2657 lines
89 KiB
C++
Executable File
2657 lines
89 KiB
C++
Executable File
// Copyright (c) 2015 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0+
|
|
//
|
|
// Author(s) : Frank Da, David Cohen-Steiner, Andreas Fabri
|
|
|
|
#ifndef CGAL_ADVANCING_FRONT_SURFACE_RECONSTRUCTION_H
|
|
#define CGAL_ADVANCING_FRONT_SURFACE_RECONSTRUCTION_H
|
|
|
|
#include <CGAL/license/Advancing_front_surface_reconstruction.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
// In order to activate lazy evaluation:
|
|
// #define LAZY
|
|
|
|
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
|
|
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
|
#include <CGAL/Triangulation_data_structure_3.h>
|
|
#include <CGAL/Delaunay_triangulation_3.h>
|
|
#include <CGAL/Cartesian_converter.h>
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <set>
|
|
|
|
#include <CGAL/Advancing_front_surface_reconstruction_vertex_base_3.h>
|
|
#include <CGAL/Advancing_front_surface_reconstruction_cell_base_3.h>
|
|
#include <CGAL/Timer.h>
|
|
#include <CGAL/Triangulation_data_structure_2.h>
|
|
#include <CGAL/internal/AFSR/Surface_vertex_base_2.h>
|
|
#include <CGAL/internal/AFSR/Surface_face_base_2.h>
|
|
#include <CGAL/internal/AFSR/construct_surface_2.h>
|
|
#include <CGAL/internal/AFSR/construct_polyhedron.h>
|
|
#include <CGAL/internal/AFSR/write_triple_indices.h>
|
|
|
|
namespace CGAL {
|
|
|
|
// This iterator allows to visit all contours. It has the particularity
|
|
// that it visits the entry point of the contour twice. This allows to
|
|
// detect that the traversal of the border is finished. One more increment
|
|
// brings us to the next vertex.
|
|
|
|
|
|
|
|
template < class Surface>
|
|
class Advancing_front_surface_reconstruction_boundary_iterator {
|
|
private:
|
|
Advancing_front_surface_reconstruction_boundary_iterator();
|
|
|
|
typedef typename Surface::Finite_vertices_iterator Finite_vertices_iterator;
|
|
typedef Advancing_front_surface_reconstruction_boundary_iterator<Surface> Self;
|
|
typedef typename Surface::Vertex_handle Vertex_handle;
|
|
typedef typename Surface::Vertex Vertex;
|
|
|
|
const Surface& S;
|
|
int mark;
|
|
Finite_vertices_iterator first_vertex;
|
|
Vertex_handle pos;
|
|
bool first, last;
|
|
|
|
public:
|
|
Advancing_front_surface_reconstruction_boundary_iterator(const Surface& S_, int m)
|
|
: S(S_), mark(m), first_vertex(S.triangulation_3().finite_vertices_begin()), pos(first_vertex)
|
|
{
|
|
if (pos->number_of_incident_border() <= 0){
|
|
advance_to_next_boundary();
|
|
}
|
|
first = true;
|
|
last = false;
|
|
}
|
|
|
|
Advancing_front_surface_reconstruction_boundary_iterator(const Surface& S_)
|
|
: S(S_), pos(NULL)
|
|
{}
|
|
|
|
Advancing_front_surface_reconstruction_boundary_iterator(const Self& s)
|
|
: S(s.S), mark(s.mark), first_vertex(s.first_vertex), pos(s.pos), first(s.first), last(s.last)
|
|
{}
|
|
|
|
bool operator==(const Self &s) const
|
|
{
|
|
return pos == s.pos;
|
|
}
|
|
|
|
bool operator!=(const Self &s) const
|
|
{
|
|
return pos != s.pos;
|
|
}
|
|
|
|
|
|
Self operator++()
|
|
{
|
|
if(pos == NULL) {
|
|
return *this;
|
|
}
|
|
if(first){
|
|
advance_on_boundary();
|
|
first = false;
|
|
} else if (last) {
|
|
advance_to_next_boundary();
|
|
first = true;
|
|
last = false;
|
|
} else {
|
|
advance_on_boundary();
|
|
if(&*pos == &*first_vertex){
|
|
last = true;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Vertex_handle operator*()
|
|
{
|
|
return pos;
|
|
}
|
|
|
|
void advance_on_boundary()
|
|
{
|
|
if(pos == NULL) {
|
|
return;
|
|
}
|
|
pos = pos->first_incident()->first;
|
|
pos->set_post_mark(mark);
|
|
}
|
|
|
|
void advance_to_next_boundary()
|
|
{
|
|
if(pos == NULL) {
|
|
return;
|
|
}
|
|
do {
|
|
first_vertex++;
|
|
} while((first_vertex != S.triangulation_3().finite_vertices_end()) &&
|
|
(! ((first_vertex->is_on_border())
|
|
&& ! first_vertex->is_post_marked(mark))));
|
|
if(first_vertex != S.triangulation_3().finite_vertices_end()) {
|
|
pos = first_vertex;
|
|
pos->set_post_mark(mark);
|
|
CGAL_assertion(pos->is_on_border());
|
|
|
|
} else {
|
|
pos = NULL;
|
|
}
|
|
}
|
|
};
|
|
|
|
namespace AFSR{
|
|
struct Default_priority {
|
|
template <typename AdvancingFront, typename Cell_handle>
|
|
double operator() (const AdvancingFront& adv, Cell_handle& c,
|
|
const int& index) const
|
|
{
|
|
return adv.smallest_radius_delaunay_sphere (c, index);
|
|
}
|
|
};
|
|
} //end of namespace AFSR
|
|
|
|
|
|
/*!
