1606 lines
59 KiB
C++
1606 lines
59 KiB
C++
// Copyright (c) 2015 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/structure_point_set.h $
|
|
// $Id: structure_point_set.h c253679 2020-04-18T16:27:58+02:00 Sébastien Loriot
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
//
|
|
// Author(s) : Florent Lafarge, Simon Giraudot
|
|
//
|
|
|
|
#ifndef CGAL_STRUCTURE_POINT_SET_3_H
|
|
#define CGAL_STRUCTURE_POINT_SET_3_H
|
|
|
|
#include <CGAL/license/Point_set_processing_3.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
#include <CGAL/property_map.h>
|
|
#include <CGAL/point_set_processing_assertions.h>
|
|
#include <CGAL/assertions.h>
|
|
#include <CGAL/intersections.h>
|
|
|
|
#include <CGAL/centroid.h>
|
|
|
|
#include <CGAL/Kd_tree.h>
|
|
#include <CGAL/Fuzzy_sphere.h>
|
|
#include <CGAL/Search_traits_d.h>
|
|
#include <CGAL/Search_traits_3.h>
|
|
|
|
#include <CGAL/Delaunay_triangulation_3.h>
|
|
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
|
|
|
|
#include <CGAL/boost/graph/Named_function_parameters.h>
|
|
#include <CGAL/boost/graph/named_params_helper.h>
|
|
|
|
#include <boost/iterator/counting_iterator.hpp>
|
|
|
|
#include <iterator>
|
|
#include <list>
|
|
#include <limits>
|
|
|
|
namespace CGAL {
|
|
|
|
/*!
|
|
\ingroup PkgPointSetProcessing3Algorithms
|
|
|
|
\brief A 3D point set with structure information based on a set of
|
|
detected planes.
|
|
|
|
Given a point set in 3D space along with a set of fitted planes, this
|
|
class stores a simplified and structured version of the point
|
|
set. Each output point is assigned to one, two or more primitives
|
|
(depending whether it belongs to a planar section, an edge or a if it
|
|
is a vertex). The implementation follow \cgalCite{cgal:la-srpss-13}.
|
|
|
|
\tparam Kernel a model of `EfficientRANSACTraits` that must provide in
|
|
addition a function `Intersect_3 intersection_3_object() const` and a
|
|
functor `Intersect_3` with:
|
|
- `boost::optional< boost::variant< Traits::Plane_3, Traits::Line_3 > > operator()(typename Traits::Plane_3, typename Traits::Plane_3)`
|
|
- `boost::optional< boost::variant< Traits::Line_3, Traits::Point_3 > > operator()(typename Traits::Line_3, typename Traits::Plane_3)`
|
|
|
|
*/
|
|
template <typename Kernel>
|
|
class Point_set_with_structure
|
|
{
|
|
typedef Point_set_with_structure<Kernel> Self;
|
|
|
|
typedef typename Kernel::FT FT;
|
|
typedef typename Kernel::Segment_3 Segment;
|
|
typedef typename Kernel::Line_3 Line;
|
|
typedef typename Kernel::Point_2 Point_2;
|
|
|
|
enum Point_status { POINT, RESIDUS, PLANE, EDGE, CORNER, SKIPPED };
|
|
|
|
public:
|
|
|
|
|
|
typedef typename Kernel::Point_3 Point;
|
|
typedef typename Kernel::Vector_3 Vector;
|
|
typedef typename Kernel::Plane_3 Plane;
|
|
|
|
/// Tag classifying the coherence of a triplet of points with
|
|
/// respect to an inferred surface
|
|
enum Coherence_type
|
|
{
|
|
INCOHERENT = -1, ///< Incoherent (facet violates the underlying structure)
|
|
FREEFORM = 0, ///< Free-form coherent (facet is between 3 free-form points)
|
|
VERTEX = 1, ///< Structure coherent, facet adjacent to a vertex
|
|
CREASE = 2, ///< Structure coherent, facet adjacent to an edge
|
|
PLANAR = 3 ///< Structure coherent, facet inside a planar section
|
|
};
|
|
|
|
private:
|
|
|
|
class My_point_property_map{
|
|
const std::vector<Point>& points;
|
|
public:
|
|
typedef Point value_type;
|
|
typedef const value_type& reference;
|
|
typedef std::size_t key_type;
|
|
typedef boost::lvalue_property_map_tag category;
|
|
My_point_property_map (const std::vector<Point>& pts) : points (pts) {}
|
|
reference operator[] (key_type k) const { return points[k]; }
|
|
friend inline reference get (const My_point_property_map& ppmap, key_type i)
|
|
{ return ppmap[i]; }
|
|
};
|
|
|
|
struct Edge
|
|
{
|
|
std::array<std::size_t, 2> planes;
|
|
std::vector<std::size_t> indices; // Points belonging to intersection
|
|
Line support;
|
|
bool active;
|
|
|
|
Edge (std::size_t a, std::size_t b)
|
|
: support (Point (FT(0.), FT(0.), FT(0.)),
|
|
Vector (FT(0.), FT(0.), FT(0.)))
|
|
, active(true)
|
|
{ planes[0] = a; planes[1] = b; }
|
|
};
|
|
struct Corner
|
|
{
|
|
std::vector<std::size_t> planes;
|
|
std::vector<std::size_t> edges;
|
|
std::vector<Vector> directions;
|
|
Point support;
|
|
bool active;
|
|
|
|
Corner (std::size_t p1, std::size_t p2, std::size_t p3,
|
|
std::size_t e1, std::size_t e2, std::size_t e3)
|
|
{
|
|
planes.resize (3); planes[0] = p1; planes[1] = p2; planes[2] = p3;
|
|
edges.resize (3); edges[0] = e1; edges[1] = e2; edges[2] = e3;
|
|
active = true;
|
|
}
|
|
};
|
|
|
|
|
|
std::vector<Point> m_points;
|
|
std::vector<Vector> m_normals;
|
|
std::vector<std::size_t> m_indices;
|
|
std::vector<Point_status> m_status;
|
|
|
|
std::vector<Plane> m_planes;
|
|
std::vector<std::vector<std::size_t> > m_indices_of_assigned_points;
|
|
std::vector<Edge> m_edges;
|
|
std::vector<Corner> m_corners;
|
|
|
|
public:
|
|
|
|
|
|
/*!
|
|
Constructs a structured point set based on the input points and the
|
|
associated shape detection object.
|
|
|
|
\tparam PointRange is a model of `ConstRange`. The value type of
|
|
its iterator is the key type of the named parameter `point_map`.
|
|
\tparam PlaneRange is a model of `ConstRange`. The value type of
|
|
its iterator is the key type of the named parameter `plane_map`.
|
|
|
|
\param points input point range.
|
|
\param planes input plane range.
|
|
\param epsilon size parameter.
