dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Algebraic_kernel_d/Descartes.h

474 lines
15 KiB
C++
Executable File

// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
//
// ============================================================================
// TODO: The comments are all original EXACUS comments and aren't adapted. So
// they may be wrong now.
/*! \file NiX/Descartes.h
\brief Defines class NiX::Descartes.
Isolate real roots of polynomials.
This file provides a class to isolate real roots of polynomials,
using the algorithm based on the method of Descartes.
The polynomial has to be a univariat polynomial over any number
type which is contained in the real numbers.
*/
#ifndef CGAL_ALGEBRAIC_KERNEL_D_DESCARTES_H
#define CGAL_ALGEBRAIC_KERNEL_D_DESCARTES_H
#include <CGAL/basic.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Algebraic_kernel_d/univariate_polynomial_utils.h>
#include <CGAL/Algebraic_kernel_d/construct_binary.h>
#define POLYNOMIAL_REBIND( coeff ) \
typename CGAL::Polynomial_traits_d<Polynomial>::template \
Rebind<coeff,1>::Other::Type
namespace CGAL {
namespace internal {
/*! \ingroup NiX_Algebraic_real
* \brief A model of concept RealRootIsolator.
*/
template <class Polynomial_, class Rational_>
class Descartes {
typedef CGAL::Fraction_traits<Polynomial_> FT_poly;
typedef Fraction_traits<Rational_> FT_rat;
public:
//! First template parameter
typedef Polynomial_ Polynomial;
//! Second template parameter
typedef Rational_ Rational;
//! Bound type of the isolating intervals
typedef Rational_ Bound;
// Integer or Numerator/Denominator type of bound.
typedef typename CGAL::Fraction_traits<Rational>::Numerator_type Integer;
private:
typedef typename Polynomial::NT Coeff;
typedef Integer IT;
Polynomial poly_;
int number_of_real_roots_;
IT* numerator;
IT* denominator_exponent;
bool* is_exact;
IT LEFT,SCALE,DENOM;
bool is_strong_;
int k;
bool interval_given;
public:
/*! \brief Constructor from univariate square free polynomial.
The RealRootIsolator provides isolating intervals for the real
roots of the polynomial.
\pre the polynomial is square free
*/
Descartes(const Polynomial& P = Polynomial(Coeff(0)),
bool is_strong = false,
int kk = 2)
: poly_(P) ,
is_strong_(is_strong),
k(kk),
interval_given(false) {
numerator = new IT[CGAL::degree(P)];
denominator_exponent = new IT[CGAL::degree(P)];
is_exact = new bool[CGAL::degree(P)];
number_of_real_roots_ = 0;
if(CGAL::degree(P) == 0)
{
if(P.is_zero()) number_of_real_roots_ = -1;
return;
}
intern_decompose(poly_,typename FT_poly::Is_fraction());
}
// constructor for coefficient types \c Coeff with given interval
// (experimental)
Descartes(const Polynomial& P,
const Rational& left,
const Rational& right,
bool is_strong = false,
int kk = 2)
: poly_(P) ,
is_strong_(is_strong),
k(kk),
interval_given(true) {
numerator = new IT[CGAL::degree(P)];
denominator_exponent = new IT[CGAL::degree(P)];
is_exact = new bool[CGAL::degree(P)];
number_of_real_roots_ = 0;
if(CGAL::degree(P) == 0)
{
if(P.is_zero()) number_of_real_roots_ = -1;
return;
}
typename FT_rat::Decompose decompose;
typedef typename FT_rat::Numerator Numerator;
typedef typename FT_rat::Denominator Denominator;
Numerator numleft, numright;
Denominator denleft, denright;
decompose(left,numleft,denleft);
decompose(right,numright,denright);
LEFT = numleft * denright;
SCALE = numright * denleft - LEFT;
DENOM = denleft * denright;
poly_.scale_down(denleft*denright);
intern_decompose(poly_,typename FT_poly::Is_decomposable());
}
//! copy constructor
Descartes(const Descartes& D)
: poly_(D.poly_),
number_of_real_roots_(D.number_of_real_roots_),
LEFT(D.LEFT),
SCALE(D.SCALE),
DENOM(D.DENOM),
is_strong_(D.is_strong_),
k(D.k),
interval_given(D.interval_given) {
numerator = new IT[CGAL::degree(poly_)];
denominator_exponent = new IT[CGAL::degree(poly_)];
is_exact = new bool[CGAL::degree(poly_)];
for(int i=0; i<number_of_real_roots(); i++)
{
numerator[i] = D.numerator[i];
denominator_exponent[i] = D.denominator_exponent[i];
is_exact[i] = D.is_exact[i];
}
}
// destructor
~Descartes() {
delete[] numerator;
delete[] denominator_exponent;
delete[] is_exact;
}
public: // functions
/*! \brief returns the defining polynomial*/
Polynomial polynomial() const { return poly_; }
//! returns the number of real roots
int number_of_real_roots() const { return number_of_real_roots_; }
/*! \brief returns true if the isolating interval is degenerated to a
single point.
