dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/squared_distance_3_2.h

411 lines
10 KiB
C++

// Copyright (c) 1998-2004
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Distance_3/include/CGAL/squared_distance_3_2.h $
// $Id: squared_distance_3_2.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Geert-Jan Giezeman, Andreas Fabri
#ifndef CGAL_DISTANCE_3_2_H
#define CGAL_DISTANCE_3_2_H
#include <CGAL/squared_distance_3_0.h>
#include <CGAL/squared_distance_3_1.h>
#include <CGAL/wmult.h>
#include <CGAL/Point_3.h>
#include <CGAL/Segment_3.h>
#include <CGAL/Line_3.h>
#include <CGAL/Ray_3.h>
#include <CGAL/Triangle_3.h>
#include <CGAL/Plane_3.h>
namespace CGAL {
namespace internal {
template <class K>
bool
contains_vector(const typename K::Plane_3 &pl,
const typename K::Vector_3 &vec,
const K&)
{
typedef typename K::RT RT;
return pl.a()*vec.hx() + pl.b()*vec.hy() + pl.c() * vec.hz() == RT(0);
}
template <class K>
inline typename K::FT
squared_distance(
const typename K::Point_3 & pt,
const typename K::Plane_3 & plane,
const K& k)
{
typename K::Construct_vector_3 construct_vector;
typedef typename K::Vector_3 Vector_3;
Vector_3 diff = construct_vector(plane.point(), pt);
return squared_distance_to_plane(plane.orthogonal_vector(), diff, k);
}
template <class K>
inline typename K::FT
squared_distance(
const typename K::Plane_3 & plane,
const typename K::Point_3 & pt,
const K& k)
{
return squared_distance(pt, plane, k);
}
template <class K>
typename K::FT
squared_distance(
const typename K::Line_3 &line,
const typename K::Plane_3 &plane,
const K& k)
{
typedef typename K::FT FT;
if (contains_vector(plane, line.direction().vector(), k))
return squared_distance(plane, line.point(), k);
return FT(0);
}
template <class K>
inline typename K::FT
squared_distance(
const typename K::Plane_3 & p,
const typename K::Line_3 & line,
const K& k)
{
return squared_distance(line, p, k);
}
template <class K>
typename K::FT
squared_distance(
const typename K::Ray_3 &ray,
const typename K::Plane_3 &plane,
const K& k)
{
typename K::Construct_vector_3 construct_vector;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::RT RT;
typedef typename K::FT FT;
const Point_3 &start = ray.start();
const Point_3 &planepoint = plane.point();
Vector_3 start_min_pp = construct_vector(planepoint, start);
Vector_3 end_min_pp = ray.direction().vector();
const Vector_3 &normal = plane.orthogonal_vector();
RT sdm_rs2pp = wdot(normal, start_min_pp, k);
RT sdm_re2pp = wdot(normal, end_min_pp, k);
switch (CGAL_NTS sign(sdm_rs2pp)) {
case -1:
if (sdm_re2pp > RT(0))
return FT(0);
return squared_distance_to_plane(normal, start_min_pp, k);
case 0:
default:
return FT(0);
case 1:
if (sdm_re2pp < RT(0))
return FT(0);
return squared_distance_to_plane(normal, start_min_pp, k);
}
}
template <class K>
inline typename K::FT
squared_distance(
const typename K::Plane_3 & plane,
const typename K::Ray_3 & ray,
const K& k)
{
return squared_distance(ray, plane, k);
}
template <class K>
typename K::FT
squared_distance(
const typename K::Segment_3 &seg,
const typename K::Plane_3 &plane,
const K& k)
{
typename K::Construct_vector_3 construct_vector;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::RT RT;
typedef typename K::FT FT;
const Point_3 &start = seg.start();
const Point_3 &end = seg.end();
if (start == end)
return squared_distance(start, plane, k);
const Point_3 &planepoint = plane.point();
Vector_3 start_min_pp = construct_vector(planepoint, start);
Vector_3 end_min_pp = construct_vector(planepoint, end);
const Vector_3 &normal = plane.orthogonal_vector();
RT sdm_ss2pp = wdot(normal, start_min_pp, k);
RT sdm_se2pp = wdot(normal, end_min_pp, k);
switch (CGAL_NTS sign(sdm_ss2pp)) {
case -1:
if (sdm_se2pp >= RT(0))
return FT(0);
if (sdm_ss2pp * end_min_pp.hw() >= sdm_se2pp * start_min_pp.hw())
return squared_distance_to_plane(normal, start_min_pp, k);
else
return squared_distance_to_plane(normal, end_min_pp, k);
case 0:
default:
return FT(0);
case 1:
if (sdm_se2pp <= RT(0))
return FT(0);
if (sdm_ss2pp * end_min_pp.hw() <= sdm_se2pp * start_min_pp.hw())
return squared_distance_to_plane(normal, start_min_pp, k);
else