|
|
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
|
|
|
\cgalNamedParamsBegin
|
|
\cgalParamNBegin{point_map}
|
|
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
|
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
|
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
|
|
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{normal_map}
|
|
\cgalParamDescription{a property map associating normals to the elements of the point set `points`}
|
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
|
of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{plane_index_map}
|
|
\cgalParamDescription{a property map associating the index of a point in the input range
|
|
to the index of plane (`-1` if the point is not assigned to a plane)}
|
|
\cgalParamType{a class model of `ReadablePropertyMap` with `std::size_t` as key type and `int` as value type}
|
|
\cgalParamDefault{unused}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{plane_map}
|
|
\cgalParamDescription{a property map containing the planes associated to the elements of the plane range `planes`}
|
|
\cgalParamType{a class model of `ReadablePropertyMap` with `PlaneRange::iterator::value_type`
|
|
as key type and `geom_traits::Plane_3` as value type}
|
|
\cgalParamDefault{`CGAL::Identity_property_map<Kernel::Plane_3>`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{attraction_factor}
|
|
\cgalParamDescription{multiple of a tolerance `epsilon` used to connect simplices}
|
|
\cgalParamType{floating scalar value}
|
|
\cgalParamDefault{`3`}
|
|
\cgalParamNEnd
|
|
\cgalNamedParamsEnd
|
|
*/
|
|
template <typename PointRange,
|
|
typename PlaneRange,
|
|
typename NamedParameters>
|
|
Point_set_with_structure (const PointRange& points,
|
|
const PlaneRange& planes,
|
|
double epsilon,
|
|
const NamedParameters& np)
|
|
{
|
|
init (points, planes, epsilon, np);
|
|
}
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
|
|
template <typename PointRange,
|
|
typename PlaneRange,
|
|
typename NamedParameters>
|
|
void init (const PointRange& points,
|
|
const PlaneRange& planes,
|
|
double epsilon,
|
|
const NamedParameters& np)
|
|
{
|
|
using parameters::choose_parameter;
|
|
using parameters::get_parameter;
|
|
|
|
// basic geometric types
|
|
typedef typename CGAL::GetPointMap<PointRange, NamedParameters>::type PointMap;
|
|
typedef typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::type NormalMap;
|
|
typedef typename Point_set_processing_3::GetPlaneMap<PlaneRange, NamedParameters>::type PlaneMap;
|
|
typedef typename Point_set_processing_3::GetPlaneIndexMap<NamedParameters>::type PlaneIndexMap;
|
|
|
|
CGAL_static_assertion_msg(!(boost::is_same<NormalMap,
|
|
typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::NoMap>::value),
|
|
"Error: no normal map");
|
|
CGAL_static_assertion_msg(!(boost::is_same<PlaneIndexMap,
|
|
typename Point_set_processing_3::GetPlaneIndexMap<NamedParameters>::NoMap>::value),
|
|
"Error: no plane index map");
|
|
|
|
PointMap point_map = choose_parameter<PointMap>(get_parameter(np, internal_np::point_map));
|
|
NormalMap normal_map = choose_parameter<NormalMap>(get_parameter(np, internal_np::normal_map));
|
|
PlaneMap plane_map = choose_parameter<PlaneMap>(get_parameter(np, internal_np::plane_map));
|
|
PlaneIndexMap index_map = choose_parameter<PlaneIndexMap>(get_parameter(np, internal_np::plane_index_map));
|
|
double attraction_factor = choose_parameter(get_parameter(np, internal_np::attraction_factor), 3.);
|
|
|
|
m_points.reserve(points.size());
|
|
m_normals.reserve(points.size());
|
|
m_indices_of_assigned_points.resize (planes.size());
|
|
|
|
m_indices.resize (points.size (), (std::numeric_limits<std::size_t>::max)());
|
|
m_status.resize (points.size (), POINT);
|
|
|
|
std::size_t idx = 0;
|
|
for (typename PointRange::const_iterator it = points.begin();
|
|
it != points.end(); ++ it)
|
|
{
|
|
m_points.push_back (get(point_map, *it));
|
|
m_normals.push_back (get(normal_map, *it));
|
|
int plane_index = get (index_map, idx);
|
|
if (plane_index != -1)
|
|
{
|
|
m_indices_of_assigned_points[std::size_t(plane_index)].push_back(idx);
|
|
m_indices[idx] = std::size_t(plane_index);
|
|
m_status[idx] = PLANE;
|
|
}
|
|
++ idx;
|
|
}
|
|
|
|
|
|
m_planes.reserve (planes.size());
|
|
for (typename PlaneRange::const_iterator it = planes.begin();
|
|
it != planes.end(); ++ it)
|
|
m_planes.push_back (get (plane_map, *it));
|
|
|
|
run (epsilon, attraction_factor);
|
|
clean ();
|
|
}
|
|
/// \endcond
|
|
|
|
std::size_t size () const { return m_points.size (); }
|
|
std::pair<Point, Vector> operator[] (std::size_t i) const
|
|
{ return std::make_pair (m_points[i], m_normals[i]); }
|
|
const Point& point (std::size_t i) const { return m_points[i]; }
|
|
const Vector& normal (std::size_t i) const { return m_normals[i]; }
|
|
|
|
/*!
|
|
|
|
Returns all `Plane_shape` objects that are adjacent to the point
|
|
with index `i`.
|
|
|
|
\note Points not adjacent to any plane are free-form points,
|
|
points adjacent to 1 plane are planar points, points adjacent to 2
|
|
planes are edge points and points adjacent to 3 or more planes are
|
|
vertices.
|
|
|
|
*/
|
|
template <typename OutputIterator>
|
|
void adjacency (std::size_t i, OutputIterator output) const
|
|
{
|
|
if (m_status[i] == PLANE || m_status[i] == RESIDUS)
|
|
*(output ++) = m_planes[m_indices[i]];
|
|
else if (m_status[i] == EDGE)
|
|
{
|
|
*(output ++) = m_planes[m_edges[m_indices[i]].planes[0]];
|
|
*(output ++) = m_planes[m_edges[m_indices[i]].planes[1]];
|
|
}
|
|
else if (m_status[i] == CORNER)
|
|
{
|
|
for (std::size_t j = 0; j < m_corners[m_indices[i]].planes.size(); ++ j)
|
|
*(output ++) = m_planes[m_corners[m_indices[i]].planes[j]];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
|
|
Computes the coherence of a facet between the 3 points indexed by
|
|
`f` with respect to the underlying structure.