If is_exact_root(i) is true,
then left_bound(int i) equals \f$root_i\f$. \n
If is_exact_root(i) is true,
then right_bound(int i) equals \f$root_i\f$. \n
*/
bool is_exact_root(int i) const { return is_exact[i]; }
public:
void left_bound(int i, IT& numerator_, IT& denominator_) const {
CGAL_assertion(i >= 0 && i < number_of_real_roots_);
construct_binary(denominator_exponent[i], denominator_);
numerator_= SCALE * numerator[i] + LEFT * denominator_;
denominator_ = denominator_ * DENOM;
}
void right_bound(int i,IT& numerator_, IT& denominator_) const {
CGAL_assertion(i >= 0 && i < number_of_real_roots_);
if(is_exact[i]){
return left_bound(i,numerator_,denominator_);
}
else{
construct_binary(denominator_exponent[i],denominator_);
numerator_= SCALE * (numerator[i]+1) + LEFT * denominator_;
denominator_ = denominator_ * DENOM;
}
}
public:
/*! \brief returns \f${l_i}\f$ the left bound of the isolating interval
for root \f$root_{i}\f$.
In case is_exact_root(i) is true, \f$l_i = root_{i}\f$,\n
otherwise: \f$l_i < root_{i}\f$.
If \f$i-1>=0\f$, then \f$l_i > root_{i-1}\f$. \n
If \f$i-1>=0\f$, then \f$l_i >= r_{i-1}\f$,
the right bound of \f$root_{i-1}\f$\n
\pre 0 <= i < number_of_real_roots()
*/
Rational left_bound(int i) const {
IT numerator_, denominator_;
left_bound(i,numerator_,denominator_);
return Rational(numerator_) / Rational(denominator_);
}
/*! \brief returns \f${r_i}\f$ the right bound of the isolating interval
for root \f$root_{i}\f$.
In case is_exact_root(i) is true, \f$r_i = root_{i}\f$,\n
otherwise: \f$r_i > root_{i}\f$.
If \f$i+1< n \f$, then \f$r_i < root_{i+1}\f$,
where \f$n\f$ is number of real roots.\n
If \f$i+1< n \f$, then \f$r_i <= l_{i+1}\f$,
the left bound of \f$root_{i+1}\f$\n
\pre 0 <= i < number_of_real_roots()
*/
Rational right_bound(int i) const {
IT numerator_, denominator_;
right_bound(i,numerator_,denominator_);
return Rational(numerator_) / Rational(denominator_);
}
private:
void intern_decompose( Polynomial P_, ::CGAL::Tag_true){
typename FT_poly::Decompose decompose;
typename FT_poly::Numerator_type NumP;
typename FT_poly::Denominator_type dummy;
decompose(P_,NumP,dummy);
init_with(NumP);
}
void intern_decompose( Polynomial P, ::CGAL::Tag_false){
init_with(P);
}
template<class Polynomial__>
void init_with(const Polynomial__& P){
typedef typename Polynomial__::NT Coeff;
if(!interval_given)
{
LEFT = -weak_upper_root_bound<Coeff>(P);
SCALE = - LEFT * IT(2);
DENOM = IT(1);
}
Polynomial__ R = ::CGAL::translate(P,Coeff(LEFT));
Polynomial__ Q = ::CGAL::scale_up(R,Coeff(SCALE));
zero_one_descartes<Coeff>(Q,0,0);
}
//! returns the polynomial $(1 + x)^n P(1/(1 + x))$.
template <class Coeff__>
/*
typename
CGAL::Polynomial_traits_d<Polynomial>
::template Rebind<Coeff__,1>::Other::Type
*/
POLYNOMIAL_REBIND(Coeff__)
variation_transformation(const POLYNOMIAL_REBIND(Coeff__)& P) {
POLYNOMIAL_REBIND(Coeff__) R = reversal(P);
return translate_by_one(R);
}
//! Returns an upper bound on the absolute value of all roots of $P$.
/*! The upper bound is a power of two. Only works for univariate
* polynomials.
*/
template <class Coeff__>
IT weak_upper_root_bound(const POLYNOMIAL_REBIND(Coeff__)& P) {
typename Real_embeddable_traits<Coeff__>::Abs abs;
const int n = CGAL::degree(P);
IT r(1); // return value
Coeff__ x(1); // needed to "evaluate" the polynomial
Coeff__ val;
for (;;) {
val = -abs(P[n]);
for (int i = n-1; i >= 0; i--) {
val = val*x + abs(P[i]);
}
if (val < Coeff__(0)) return r;
r *= IT(2);
x = Coeff__(r);
}
}
//! tests if the polynomial has no root in the interval.
template <class Coeff__>
bool not_zero_in_interval(const POLYNOMIAL_REBIND(Coeff__)& P)
{
if(CGAL::degree(P) == 0) return true;
if(internal::sign_variations(variation_transformation<Coeff__>(P)) != 0)
return false;
return (P[0] != Coeff__(0) && P.evaluate(Coeff__(1)) != Coeff__(0));
}
//! Descartes algoritm to determine isolating intervals for the roots
//! lying in the interval (0,1).
