kernel::Point_3& query, ///< 3D point to project
|
|
NeighborQuery& neighbor_query, ///< KD-tree
|
|
unsigned int k, ///< number of neighbors
|
|
typename NeighborQuery::Kernel::FT neighbor_radius)
|
|
{
|
|
// geometric types
|
|
typedef typename NeighborQuery::Kernel Kernel;
|
|
typedef typename Kernel::FT FT;
|
|
typedef typename Kernel::Point_3 Point;
|
|
|
|
std::vector<Point> points;
|
|
neighbor_query.get_points (query, k, neighbor_radius, std::back_inserter(points));
|
|
|
|
// compute average squared distance
|
|
typename Kernel::Compute_squared_distance_3 sqd;
|
|
FT sq_distance = (FT)0.0;
|
|
for(typename std::vector<Point>::iterator neighbor = points.begin(); neighbor != points.end(); neighbor++)
|
|
sq_distance += sqd(*neighbor, query);
|
|
sq_distance /= FT(points.size());
|
|
return sq_distance;
|
|
}
|
|
|
|
} /* namespace internal */
|
|
/// \endcond
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Public section
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
\ingroup PkgPointSetProcessing3Algorithms
|
|
Removes outliers:
|
|
- computes average squared distance to the nearest neighbors,
|
|
- and partitions the points either using a threshold on the of
|
|
average distance or selecting a fixed percentage of points with
|
|
the highest average distances
|
|
|
|
This method modifies the order of input points so as to pack all remaining points first,
|
|
and returns an iterator over the first point to remove (see erase-remove idiom).
|
|
For this reason it should not be called on sorted containers.
|
|
|
|
\pre `k >= 2`
|
|
|
|
\tparam ConcurrencyTag enables sequential versus parallel algorithm. Possible values are `Sequential_tag`,
|
|
`Parallel_tag`, and `Parallel_if_available_tag`.
|
|
\tparam PointRange is a model of `Range`. The value type of
|
|
its iterator is the key type of the named parameter `point_map`.
|
|
|
|
\param points input point range.
|
|
\param k number of neighbors
|
|
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
|
|
|
\cgalNamedParamsBegin
|
|
\cgalParamNBegin{point_map}
|
|
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
|
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
|
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
|
|
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{neighbor_radius}
|
|
\cgalParamDescription{the spherical neighborhood radius}
|
|
\cgalParamType{floating scalar value}
|
|
\cgalParamDefault{`0` (no limit)}
|
|
\cgalParamExtra{If provided, the neighborhood of a query point is computed with a fixed spherical
|
|
radius instead of a fixed number of neighbors. In that case, the parameter
|
|
`k` is used as a limit on the number of points returned by each spherical
|
|
query (to avoid overly large number of points in high density areas).}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{threshold_percent}
|
|
\cgalParamDescription{the maximum percentage of points to remove}
|
|
\cgalParamType{double}
|
|
\cgalParamDefault{`10`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{threshold_distance}
|
|
\cgalParamDescription{the minimum distance for a point to be considered as outlier}
|
|
\cgalParamType{double}
|
|
\cgalParamDefault{`0`}
|
|
\cgalParamExtra{Distance here is the square root of the average squared distance to K-nearest neighbors}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{callback}
|
|
\cgalParamDescription{a mechanism to get feedback on the advancement of the algorithm
|
|
while it's running and to interrupt it if needed}
|
|
\cgalParamType{an instance of `std::function<bool(double)>`.}
|
|
\cgalParamDefault{unused}
|
|
\cgalParamExtra{It is called regularly when the
|
|
algorithm is running: the current advancement (between 0. and 1.)
|
|
is passed as parameter. If it returns `true`, then the
|
|
algorithm continues its execution normally; if it returns
|
|
`false`, the algorithm is stopped, all points are left unchanged
|
|
and the function return `points.size()`.}
|
|
\cgalParamExtra{The callback will be copied and therefore needs to be lightweight.}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{geom_traits}
|
|
\cgalParamDescription{an instance of a geometric traits class}
|
|
\cgalParamType{a model of `Kernel`}
|
|
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
|
\cgalParamNEnd\cgalNamedParamsEnd
|
|
|
|
\return iterator over the first point to remove.
|
|
|
|
\note There are two thresholds that can be used:
|
|
`threshold_percent` and `threshold_distance`. This function
|
|
returns the smallest number of outliers such that at least one of
|
|
these threshold is fulfilled. This means that if
|
|
`threshold_percent=100`, only `threshold_distance` is taken into
|
|
account; if `threshold_distance=0` only `threshold_percent` is
|
|
taken into account.