|
|
|
|
*/
|
|
Coherence_type facet_coherence (const std::array<std::size_t, 3>& f) const
|
|
{
|
|
// O- FREEFORM CASE
|
|
if (m_status[f[0]] == POINT &&
|
|
m_status[f[1]] == POINT &&
|
|
m_status[f[2]] == POINT)
|
|
return FREEFORM;
|
|
|
|
// 1- PLANAR CASE
|
|
if (m_status[f[0]] == PLANE &&
|
|
m_status[f[1]] == PLANE &&
|
|
m_status[f[2]] == PLANE)
|
|
{
|
|
if (m_indices[f[0]] == m_indices[f[1]] &&
|
|
m_indices[f[0]] == m_indices[f[2]])
|
|
return PLANAR;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
|
|
for (std::size_t i = 0; i < 3; ++ i)
|
|
{
|
|
Point_status sa = m_status[f[(i+1)%3]];
|
|
Point_status sb = m_status[f[(i+2)%3]];
|
|
Point_status sc = m_status[f[(i+3)%3]];
|
|
std::size_t a = m_indices[f[(i+1)%3]];
|
|
std::size_t b = m_indices[f[(i+2)%3]];
|
|
std::size_t c = m_indices[f[(i+3)%3]];
|
|
|
|
// O- FREEFORM CASE
|
|
if (sa == POINT && sb == POINT && sc == PLANE)
|
|
return FREEFORM;
|
|
if (sa == POINT && sb == PLANE && sc == PLANE)
|
|
{
|
|
if (b == c)
|
|
return FREEFORM;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
|
|
// 2- CREASE CASES
|
|
if (sa == EDGE && sb == EDGE && sc == PLANE)
|
|
{
|
|
if ((c == m_edges[a].planes[0] ||
|
|
c == m_edges[a].planes[1]) &&
|
|
(c == m_edges[b].planes[0] ||
|
|
c == m_edges[b].planes[1]))
|
|
return CREASE;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
|
|
if (sa == EDGE && sb == PLANE && sc == PLANE)
|
|
{
|
|
if (b == c &&
|
|
(b == m_edges[a].planes[0] ||
|
|
b == m_edges[a].planes[1]))
|
|
return CREASE;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
|
|
|
|
// 3- CORNER CASES
|
|
if (sc == CORNER)
|
|
{
|
|
if (sa == EDGE && sb == EDGE)
|
|
{
|
|
bool a0 = false, a1 = false, b0 = false, b1 = false;
|
|
|
|
if ((m_edges[a].planes[0] != m_edges[b].planes[0] &&
|
|
m_edges[a].planes[0] != m_edges[b].planes[1] &&
|
|
m_edges[a].planes[1] != m_edges[b].planes[0] &&
|
|
m_edges[a].planes[1] != m_edges[b].planes[1]))
|
|
return INCOHERENT;
|
|
|
|
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
|
|
{
|
|
if (m_corners[c].planes[j] == m_edges[a].planes[0])
|
|
a0 = true;
|
|
else if (m_corners[c].planes[j] == m_edges[a].planes[1])
|
|
a1 = true;
|
|
if (m_corners[c].planes[j] == m_edges[b].planes[0])
|
|
b0 = true;
|
|
else if (m_corners[c].planes[j] == m_edges[b].planes[1])
|
|
b1 = true;
|
|
}
|
|
if (a0 && a1 && b0 && b1)
|
|
return VERTEX;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
else if (sa == PLANE && sb == PLANE)
|
|
{
|
|
if (a != b)
|
|
return INCOHERENT;
|
|
|
|
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
|
|
if (m_corners[c].planes[j] == a)
|
|
return VERTEX;
|
|
|
|
return INCOHERENT;
|
|
}
|
|
else if (sa == PLANE && sb == EDGE)
|
|
{
|
|
bool pa = false, b0 = false, b1 = false;
|
|
if (a != m_edges[b].planes[0] && a != m_edges[b].planes[1])
|
|
return INCOHERENT;
|
|
|
|
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
|
|
{
|
|
if (m_corners[c].planes[j] == a)
|
|
pa = true;
|
|
if (m_corners[c].planes[j] == m_edges[b].planes[0])
|
|
b0 = true;
|
|
else if (m_corners[c].planes[j] == m_edges[b].planes[1])
|
|
b1 = true;
|
|
}
|
|
if (pa && b0 && b1)
|
|
return VERTEX;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
else if (sa == EDGE && sb == PLANE)
|
|
{
|
|
bool a0 = false, a1 = false, pb = false;
|
|
if (b != m_edges[a].planes[0] && b != m_edges[a].planes[1])
|
|
return INCOHERENT;
|
|
|
|
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
|
|
{
|
|
if (m_corners[c].planes[j] == b)
|
|
pb = true;
|
|
if (m_corners[c].planes[j] == m_edges[a].planes[0])
|
|
a0 = true;
|
|
else if (m_corners[c].planes[j] == m_edges[a].planes[1])
|
|
a1 = true;
|
|
}
|
|
if (a0 && a1 && pb)
|
|
return VERTEX;
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
else
|
|
return INCOHERENT;
|
|
}
|
|
}
|
|
|
|
|
|
return INCOHERENT;
|
|
}
|
|
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
private:
|
|
|
|
|
|
void clean ()
|
|
{
|
|
std::vector<Point> points;
|
|
std::vector<Vector> normals;
|
|
std::vector<std::size_t> indices;
|
|
std::vector<Point_status> status;
|
|
|
|
for (std::size_t i = 0; i < m_points.size (); ++ i)
|
|
if (m_status[i] != SKIPPED)
|
|
{
|
|
points.push_back (m_points[i]);
|
|
normals.push_back (m_normals[i]);
|
|
status.push_back (m_status[i]);
|
|
if (m_status[i] == RESIDUS)
|
|
status.back () = PLANE;
|
|
indices.push_back (m_indices[i]);
|
|
}
|
|
|
|
m_points.swap (points);
|
|
m_normals.swap (normals);
|
|
m_indices.swap (indices);
|
|
m_status.swap (status);
|
|
}
|
|
|
|
|
|
void run (double epsilon, double attraction_factor = 3.)
|
|
{
|
|
if (m_planes.empty ())
|
|
return;
|
|
|
|
double radius = epsilon * attraction_factor;
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Computing planar points... " << std::endl;
|
|
#endif
|
|
|
|
project_inliers ();
|
|
resample_planes (epsilon);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Done" << std::endl;
|
|
std::cerr << "Finding adjacent primitives... " << std::endl;
|
|
#endif
|
|
|
|
find_pairs_of_adjacent_primitives (radius);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Found " << m_edges.size () << " pair(s) of adjacent primitives." << std::endl;
|
|
std::cerr << "Computing edges... " << std::endl;
|
|
#endif
|
|
|
|
compute_edges (epsilon);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Done" << std::endl;
|
|
std::cerr << "Creating edge-anchor points... " << std::endl;
|
|
{
|
|
std::size_t size_before = m_points.size ();
|
|
#endif
|
|
|
|
create_edge_anchor_points (radius, epsilon);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> " << m_points.size () - size_before << " anchor point(s) created." << std::endl;
|
|
}
|
|
|
|
std::cerr << "Computating first set of corners... " << std::endl;
|
|
#endif
|
|
|
|
compute_corners (radius);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Found " << m_corners.size () << " triple(s) of adjacent primitives/edges." << std::endl;
|
|
std::cerr << "Merging corners... " << std::endl;
|
|
{
|
|
std::size_t size_before = m_points.size ();
|
|
#endif
|
|
|
|
merge_corners (radius);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> " << m_points.size () - size_before << " corner point(s) created." << std::endl;
|
|
}
|
|
|
|
std::cerr << "Computing corner directions... " << std::endl;
|
|
#endif
|
|
|
|
compute_corner_directions (epsilon);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Done" << std::endl;
|
|
std::cerr << "Refining sampling... " << std::endl;
|
|
#endif
|
|
|
|
refine_sampling (epsilon);
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Done" << std::endl;
|
|
|
|