// The parameters $(i,D)$ describe the interval $(i/2^D, (i+1)/2^D)$.
// Here $0\leq i < 2^D$.
template <class Coeff__>
void zero_one_descartes(const POLYNOMIAL_REBIND(Coeff__)& P,
IT i, IT D) {
// Determine the number of sign variations of the transformed
// polynomial $(1+x)^nP(1/(1+x))$. This gives the number of
// roots of $P$ in $(0,1)$.
POLYNOMIAL_REBIND(Coeff__) R = variation_transformation<Coeff__>(P);
int descarte = sign_variations(R);
// no root
if ( descarte == 0 ) return;
// exactly one root
// Note the termination criterion $P(0)\neq 0$ and $P(1)\neq 0$.
// This ensures that the given interval is an isolating interval.
if ( descarte == 1
&& P[0] != Coeff__(0)
&& P.evaluate(Coeff__(1)) != Coeff__(0) ) {
if(is_strong_) {
strong_zero_one_descartes<Coeff__>(P,i,D);
return;
}
else {
numerator[number_of_real_roots_] = i;
denominator_exponent[number_of_real_roots_] = D;
is_exact[number_of_real_roots_] = false;
number_of_real_roots_++;
return;
}
}
// more than one root
// Refine the interval.
i = 2*i; D = D+1;
// Transform the polynomial such that the first half of the interval
// is mapped to the unit interval.
POLYNOMIAL_REBIND(Coeff__) Q = scale_down(P,Coeff__(2));
// Consider the first half of the interval.
zero_one_descartes<Coeff__>(Q,i,D);
// Test if the polynomial is zero at the midpoint of the interval
POLYNOMIAL_REBIND(Coeff__) S = translate_by_one(Q);
if ( S[0] == Coeff__(0) ) {
numerator[number_of_real_roots_] = i + 1;
denominator_exponent[number_of_real_roots_] = D;
is_exact[number_of_real_roots_] = true;
number_of_real_roots_++;
}
// Consider the second half of the interval.
zero_one_descartes<Coeff__>(S,i+1,D);
}
//! Strong Descartes algoritm to determine isolating intervals for the
//! roots lying in the interval (0,1), where the first
//! derivative have no sign change. \pre $P$ has only one root in the
//! interval given by $(i,D)$.
// The parameters $(i,D)$ describe the interval $(i/2^D, (i+1)/2^D)$.
// Here $0\leq i < D$.
template <class Coeff__>
void strong_zero_one_descartes(const POLYNOMIAL_REBIND(Coeff__)& P,
IT i, IT D) {
// Test if the polynomial P' has no roots in the
// interval. For further use in Newton, the interval should be not
// too large.
// test if isolating interval is smaller than epsilon
// [l,r] -> r-l < epsilon
// l = (r-l) * i/2^D + l
// r = (r-l) * (i+1)/2^D + l
// r-l = (r-l) * 1/2^D
// r-l < epsilon = 2^(-k)
// <=> (r-l) * 1/2^D < 2^(-k)
// <=> 2^D > (r-l) / 2^(-k)
// <=> 2^D > (r-l) * 2^k
POLYNOMIAL_REBIND(Coeff__) PP = CGAL::differentiate(P);
if(not_zero_in_interval<Coeff__>(PP)) { // P'
IT tmp;
construct_binary(D-k, tmp); // tmp = 2^{D-k}
if(tmp * DENOM > SCALE ) {
numerator[number_of_real_roots_] = i;
denominator_exponent[number_of_real_roots_] = D;
is_exact[number_of_real_roots_] = false;
number_of_real_roots_++;
return;
}
}
// either $P'$ fails the test,
// or the interval is too large
// Refine the interval.
i = 2*i; D = D+1;
// Transform the polynomial such that the first half of the interval
// is mapped to the unit interval.
POLYNOMIAL_REBIND(Coeff__) Q = scale_down(P,Coeff__(2));
// Test if the polynomial is zero at the midpoint of the interval
POLYNOMIAL_REBIND(Coeff__) S = translate_by_one(Q);
if ( S[0] == Coeff__(0) ) {
numerator[number_of_real_roots_] = i + 1;
denominator_exponent[number_of_real_roots_] = D;
is_exact[number_of_real_roots_] = true;
number_of_real_roots_++;
return;
}
// Consider the first half of the interval.
if(sign_variations(variation_transformation<Coeff__>(Q)) == 1) {
strong_zero_one_descartes<Coeff__>(Q,i,D);
return;
}
// Consider the second half of the interval.
strong_zero_one_descartes<Coeff__>(S,i+1,D);
return;
}
};
} // namespace internal
} //namespace CGAL
#endif // CGAL_ALGEBRAIC_KERNEL_D_DESCARTES_H