return squared_distance_to_plane(normal, end_min_pp, k);
}
}
template <class K>
inline typename K::FT
squared_distance(
const typename K::Plane_3 & plane,
const typename K::Segment_3 & seg,
const K& k)
{
return squared_distance(seg, plane, k);
}
template <class K>
inline bool
on_left_of_triangle_edge(const typename K::Point_3 & pt,
const typename K::Vector_3 & normal,
const typename K::Point_3 & ep0,
const typename K::Point_3 & ep1,
const K& k)
{
// return true iff pt is on the negative side of the plane defined
// by (ep0, ep1) and normal
typename K::Construct_vector_3 vector;
typename K::Vector_3 edge = vector(ep0, ep1);
typename K::Vector_3 diff = vector(ep0, pt);
typedef typename K::RT RT;
const bool result =
RT(wdot(wcross(edge,
normal,
k),
diff,
k)) <= RT(0);
return result;
}
template <class K>
inline typename K::FT
squared_distance_to_triangle(
const typename K::Point_3 & pt,
const typename K::Point_3 & t0,
const typename K::Point_3 & t1,
const typename K::Point_3 & t2,
const K& k)
{
typename K::Construct_vector_3 vector;
typedef typename K::Vector_3 Vector_3;
const Vector_3 e1 = vector(t0, t1);
const Vector_3 oe3 = vector(t0, t2);
const Vector_3 normal = wcross(e1, oe3, k);
if(normal != NULL_VECTOR
&& on_left_of_triangle_edge(pt, normal, t0, t1, k)
&& on_left_of_triangle_edge(pt, normal, t1, t2, k)
&& on_left_of_triangle_edge(pt, normal, t2, t0, k))
{
// the projection of pt is inside the triangle
return squared_distance_to_plane(normal, vector(t0, pt), k);
}
else {
// The case normal==NULL_VECTOR covers the case when the triangle
// is colinear, or even more degenerate. In that case, we can
// simply take also the distance to the three segments.
typename K::FT d1 = squared_distance(pt,
typename K::Segment_3(t2, t0),
k);
typename K::FT d2 = squared_distance(pt,
typename K::Segment_3(t1, t2),
k);
typename K::FT d3 = squared_distance(pt,
typename K::Segment_3(t0, t1),
k);
return (std::min)( (std::min)(d1, d2), d3);
}
}
template <class K>
inline typename K::FT
squared_distance(
const typename K::Point_3 & pt,
const typename K::Triangle_3 & t,
const K& k)
{
typename K::Construct_vertex_3 vertex;
return squared_distance_to_triangle(pt,
vertex(t, 0),
vertex(t, 1),
vertex(t, 2),
k);
}
} // namespace internal
template <class K>
bool
contains_vector(const Plane_3<K> &pl, const Vector_3<K> &vec)
{
return internal::contains_vector(pl,vec, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Point_3<K> & pt,
const Plane_3<K> & plane)
{
return internal::squared_distance(pt, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Plane_3<K> & plane,
const Point_3<K> & pt)
{
return internal::squared_distance(pt, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Line_3<K> &line,
const Plane_3<K> &plane)
{
return internal::squared_distance(line, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Plane_3<K> & p,
const Line_3<K> & line)
{
return internal::squared_distance(line, p, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Ray_3<K> &ray,
const Plane_3<K> &plane)
{
return internal::squared_distance(ray, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Plane_3<K> & plane,
const Ray_3<K> & ray)
{
return internal::squared_distance(ray, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Segment_3<K> &seg,
const Plane_3<K> &plane)
{
return internal::squared_distance(seg, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(
const Plane_3<K> & plane,
const Segment_3<K> & seg)
{
return internal::squared_distance(seg, plane, K());
}
template <class K>
inline
typename K::FT
squared_distance(const Point_3<K> & pt,
const Triangle_3<K> & t) {
return internal::squared_distance(pt, t, K());
}
template <class K>
inline
typename K::FT
squared_distance(const Triangle_3<K> & t,
const Point_3<K> & pt) {
return internal::squared_distance(pt, t, K());
}
template <class K>
inline
typename K::FT
squared_distance(const Plane_3<K> & p1,
const Plane_3<K> & p2) {
K k;
typename K::Construct_orthogonal_vector_3 ortho_vec =
k.construct_orthogonal_vector_3_object();
if (!internal::is_null(internal::wcross(ortho_vec(p1), ortho_vec(p2), k), k))
return typename K::FT(0);
else
return internal::squared_distance(p1.point(), p2, k);
}
} //namespace CGAL
#endif