std::cerr << "Cleaning data set... " << std::endl;
|
|
#endif
|
|
|
|
clean ();
|
|
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << " -> Done" << std::endl;
|
|
#endif
|
|
}
|
|
|
|
void project_inliers ()
|
|
{
|
|
for(std::size_t i = 0; i < m_indices_of_assigned_points.size (); ++ i)
|
|
for (std::size_t j = 0; j < m_indices_of_assigned_points[i].size(); ++ j)
|
|
{
|
|
std::size_t ind = m_indices_of_assigned_points[i][j];
|
|
m_points[ind] = m_planes[i].projection (m_points[ind]);
|
|
}
|
|
}
|
|
|
|
void resample_planes (double epsilon)
|
|
{
|
|
double grid_length = epsilon * (std::sqrt(2.) - 1e-3);
|
|
|
|
for (std::size_t c = 0; c < m_planes.size (); ++ c)
|
|
{
|
|
//plane attributes and 2D projection vectors
|
|
const Plane& plane = m_planes[c];
|
|
Vector vortho = plane.orthogonal_vector();
|
|
Vector b1 = plane.base1();
|
|
Vector b2 = plane.base2();
|
|
|
|
b1 = b1 / std::sqrt (b1 * b1);
|
|
b2 = b2 / std::sqrt (b2 * b2);
|
|
|
|
std::vector<Point_2> points_2d;
|
|
|
|
//storage of the 2D points in "pt_2d"
|
|
for (std::size_t j = 0; j < m_indices_of_assigned_points[c].size(); ++ j)
|
|
{
|
|
std::size_t ind = m_indices_of_assigned_points[c][j];
|
|
const Point& pt = m_points[ind];
|
|
points_2d.push_back (Point_2 (b1.x() * pt.x() + b1.y() * pt.y() + b1.z() * pt.z(),
|
|
b2.x() * pt.x() + b2.y() * pt.y() + b2.z() * pt.z()));
|
|
}
|
|
|
|
|
|
//creation of a 2D-grid with cell width = grid_length, and image structures
|
|
CGAL::Bbox_2 box_2d = CGAL::bbox_2 (points_2d.begin(), points_2d.end());
|
|
std::size_t Nx = static_cast<std::size_t>((box_2d.xmax() - box_2d.xmin()) / grid_length) + 1;
|
|
std::size_t Ny = static_cast<std::size_t>((box_2d.ymax() - box_2d.ymin()) / grid_length) + 1;
|
|
|
|
std::vector<std::vector<bool> > Mask (Nx, std::vector<bool> (Ny, false));
|
|
std::vector<std::vector<bool> > Mask_border (Nx, std::vector<bool> (Ny, false));
|
|
std::vector<std::vector<std::vector<std::size_t> > >
|
|
point_map (Nx, std::vector<std::vector<std::size_t> > (Ny, std::vector<std::size_t>()));
|
|
|
|
//storage of the points in the 2D-grid "point_map"
|
|
for (std::size_t i = 0; i < points_2d.size(); ++ i)
|
|
{
|
|
std::size_t ind_x = static_cast<std::size_t>((points_2d[i].x() - box_2d.xmin()) / grid_length);
|
|
std::size_t ind_y = static_cast<std::size_t>((points_2d[i].y() - box_2d.ymin()) / grid_length);
|
|
Mask[ind_x][ind_y] = true;
|
|
point_map[ind_x][ind_y].push_back (m_indices_of_assigned_points[c][i]);
|
|
}
|
|
|
|
//hole filing in Mask in 4-connexity
|
|
for (std::size_t j = 1; j < Ny - 1; ++ j)
|
|
for (std::size_t i = 1; i < Nx - 1; ++ i)
|
|
if( !Mask[i][j]
|
|
&& Mask[i-1][j] && Mask[i][j-1]
|
|
&& Mask[i][j+1] && Mask[i+1][j] )
|
|
Mask[i][j]=true;
|
|
|
|
//finding mask border in 8-connexity
|
|
for (std::size_t j = 1; j < Ny - 1; ++ j)
|
|
for (std::size_t i = 1; i < Nx - 1; ++ i)
|
|
if( Mask[i][j] &&
|
|
( !Mask[i-1][j-1] || !Mask[i-1][j] ||
|
|
!Mask[i-1][j+1] || !Mask[i][j-1] ||
|
|
!Mask[i][j+1] || !Mask[i+1][j-1] ||
|
|
!Mask[i+1][j]|| !Mask[i+1][j+1] ) )
|
|
Mask_border[i][j]=true;
|
|
|
|
for (std::size_t j = 0; j < Ny; ++ j)
|
|
{
|
|
if (Mask[0][j])
|
|
Mask_border[0][j]=true;
|
|
if (Mask[Nx-1][j])
|
|
Mask_border[Nx-1][j]=true;
|
|
}
|
|
|
|
for (std::size_t i = 0; i < Nx; ++ i)
|
|
{
|
|
if(Mask[i][0])
|
|
Mask_border[i][0]=true;
|
|
if(Mask[i][Ny-1])
|
|
Mask_border[i][Ny-1]=true;
|
|
}
|
|
|
|
//saving of points to keep
|
|
for (std::size_t j = 0; j < Ny; ++ j)
|
|
for (std::size_t i = 0; i < Nx; ++ i)
|
|
if( point_map[i][j].size()>0)
|
|
{
|
|
//inside: recenter (cell center) the first point of the cell and desactivate the others points
|
|
if (!Mask_border[i][j] && Mask[i][j])
|
|
{
|
|
double x2pt = (i+0.5) * grid_length + box_2d.xmin();
|
|
double y2pt = (j+0.4) * grid_length + box_2d.ymin();
|
|
|
|
if (i%2 == 1)
|
|
{
|
|
x2pt = (i+0.5) * grid_length + box_2d.xmin();
|
|
y2pt = (j+0.6) * grid_length + box_2d.ymin();
|
|
}
|
|
|
|
FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x();
|
|
FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y();
|
|
FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z();
|
|
|
|
std::size_t index_pt = point_map[i][j][0];
|
|
m_points[index_pt] = Point (X1, X2, X3);
|
|
m_normals[index_pt] = m_planes[c].orthogonal_vector();
|
|
m_status[index_pt] = PLANE;
|
|
|
|
for (std::size_t np = 1; np < point_map[i][j].size(); ++ np)
|
|
m_status[point_map[i][j][np]] = SKIPPED;
|
|
}
|
|
|
|
//border: recenter (barycenter) the first point of the cell and desactivate the others points
|
|
else if (Mask_border[i][j] && Mask[i][j])
|
|
{
|
|
std::vector<Point> pts;
|
|
for (std::size_t np = 0; np < point_map[i][j].size(); ++ np)
|
|
pts.push_back (m_points[point_map[i][j][np]]);
|
|
|
|
m_points[point_map[i][j][0]] = CGAL::centroid (pts.begin (), pts.end ());
|
|
m_status[point_map[i][j][0]] = PLANE;
|
|
for (std::size_t np = 1; np < point_map[i][j].size(); ++ np)
|
|
m_status[point_map[i][j][np]] = SKIPPED;
|
|
}
|
|
}
|
|
// point use to filling 4-connexity holes are store in HPS_residus
|
|
else if (point_map[i][j].size()==0 && !Mask_border[i][j] && Mask[i][j])
|
|
{
|
|
double x2pt = (i+0.5) * grid_length + box_2d.xmin();
|
|
double y2pt = (j+0.49) * grid_length + box_2d.ymin();
|
|
if(i%2==1)
|
|
{
|
|
x2pt = (i+0.5) * grid_length + box_2d.xmin();
|
|
y2pt = (j+0.51) * grid_length + box_2d.ymin();
|
|
}
|
|
FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x();
|
|
FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y();
|
|
FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z();
|
|
|
|
m_points.push_back (Point (X1, X2, X3));
|
|
m_normals.push_back (m_planes[c].orthogonal_vector());
|
|
m_indices.push_back (c);
|
|
m_status.push_back (RESIDUS);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void find_pairs_of_adjacent_primitives (double radius)
|
|
{
|
|
typedef typename CGAL::Search_traits_3<Kernel> Search_traits_base;
|
|
typedef Search_traits_adapter <std::size_t, typename Pointer_property_map<Point>::type, Search_traits_base> Search_traits;
|
|
typedef CGAL::Kd_tree<Search_traits> Tree;
|
|
typedef CGAL::Fuzzy_sphere<Search_traits> Fuzzy_sphere;
|
|
|
|
typename Pointer_property_map<Point>::type pmap = make_property_map(m_points);
|
|
|
|
Tree tree (boost::counting_iterator<std::size_t, boost::use_default, std::ptrdiff_t> (0),
|
|
boost::counting_iterator<std::size_t, boost::use_default, std::ptrdiff_t> (m_points.size()),
|
|
typename Tree::Splitter(),
|
|
Search_traits (pmap));
|
|
|
|
std::vector<std::vector<bool> > adjacency_table (m_planes.size (),
|
|
std::vector<bool> (m_planes.size (), false));
|
|
|
|