|
|
*/
|
|
template <typename ConcurrencyTag,
|
|
typename PointRange,
|
|
typename NamedParameters
|
|
>
|
|
typename PointRange::iterator
|
|
remove_outliers(
|
|
PointRange& points,
|
|
unsigned int k,
|
|
const NamedParameters& np)
|
|
{
|
|
using parameters::choose_parameter;
|
|
using parameters::get_parameter;
|
|
|
|
// geometric types
|
|
typedef typename CGAL::GetPointMap<PointRange, NamedParameters>::type PointMap;
|
|
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
|
|
|
|
PointMap point_map = choose_parameter<PointMap>(get_parameter(np, internal_np::point_map));
|
|
typename Kernel::FT neighbor_radius = choose_parameter(get_parameter(np, internal_np::neighbor_radius),
|
|
typename Kernel::FT(0));
|
|
double threshold_percent = choose_parameter(get_parameter(np, internal_np::threshold_percent), 10.);
|
|
double threshold_distance = choose_parameter(get_parameter(np, internal_np::threshold_distance), 0.);
|
|
const std::function<bool(double)>& callback = choose_parameter(get_parameter(np, internal_np::callback),
|
|
std::function<bool(double)>());
|
|
|
|
typedef typename Kernel::FT FT;
|
|
|
|
// basic geometric types
|
|
typedef typename PointRange::iterator iterator;
|
|
typedef typename iterator::value_type value_type;
|
|
|
|
// types for K nearest neighbors search structure
|
|
typedef Point_set_processing_3::internal::Neighbor_query<Kernel, PointRange&, PointMap> Neighbor_query;
|
|
|
|
// precondition: at least one element in the container.
|
|
// to fix: should have at least three distinct points
|
|
// but this is costly to check
|
|
CGAL_point_set_processing_precondition(points.begin() != points.end());
|
|
|
|
// precondition: at least 2 nearest neighbors
|
|
CGAL_point_set_processing_precondition(k >= 2);
|
|
|
|
CGAL_point_set_processing_precondition(threshold_percent >= 0 && threshold_percent <= 100);
|
|
|
|
Neighbor_query neighbor_query (points, point_map);
|
|
|
|
std::size_t nb_points = points.size();
|
|
|
|
// iterate over input points and add them to multimap sorted by distance to k
|
|
std::vector<std::pair<FT, value_type> > sorted_points;
|
|
sorted_points.reserve (nb_points);
|
|
for (const value_type& p : points)
|
|
sorted_points.push_back(std::make_pair (FT(0), p));
|
|
|
|
Point_set_processing_3::internal::Callback_wrapper<ConcurrencyTag>
|
|
callback_wrapper (callback, nb_points);
|
|
|
|
CGAL::for_each<ConcurrencyTag>
|
|
(sorted_points,
|
|
[&](std::pair<FT, value_type>& p) -> bool
|
|
{
|
|
if (callback_wrapper.interrupted())
|
|
return false;
|
|
|
|
p.first = internal::compute_avg_knn_sq_distance_3(
|
|
get(point_map, p.second),
|
|
neighbor_query, k, neighbor_radius);
|
|
|
|
++ callback_wrapper.advancement();
|
|
return true;
|
|
});
|
|
|
|
std::size_t first_index_to_remove = std::size_t(double(sorted_points.size()) * ((100.0-threshold_percent)/100.0));
|
|
|
|
typename std::vector<std::pair<FT, value_type> >::iterator f2r
|
|
= sorted_points.begin();
|
|
|
|
if (threshold_distance != FT(0))
|
|
f2r = std::partition (sorted_points.begin(), sorted_points.end(),
|
|
[&threshold_distance](const std::pair<FT, value_type>& p) -> bool
|
|
{
|
|
return p.first < threshold_distance * threshold_distance;
|
|
});
|
|
|
|
if (static_cast<std::size_t>(std::distance (sorted_points.begin(), f2r)) < first_index_to_remove)
|
|
{
|
|
std::nth_element (f2r,
|
|
sorted_points.begin() + first_index_to_remove,
|
|
sorted_points.end());
|
|
f2r = sorted_points.begin() + first_index_to_remove;
|
|
}
|
|
|
|
// Replaces [points.begin(), points.end()) range by the sorted content.
|
|
iterator pit = points.begin();
|
|
iterator out = points.begin();
|
|
|
|
for (auto sit = sorted_points.begin(); sit != sorted_points.end(); ++ sit)
|
|
{
|
|
*pit = sit->second;
|
|
if (sit == f2r)
|
|
out = pit;
|
|
++ pit;
|
|
}
|
|
|
|
callback_wrapper.join();
|
|
|
|
// Returns the iterator on the first point to remove
|
|
return out;
|
|
}
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
// variant with default NP
|
|
template <typename ConcurrencyTag, typename PointRange>
|
|
typename PointRange::iterator
|
|
remove_outliers(
|
|
PointRange& points,
|
|
unsigned int k) ///< number of neighbors.
|
|
{
|
|
return remove_outliers<ConcurrencyTag> (points, k, CGAL::Point_set_processing_3::parameters::all_default(points));
|
|
}
|
|
/// \endcond
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_REMOVE_OUTLIERS_H
|