dust3d/src/ccdikresolver.cpp

122 lines
4.1 KiB
C++

#include <QtGlobal>
#include <QMatrix4x4>
#include <QDebug>
#include <cmath>
#include <QtMath>
#include "ccdikresolver.h"
#include "util.h"
CcdIkSolver::CcdIkSolver()
{
}
void CcdIkSolver::setSolveFrom(int fromNodeIndex)
{
m_fromNodeIndex = fromNodeIndex;
}
void CcdIkSolver::setNodeHingeConstraint(int nodeIndex,
const QVector3D &axis, double minLimitDegrees, double maxLimitDegrees)
{
auto &node = m_nodes[nodeIndex];
node.axis = axis;
node.minLimitDegrees = minLimitDegrees;
node.maxLimitDegrees = maxLimitDegrees;
}
void CcdIkSolver::setMaxRound(int maxRound)
{
m_maxRound = maxRound;
}
void CcdIkSolver::setDistanceThreshod(float threshold)
{
m_distanceThreshold2 = threshold * threshold;
}
int CcdIkSolver::addNodeInOrder(const QVector3D &position)
{
CcdIkNode node;
node.position = position;
int nodeCount = m_nodes.size();
m_nodes.push_back(node);
return nodeCount;
}
void CcdIkSolver::solveTo(const QVector3D &position)
{
//qDebug() << "solveTo:" << position;
m_destination = position;
float lastDistance2 = 0;
for (int i = 0; i < m_maxRound; i++) {
const auto &endEffector = m_nodes[m_nodes.size() - 1];
float distance2 = (endEffector.position - m_destination).lengthSquared();
//qDebug() << "Round:" << i << " distance2:" << distance2;
if (distance2 <= m_distanceThreshold2)
break;
if (lastDistance2 > 0 && fabs(distance2 - lastDistance2) <= m_distanceCeaseThreshold2)
break;
lastDistance2 = distance2;
iterate();
}
}
const QVector3D &CcdIkSolver::getNodeSolvedPosition(int index)
{
Q_ASSERT(index >= 0 && index < (int)m_nodes.size());
return m_nodes[index].position;
}
int CcdIkSolver::getNodeCount()
{
return (int)m_nodes.size();
}
void CcdIkSolver::iterate()
{
auto rotateChildren = [&](const QQuaternion &quaternion, int i) {
const auto &origin = m_nodes[i];
for (size_t j = i + 1; j <= m_nodes.size() - 1; j++) {
auto &next = m_nodes[j];
const auto offset = next.position - origin.position;
next.position = origin.position + quaternion.rotatedVector(offset);
}
};
for (int i = m_nodes.size() - 2; i >= m_fromNodeIndex; i--) {
const auto &origin = m_nodes[i];
const auto &endEffector = m_nodes[m_nodes.size() - 1];
QVector3D from = (endEffector.position - origin.position).normalized();
QVector3D to = (m_destination - origin.position).normalized();
auto quaternion = QQuaternion::rotationTo(from, to);
rotateChildren(quaternion, i);
if (origin.axis.isNull())
continue;
QVector3D oldAxis = origin.axis;
QVector3D newAxis = quaternion.rotatedVector(oldAxis);
auto hingQuaternion = QQuaternion::rotationTo(newAxis, oldAxis);
rotateChildren(hingQuaternion, i);
// TODO: Support angle limit for other axis
int parentIndex = i - 1;
if (parentIndex < 0)
continue;
int childIndex = i + 1;
if (childIndex >= m_nodes.size())
continue;
const auto &parent = m_nodes[parentIndex];
const auto &child = m_nodes[childIndex];
QVector3D angleFrom = (QVector3D(0.0, parent.position.y(), parent.position.z()) -
QVector3D(0.0, origin.position.y(), origin.position.z())).normalized();
QVector3D angleTo = (QVector3D(0.0, child.position.y(), child.position.z()) -
QVector3D(0.0, origin.position.y(), origin.position.z())).normalized();
float degrees = angleInRangle360BetweenTwoVectors(angleFrom, angleTo, QVector3D(1.0, 0.0, 0.0));
if (degrees < origin.minLimitDegrees) {
auto quaternion = QQuaternion::fromAxisAndAngle(QVector3D(1.0, 0.0, 0.0), origin.minLimitDegrees - degrees);
rotateChildren(quaternion, i);
} else if (degrees > origin.maxLimitDegrees) {
auto quaternion = QQuaternion::fromAxisAndAngle(QVector3D(-1.0, 0.0, 0.0), degrees - origin.maxLimitDegrees);
rotateChildren(quaternion, i);
}
}
}