//compute a basic adjacency relation (two primitives are neighbors
|
|
//if at least one point of the primitive 1 is a k-nearest neighbor
|
|
//of a point of the primitive 2 and vice versa)
|
|
for (std::size_t i = 0; i < m_points.size (); ++ i)
|
|
{
|
|
std::size_t ind_i = m_indices[i];
|
|
|
|
if (ind_i == (std::numeric_limits<std::size_t>::max)())
|
|
continue;
|
|
|
|
Fuzzy_sphere query (i, radius, 0., tree.traits());
|
|
|
|
std::vector<std::size_t> neighbors;
|
|
tree.search (std::back_inserter (neighbors), query);
|
|
|
|
|
|
for (std::size_t k = 0; k < neighbors.size(); ++ k)
|
|
{
|
|
std::size_t ind_k = m_indices[neighbors[k]];
|
|
if (ind_k != (std::numeric_limits<std::size_t>::max)() && ind_k != ind_i)
|
|
adjacency_table[ind_i][ind_k] = true;
|
|
}
|
|
}
|
|
|
|
//verify the symmetry and store the pairs of primitives in
|
|
//m_edges
|
|
for (std::size_t i = 0; i < adjacency_table.size() - 1; ++ i)
|
|
for (std::size_t j = i + 1; j < adjacency_table[i].size(); ++ j)
|
|
if ((adjacency_table[i][j]) && (adjacency_table[j][i]))
|
|
m_edges.push_back (Edge (i, j));
|
|
|
|
}
|
|
|
|
void compute_edges (double epsilon)
|
|
{
|
|
for (std::size_t i = 0; i < m_edges.size(); ++ i)
|
|
{
|
|
const Plane& plane1 = m_planes[m_edges[i].planes[0]];
|
|
const Plane& plane2 = m_planes[m_edges[i].planes[1]];
|
|
|
|
double angle_A = std::acos (CGAL::abs (plane1.orthogonal_vector() * plane2.orthogonal_vector()));
|
|
double angle_B = CGAL_PI - angle_A;
|
|
|
|
typename cpp11::result_of<typename Kernel::Intersect_3(Plane, Plane)>::type
|
|
result = CGAL::intersection(plane1, plane2);
|
|
|
|
if (!result)
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
if (const Line* l = boost::get<Line>(&*result))
|
|
m_edges[i].support = *l;
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
Vector direction_p1 (0., 0., 0.);
|
|
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[0]].size(); ++ k)
|
|
{
|
|
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[0]][k];
|
|
|
|
const Point& point = m_points[index_point];
|
|
Point projected = m_edges[i].support.projection (point);
|
|
if (std::sqrt (CGAL::squared_distance (point, projected))
|
|
< 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon
|
|
&& m_status[index_point] != SKIPPED)
|
|
direction_p1 = direction_p1 + Vector (projected, point);
|
|
}
|
|
if (direction_p1.squared_length() > 0)
|
|
direction_p1 = direction_p1 / std::sqrt (direction_p1 * direction_p1);
|
|
|
|
Vector direction_p2 (0., 0., 0.);
|
|
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[1]].size(); ++ k)
|
|
{
|
|
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[1]][k];
|
|
|
|
const Point& point = m_points[index_point];
|
|
Point projected = m_edges[i].support.projection (point);
|
|
if (std::sqrt (CGAL::squared_distance (point, projected))
|
|
< 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon
|
|
&& m_status[index_point] != SKIPPED)
|
|
direction_p2 = direction_p2 + Vector (projected, point);
|
|
}
|
|
if (direction_p2.squared_length() > 0)
|
|
direction_p2 = direction_p2 / std::sqrt (direction_p2 * direction_p2);
|
|
|
|
double angle = std::acos (direction_p1 * direction_p2);
|
|
|
|
if (direction_p1.squared_length() == 0
|
|
|| direction_p2.squared_length() == 0
|
|
|| (CGAL::abs (angle - angle_A) > 1e-2
|
|
&& CGAL::abs (angle - angle_B) > 1e-2 ))
|
|
{
|
|
m_edges[i].active = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void create_edge_anchor_points (double radius, double epsilon)
|
|
{
|
|
double d_DeltaEdge = std::sqrt (2.) * epsilon;
|
|
double r_edge = d_DeltaEdge / 2.;
|
|
|
|
for (std::size_t i = 0; i < m_edges.size(); ++ i)
|
|
{
|
|
const Plane& plane1 = m_planes[m_edges[i].planes[0]];
|
|
const Plane& plane2 = m_planes[m_edges[i].planes[1]];
|
|
|
|
const Line& line = m_edges[i].support;
|
|
|
|
if (!(m_edges[i].active))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
Vector normal = 0.5 * plane1.orthogonal_vector () + 0.5 * plane2.orthogonal_vector();
|
|
|
|
//find set of points close (<attraction_radius) to the edge and store in intersection_points
|
|
std::vector<std::size_t> intersection_points;
|
|
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[0]].size(); ++ k)
|
|
{
|
|
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[0]][k];
|
|
const Point& point = m_points[index_point];
|
|
Point projected = line.projection (point);
|
|
if (CGAL::squared_distance (point, projected) < radius * radius)
|
|
intersection_points.push_back (index_point);
|
|
}
|
|
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[1]].size(); ++ k)
|
|
{
|
|
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[1]][k];
|
|
const Point& point = m_points[index_point];
|
|
Point projected = line.projection (point);
|
|
if (CGAL::squared_distance (point, projected) < radius * radius)
|
|
intersection_points.push_back (index_point);
|
|
}
|
|
|
|
if (intersection_points.empty ())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
const Point& t0 = m_points[intersection_points[0]];
|
|
Point t0p = line.projection (t0);
|
|
double dmin = 0.;
|
|
double dmax = 0.;
|
|
Point Pmin = t0p;
|
|
Point Pmax = t0p;
|
|
Vector dir = line.to_vector ();
|
|
|
|
//compute the segment of the edge
|
|
for (std::size_t k = 0; k < intersection_points.size(); ++ k)
|
|
{
|
|
std::size_t ind = intersection_points[k];
|
|
const Point& point = m_points[ind];
|
|
Point projected = line.projection (point);
|
|
double d = Vector (t0p, projected) * dir;
|
|
|
|
if (d < dmin)
|
|
{
|
|
dmin = d;
|
|
Pmin = projected;
|
|
}
|
|
else if (d > dmax)
|
|
{
|
|
dmax = d;
|
|
Pmax = projected;
|
|
}
|
|
}
|
|
|
|
// make a partition in a 1D image by voting if at the same
|
|
// time at least one point of plane1 and one of point2 fall in
|
|
// the same cell (same step as for planes)
|
|
Segment seg (Pmin,Pmax);
|
|
std::size_t number_of_division = static_cast<std::size_t>(std::sqrt (seg.squared_length ()) / d_DeltaEdge) + 1;
|
|
std::vector<std::vector<std::size_t> > division_tab (number_of_division);
|
|
|
|
for (std::size_t k = 0; k < intersection_points.size(); ++ k)
|
|
{
|
|
std::size_t ind = intersection_points[k];
|
|
const Point& point = m_points[ind];
|
|
Point projected = line.projection (point);
|
|
|
|
std::size_t tab_index = static_cast<std::size_t>(std::sqrt (CGAL::squared_distance (seg[0], projected))
|
|
/ d_DeltaEdge);
|
|
|
|
division_tab[tab_index].push_back (ind);
|
|
}
|
|
|
|
//C1-CREATE the EDGE
|
|
std::vector<int> index_of_edge_points;
|
|
for (std::size_t j = 0; j < division_tab.size(); ++ j)
|
|
{
|
|
bool p1found = false, p2found = false;
|
|
for (std::size_t k = 0; k < division_tab[j].size () && !(p1found && p2found); ++ k)
|
|
{
|
|
if (m_indices[division_tab[j][k]] == m_edges[i].planes[0])
|
|
p1found = true;
|
|
if (m_indices[division_tab[j][k]] == m_edges[i].planes[1])
|
|
p2found = true;
|
|
}
|
|
|
|
if (!(p1found && p2found))
|
|
{
|
|
division_tab[j].clear();
|
|
continue;
|
|
}
|
|
|
|
Point perfect (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 0.5) / double(number_of_division),
|
|
seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 0.5) / double(number_of_division),
|
|
seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 0.5) / double(number_of_division));
|
|
|
|
// keep closest point, replace it by perfect one and skip the others
|
|
double dist_min = (std::numeric_limits<double>::max)();
|
|
std::size_t index_best = 0;
|
|
|
|
for (std::size_t k = 0; k < division_tab[j].size(); ++ k)
|
|
{
|
|
std::size_t inde = division_tab[j][k];
|
|
|
|
if (CGAL::squared_distance (line, m_points[inde]) < d_DeltaEdge * d_DeltaEdge)
|
|
m_status[inde] = SKIPPED; // Deactive points too close (except best, see below)
|
|
|
|
double distance = CGAL::squared_distance (perfect, m_points[inde]);
|
|
if (distance < dist_min)
|
|
{
|
|
dist_min = distance;
|
|
index_best = inde;
|
|
}
|
|
}
|
|
|
|
m_points[index_best] = perfect;
|
|
m_normals[index_best] = normal;
|
|
m_status[index_best] = EDGE;
|
|
m_indices[index_best] = i;
|
|
m_edges[i].indices.push_back (index_best);
|
|
|
|
}
|
|
|
|
//C2-CREATE the ANCHOR
|
|
Vector direction_p1(0,0,0);
|
|
Vector direction_p2(0,0,0);
|
|
|
|
for (std::size_t j = 0; j < division_tab.size() - 1; ++ j)
|
|
{
|
|
if (division_tab[j].empty () || division_tab[j+1].empty ())
|
|
continue;
|
|
Point anchor (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 1) / double(number_of_division),
|
|
seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 1) / double(number_of_division),
|
|
seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 1) / double(number_of_division));
|
|
|
|
Plane ortho = seg.supporting_line().perpendicular_plane(anchor);
|
|
|
|
std::vector<Point> pts1, pts2;
|
|
//Computation of the permanent angle and directions
|
|
for (std::size_t k = 0; k < division_tab[j].size(); ++ k)
|
|
{
|
|
std::size_t inde = division_tab[j][k];
|
|
std::size_t plane = m_indices[inde];
|
|
if (plane == m_edges[i].planes[0])
|
|
pts1.push_back (m_points[inde]);
|
|
else if (plane == m_edges[i].planes[1])
|
|
pts2.push_back (m_points[inde]);
|
|
}
|
|
|
|
typename cpp11::result_of<typename Kernel::Intersect_3(Plane, Plane)>::type
|
|
result = CGAL::intersection (plane1, ortho);
|
|
if (result)
|
|
{
|
|
if (const Line* l = boost::get<Line>(&*result))
|
|
{
|
|
if (!(pts1.empty()))
|
|
{
|
|
Vector vecp1 = l->to_vector();
|
|
vecp1 = vecp1/ std::sqrt (vecp1 * vecp1);
|
|
Vector vtest1 (anchor, CGAL::centroid (pts1.begin (), pts1.end ()));
|
|
if (vtest1 * vecp1<0)
|
|
vecp1 = -vecp1;
|
|
|
|
direction_p1 = direction_p1+vecp1;
|
|
|
|
Point anchor1 = anchor + vecp1 * r_edge;
|
|
m_points.push_back (anchor1);
|
|
m_normals.push_back (m_planes[m_edges[i].planes[0]].orthogonal_vector());
|
|
m_indices.push_back (m_edges[i].planes[0]);
|
|
m_status.push_back (PLANE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
|
|
#endif
|
|
}
|
|
|
|
|
|
result = CGAL::intersection (plane2,ortho);
|
|
if (result)
|
|
{
|
|
if (const Line* l = boost::get<Line>(&*result))
|
|
{
|
|
if (!(pts2.empty()))
|
|
{
|
|
Vector vecp2 = l->to_vector();
|
|
vecp2 = vecp2 / std::sqrt (vecp2 * vecp2);
|
|
Vector vtest2 (anchor, CGAL::centroid (pts2.begin (), pts2.end ()));
|
|
if (vtest2 * vecp2 < 0)
|
|
vecp2 =- vecp2;
|
|
|
|
direction_p2 = direction_p2+vecp2;
|
|
|
|
Point anchor2 = anchor + vecp2 * r_edge;
|
|
m_points.push_back (anchor2);
|
|
m_normals.push_back (m_planes[m_edges[i].planes[1]].orthogonal_vector());
|
|
m_indices.push_back (m_edges[i].planes[1]);
|
|
m_status.push_back (PLANE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
//if not information enough (not enough edges to create
|
|
//anchor) we unactivate the edge, else we update the angle
|
|
//and directions
|
|
if ( !(direction_p1.squared_length()>0 || direction_p2.squared_length()>0) )
|
|
{
|
|
m_edges[i].active = false;
|
|
for (std::size_t j = 0; j < m_edges[i].indices.size (); ++ j)
|
|
m_status[m_edges[i].indices[j]] = SKIPPED;
|
|
}
|
|
}
|
|
}
|
|
|
|
void compute_corners (double radius)
|
|
{
|
|
if (m_edges.size () < 3)
|
|
return;
|
|
|
|
std::vector<std::vector<std::size_t> > plane_edge_adj (m_planes.size());
|
|
for (std::size_t i = 0; i < m_edges.size (); ++ i)
|
|
if (m_edges[i].active)
|
|
{
|
|
plane_edge_adj[m_edges[i].planes[0]].push_back (i);
|
|
plane_edge_adj[m_edges[i].planes[1]].push_back (i);
|
|
}
|
|
|
|
std::vector<std::set<std::size_t> > edge_adj (m_edges.size ());
|
|
|
|
for (std::size_t i = 0; i < plane_edge_adj.size (); ++ i)
|
|
{
|
|
if (plane_edge_adj[i].size () < 2)
|
|
continue;
|
|
|
|
for (std::size_t j = 0; j < plane_edge_adj[i].size ()- 1; ++ j)
|
|
for (std::size_t k = j + 1; k < plane_edge_adj[i].size (); ++ k)
|
|
{
|
|
edge_adj[plane_edge_adj[i][j]].insert (plane_edge_adj[i][k]);
|
|
edge_adj[plane_edge_adj[i][k]].insert (plane_edge_adj[i][j]);
|
|
}
|
|
}
|
|
|
|
for (std::size_t i = 0; i < edge_adj.size (); ++ i)
|
|
{
|
|
if (edge_adj[i].size () < 2)
|
|
continue;
|
|
|
|
std::set<std::size_t>::iterator end = edge_adj[i].end();
|
|
end --;
|
|
|
|
for (std::set<std::size_t>::iterator jit = edge_adj[i].begin ();
|
|
jit != end; ++ jit)
|
|
{
|
|
std::size_t j = *jit;
|
|
if (j < i)
|
|
continue;
|
|
|
|
std::set<std::size_t>::iterator begin = jit;
|
|
begin ++;
|
|
for (std::set<std::size_t>::iterator kit = begin;
|
|
kit != edge_adj[i].end (); ++ kit)
|
|
{
|
|
std::size_t k = *kit;
|
|
if (k < j)
|
|
continue;
|
|
|
|
std::set<std::size_t> planes;
|
|
planes.insert (m_edges[i].planes[0]);
|
|
planes.insert (m_edges[i].planes[1]);
|
|
planes.insert (m_edges[j].planes[0]);
|
|
planes.insert (m_edges[j].planes[1]);
|
|
planes.insert (m_edges[k].planes[0]);
|
|
planes.insert (m_edges[k].planes[1]);
|
|
|
|
if (planes.size () == 3) // Triple found
|
|
{
|
|
std::vector<std::size_t> vecplanes (planes.begin (), planes.end ());
|
|
m_corners.push_back (Corner (vecplanes[0], vecplanes[1], vecplanes[2],
|
|
i, j, k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
for (std::size_t i = 0; i < m_corners.size (); ++ i)
|
|
{
|
|
//calcul pt d'intersection des 3 plans
|
|
const Plane& plane1 = m_planes[m_corners[i].planes[0]];
|
|
const Plane& plane2 = m_planes[m_corners[i].planes[1]];
|
|
const Plane& plane3 = m_planes[m_corners[i].planes[2]];
|
|
|
|
typename cpp11::result_of<typename Kernel::Intersect_3(Plane, Plane)>::type
|
|
result = CGAL::intersection(plane1, plane2);
|
|
|
|
if (result)
|
|
{
|
|
if (const Line* l = boost::get<Line>(&*result))
|
|
{
|
|
typename cpp11::result_of<typename Kernel::Intersect_3(Line, Plane)>::type
|
|
result2 = CGAL::intersection(*l, plane3);
|
|
|
|
if (result2)
|
|
{
|
|
if (const Point* p = boost::get<Point>(&*result2))
|
|
m_corners[i].support = *p;
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Warning: bad plane/line intersection" << std::endl;
|
|
#endif
|
|
m_corners[i].active = false;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Warning: bad plane/line intersection" << std::endl;
|
|
#endif
|
|
m_corners[i].active = false;
|
|
continue;
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
|
|
#endif
|
|
m_corners[i].active = false;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef CGAL_PSP3_VERBOSE
|
|
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
|
|
#endif
|
|
m_corners[i].active = false;
|
|
continue;
|
|
}
|
|
|
|
// test if point is in bbox + delta
|
|
CGAL::Bbox_3 bbox = CGAL::bbox_3 (m_points.begin (), m_points.end ());
|
|
|
|
double margin_x = 0.1 * (bbox.xmax() - bbox.xmin());
|
|
double X_min = bbox.xmin() - margin_x;
|
|
double X_max = bbox.xmax() + margin_x;
|
|
double margin_y = 0.1 * (bbox.ymax() - bbox.ymin());
|
|
double Y_min = bbox.ymin() - margin_y;
|
|
double Y_max = bbox.ymax() + margin_y;
|
|
double margin_z = 0.1* (bbox.zmax() - bbox.zmin());
|
|
double Z_min = bbox.zmin() - margin_z;
|
|
double Z_max = bbox.zmax() + margin_z;
|
|
|
|
if ((m_corners[i].support.x() < X_min) || (m_corners[i].support.x() > X_max)
|
|
|| (m_corners[i].support.y() < Y_min) || (m_corners[i].support.y() > Y_max)
|
|
|| (m_corners[i].support.z() < Z_min) || (m_corners[i].support.z() > Z_max))
|
|
{
|
|
m_corners[i].active = false;
|
|
continue;
|
|
}
|
|
|
|
// test if corner is in neighborhood of at least one point each of the 3 planes
|
|
std::vector<bool> neighborhood (3, false);
|
|
|
|
for (std::size_t k = 0; k < 3; ++ k)
|
|
{
|
|
for (std::size_t j = 0; j < m_edges[m_corners[i].edges[k]].indices.size(); ++ j)
|
|
{
|
|
const Point& p = m_points[m_edges[m_corners[i].edges[k]].indices[j]];
|
|
|
|
if (CGAL::squared_distance (m_corners[i].support, p) < radius * radius)
|
|
{
|
|
neighborhood[k] = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( !(neighborhood[0] && neighborhood[1] && neighborhood[2]) )
|
|
m_corners[i].active = false;
|
|
}
|
|
}
|
|
|
|
void merge_corners (double radius)
|
|
{
|
|
for (std::size_t k = 0; k < m_corners.size(); ++ k)
|
|
{
|
|
if (!(m_corners[k].active))
|
|
continue;
|
|
|
|
int count_plane_number=3;
|
|
|
|
for (std::size_t kb = k + 1; kb < m_corners.size(); ++ kb)
|
|
{
|
|
if (!(m_corners[kb].active))
|
|
continue;
|
|
|
|
int count_new_plane = 0;
|
|
|
|
if (CGAL::squared_distance (m_corners[kb].support, m_corners[k].support) >= radius * radius)
|
|
continue;
|
|
|
|
for (std::size_t i = 0; i < m_corners[kb].planes.size (); ++ i)
|
|
{
|
|
bool testtt = true;
|
|
for (std::size_t l = 0; l < m_corners[k].planes.size(); ++ l)
|
|
if (m_corners[kb].planes[i] == m_corners[k].planes[l])
|
|
{
|
|
testtt = false;
|
|
break;
|
|
}
|
|
if (!testtt)
|
|
continue;
|
|
|
|
m_corners[k].planes.push_back (m_corners[kb].planes[i]);
|
|
++ count_new_plane;
|
|
m_corners[kb].active = false;
|
|
|
|
std::vector<bool> is_edge_in (3, false);
|
|
for (std::size_t l = 0; l < m_corners[k].edges.size(); ++ l)
|
|
{
|
|
for (std::size_t j = 0; j < 3; ++ j)
|
|
if (m_corners[k].edges[l] == m_corners[kb].edges[j])
|
|
is_edge_in[j] = true;
|
|
}
|
|
for (std::size_t j = 0; j < 3; ++ j)
|
|
if (!(is_edge_in[j]))
|
|
m_corners[k].edges.push_back (m_corners[kb].edges[j]);
|
|
|
|
}
|
|
|
|
//update barycenter
|
|
m_corners[k].support = CGAL::barycenter (m_corners[k].support, count_plane_number,
|
|
m_corners[kb].support, count_new_plane);
|
|
count_plane_number += count_new_plane;
|
|
}
|
|
|
|
// Compute normal vector
|
|
Vector normal (0., 0., 0.);
|
|
for (std::size_t i = 0; i < m_corners[k].planes.size(); ++ i)
|
|
normal = normal + (1. / (double)(m_corners[k].planes.size()))
|
|
* m_planes[m_corners[k].planes[i]].orthogonal_vector();
|
|
|
|
m_points.push_back (m_corners[k].support);
|
|
m_normals.push_back (normal);
|
|
m_indices.push_back (k);
|
|
m_status.push_back (CORNER);
|
|
}
|
|
}
|
|
|
|
void compute_corner_directions (double epsilon)
|
|
{
|
|
for (std::size_t k = 0; k < m_corners.size(); ++ k)
|
|
{
|
|
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
|
|
{
|
|
if (m_corners[k].edges[ed] < m_edges.size())
|
|
{
|
|
const Edge& edge = m_edges[m_corners[k].edges[ed]];
|
|
|
|
Vector direction (0., 0., 0.);
|
|
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
|
|
{
|
|
std::size_t index_pt = edge.indices[i];
|
|
if (std::sqrt (CGAL::squared_distance (m_corners[k].support,
|
|
m_points[index_pt])) < 5 * epsilon)
|
|
direction = direction + Vector (m_corners[k].support, m_points[index_pt]);
|
|
}
|
|
|
|
if (direction.squared_length() > 1e-5)
|
|
m_corners[k].directions.push_back (direction / std::sqrt (direction * direction));
|
|
else
|
|
m_corners[k].directions.push_back (Vector (0., 0., 0.));
|
|
}
|
|
else
|
|
m_corners[k].directions.push_back (Vector (0., 0., 0.));
|
|
}
|
|
}
|
|
}
|
|
|
|
void refine_sampling (double epsilon)
|
|
{
|
|
double d_DeltaEdge = std::sqrt (2.) * epsilon;
|
|
|
|
for (std::size_t k = 0; k < m_corners.size(); ++ k)
|
|
{
|
|
if (!(m_corners[k].active))
|
|
continue;
|
|
|
|
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
|
|
{
|
|
const Edge& edge = m_edges[m_corners[k].edges[ed]];
|
|
|
|
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
|
|
{
|
|
//if too close from a corner, ->remove
|
|
if (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]])
|
|
< d_DeltaEdge * d_DeltaEdge)
|
|
m_status[edge.indices[i]] = SKIPPED;
|
|
|
|
//if too close from a corner (non dominant side), ->remove
|
|
if (m_corners[k].directions[ed].squared_length() > 0
|
|
&& (m_corners[k].directions[ed]
|
|
* Vector (m_corners[k].support, m_points[edge.indices[i]]) < 0)
|
|
&& (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]])
|
|
< 4 * d_DeltaEdge * d_DeltaEdge))
|
|
m_status[edge.indices[i]] = SKIPPED;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
for (std::size_t k = 0; k < m_corners.size(); ++ k)
|
|
{
|
|
if (!(m_corners[k].active))
|
|
continue;
|
|
|
|
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
|
|
{
|
|
if (m_corners[k].directions[ed].squared_length() <= 0.)
|
|
continue;
|
|
|
|
Edge& edge = m_edges[m_corners[k].edges[ed]];
|
|
|
|
//rajouter un edge a epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge
|
|
bool is_in_interval = false;
|
|
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
|
|
{
|
|
std::size_t index_pt = edge.indices[i];
|
|
double dist = CGAL::squared_distance (m_corners[k].support,
|
|
m_points[index_pt]);
|
|
if (m_status[index_pt] != SKIPPED
|
|
&& dist < 1.5 * d_DeltaEdge && dist > d_DeltaEdge / 2)
|
|
{
|
|
Vector move (m_corners[k].support,
|
|
m_points[index_pt]);
|
|
if (move * m_corners[k].directions[ed] > 0.)
|
|
{
|
|
is_in_interval = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//rajouter un edge a 1 epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge
|
|
if (!is_in_interval)
|
|
{
|
|
Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge;
|
|
m_points.push_back (new_edge);
|
|
m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]].orthogonal_vector()
|
|
+ 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]].orthogonal_vector());
|
|
m_status.push_back (EDGE);
|
|
m_indices.push_back (m_corners[k].edges[ed]);
|
|
edge.indices.push_back (m_points.size() - 1);
|
|
}
|
|
|
|
//rajouter un edge a 1/3 epsilon du cote dominant
|
|
Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge / 3;
|
|
m_points.push_back (new_edge);
|
|
m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]].orthogonal_vector()
|
|
+ 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]].orthogonal_vector());
|
|
m_status.push_back (EDGE);
|
|
m_indices.push_back (m_corners[k].edges[ed]);
|
|
edge.indices.push_back (m_points.size() - 1);
|
|
}
|
|
}
|
|
|
|
}
|
|
/// \endcond
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Public section
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
\ingroup PkgPointSetProcessing3Algorithms
|
|
|
|
This is an implementation of the Point Set Structuring algorithm. This
|
|
algorithm takes advantage of a set of detected planes: it detects adjacency
|
|
relationships between planes and resamples the detected planes, edges and
|
|
corners to produce a structured point set.
|
|
|
|
The size parameter `epsilon` is used both for detecting adjacencies and for
|
|
setting the sampling density of the structured point set.
|
|
|
|
For more details, please refer to \cgalCite{cgal:la-srpss-13}.
|
|
|
|
\tparam PointRange is a model of `ConstRange`. The value type of
|
|
its iterator is the key type of the named parameter `point_map`.
|
|
\tparam PlaneRange is a model of `ConstRange`. The value type of
|
|
its iterator is the key type of the named parameter `plane_map`.
|
|
\tparam OutputIterator Type of the output iterator. The type of the
|
|
objects put in it is `std::pair<Kernel::Point_3, Kernel::Vector_3>`.
|
|
Note that the user may use a
|
|
<A HREF="https://www.boost.org/libs/iterator/doc/function_output_iterator.html">function_output_iterator</A>
|
|
to match specific needs.
|
|
|
|
\param points input point range.
|
|
\param planes input plane range.
|
|
\param output output iterator where output points are written
|
|
\param epsilon size parameter.
|
|
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
|
|
|
\cgalNamedParamsBegin
|
|
\cgalParamNBegin{point_map}
|
|
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
|
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
|
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
|
|
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{normal_map}
|
|
\cgalParamDescription{a property map associating normals to the elements of the point set `points`}
|
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
|
of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{plane_index_map}
|
|
\cgalParamDescription{a property map associating the index of a point in the input range
|
|
to the index of plane (`-1` if the point is not assigned to a plane)}
|
|
\cgalParamType{a class model of `ReadablePropertyMap` with `std::size_t` as key type and `int` as value type}
|
|
\cgalParamDefault{unused}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{plane_map}
|
|
\cgalParamDescription{a property map containing the planes associated to the elements of the plane range `planes`}
|
|
\cgalParamType{a class model of `ReadablePropertyMap` with `PlaneRange::iterator::value_type`
|
|
as key type and `geom_traits::Plane_3` as value type}
|
|
\cgalParamDefault{`CGAL::Identity_property_map<Kernel::Plane_3>`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{attraction_factor}
|
|
\cgalParamDescription{multiple of a tolerance `epsilon` used to connect simplices}
|
|
\cgalParamType{floating scalar value}
|
|
\cgalParamDefault{`3`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{geom_traits}
|
|
\cgalParamDescription{an instance of a geometric traits class}
|
|
\cgalParamType{a model of `Kernel`}
|
|
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
|
\cgalParamNEnd
|
|
\cgalNamedParamsEnd
|
|
|
|
*/
|
|
template <typename PointRange,
|
|
typename PlaneRange,
|
|
typename OutputIterator,
|
|
typename NamedParameters
|
|
>
|
|
OutputIterator
|
|
structure_point_set (const PointRange& points,
|
|
const PlaneRange& planes,
|
|
OutputIterator output,
|
|
double epsilon,
|
|
const NamedParameters& np)
|
|
{
|
|
using parameters::choose_parameter;
|
|
using parameters::get_parameter;
|
|
|
|
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
|
|
|
|
Point_set_with_structure<Kernel> pss (points, planes, epsilon, np);
|
|
|
|
for (std::size_t i = 0; i < pss.size(); ++ i)
|
|
*(output ++) = pss[i];
|
|
|
|
return output;
|
|
}
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
// variant with default NP
|
|
template <typename PointRange,
|
|
typename PlaneRange,
|
|
typename OutputIterator>
|
|
OutputIterator
|
|
structure_point_set (const PointRange& points, ///< range of points.
|
|
const PlaneRange& planes, ///< range of planes.
|
|
OutputIterator output, ///< output iterator where output points are written.
|
|
double epsilon) ///< size parameter.
|
|
{
|
|
return structure_point_set
|
|
(points, planes, output, epsilon,
|
|
CGAL::Point_set_processing_3::parameters::all_default(points));
|
|
}
|
|
/// \endcond
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_STRUCTURE_POINT_SET_3_H
|