|
|
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
|
|
|
The class `Advancing_front_surface_reconstruction` enables advanced users to provide the unstructured
|
|
point cloud in a 3D Delaunay triangulation. The reconstruction algorithm then marks vertices and faces
|
|
in the triangulation as being on the 2D surface embedded in 3D space, and constructs a 2D triangulation
|
|
data structure that describes the surface. The vertices and facets of the 2D triangulation data structure
|
|
store handles to the vertices and faces of the 3D triangulation, which enables the user to explore the
|
|
2D as well as 3D neighborhood of vertices and facets of the surface.
|
|
|
|
\tparam Dt must be a `Delaunay_triangulation_3` with
|
|
`Advancing_front_surface_reconstruction_vertex_base_3` and `Advancing_front_surface_reconstruction_cell_base_3` blended into the vertex and cell type.
|
|
The default uses the `Exact_predicates_inexact_constructions_kernel` as geometric traits class.
|
|
|
|
\tparam P must be a functor with `double operator()(AdvancingFront,Cell_handle,int)` returning the
|
|
priority of the facet `(Cell_handle,int)`. This functor enables the user to choose how candidate
|
|
triangles are prioritized. If a facet should not appear in the output,
|
|
`infinity()` must be returned. It defaults to a functor that returns the
|
|
`smallest_radius_delaunay_sphere()`.
|
|
|
|
*/
|
|
template <
|
|
class Dt = Default,
|
|
class P = Default>
|
|
class Advancing_front_surface_reconstruction {
|
|
|
|
typedef typename Default::Get<Dt,Delaunay_triangulation_3<Exact_predicates_inexact_constructions_kernel, Triangulation_data_structure_3<Advancing_front_surface_reconstruction_vertex_base_3<Exact_predicates_inexact_constructions_kernel>, Advancing_front_surface_reconstruction_cell_base_3<Exact_predicates_inexact_constructions_kernel> > > >::type Triangulation;
|
|
typedef typename Default::Get<P,AFSR::Default_priority>::type Priority;
|
|
public:
|
|
|
|
#ifdef DOXYGEN_RUNNING
|
|
/// \name Types
|
|
/// @{
|
|
|
|
/*!
|
|
The type of the 2D triangulation data structure describing the reconstructed surface, being a model of `TriangulationDataStructure_2`.
|
|
- The type `Triangulation_data_structure_2::Vertex` is model of the concept `TriangulationDataStructure_2::Vertex` and has additionally the
|
|
method `vertex_3()` that returns a `#Vertex_handle` to the associated 3D vertex.
|
|
- The type `Triangulation_data_structure_2::Face` is model of the concept `TriangulationDataStructure_2::Face` and has additionally the
|
|
method `facet()` that returns the associated `#Facet`, and a method `bool is_on_surface()`
|
|
for testing if a face is part of the reconstructed surface or a face incident to a boundary edge.
|
|
|
|
In case the surface has boundaries, the 2D surface has one vertex which is associated to the infinite
|
|
vertex of the 3D triangulation.
|
|
*/
|
|
typedef unspecified_type Triangulation_data_structure_2;
|
|
|
|
/*!
|
|
The type of the 3D triangulation.
|
|
*/
|
|
typedef unspecified_type Triangulation_3;
|
|
|
|
/*!
|
|
The type of the facet priority functor.
|
|
*/
|
|
typedef unspecified_type Priority;
|
|
|
|
/*!
|
|
The point type.
|
|
*/
|
|
typedef typename Triangulation_3::Point Point;
|
|
|
|
/*!
|
|
The vertex handle type of the 3D triangulation.
|
|
*/
|
|
typedef typename Triangulation_3::Vertex_handle Vertex_handle;
|
|
|
|
/*!
|
|
The cell handle type of the 3D triangulation.
|
|
*/
|
|
typedef typename Triangulation_3::Cell_handle Cell_handle;
|
|
|
|
/*!
|
|
The facet type of the 3D triangulation.
|
|
*/
|
|
typedef typename Triangulation_3::Facet Facet;
|
|
|
|
/*!
|
|
A bidirectional iterator range which enables to enumerate all points that were removed
|
|
from the 3D Delaunay triangulation during the surface reconstruction. The value type
|
|
of the iterator is `#Point`.
|
|
*/
|
|
typedef unspecified_type Outlier_range;
|
|
|
|
/*!
|
|
A bidirectional iterator range which enables to visit all boundaries.
|
|
The value type of the iterator is `Vertex_on_boundary_range`.
|
|
*/
|
|
typedef unspecified_type Boundary_range;
|
|
|
|
/*!
|
|
A bidirectional iterator range which enables to visit all vertices on a boundary.
|
|
The value type of the iterator is `#Vertex_handle`
|
|
*/
|
|
typedef unspecified_type Vertex_on_boundary_range;
|
|
/// @}
|
|
#endif
|
|
|
|
typedef Triangulation Triangulation_3;
|
|
typedef typename Triangulation_3::Geom_traits Kernel;
|
|
typedef Advancing_front_surface_reconstruction<Dt,P> Extract;
|
|
typedef typename Triangulation_3::Geom_traits Geom_traits;
|
|
|
|
typedef typename Kernel::FT coord_type;
|
|
|
|
typedef typename Kernel::Point_3 Point;
|
|
typedef typename Kernel::Vector_3 Vector;
|
|
typedef typename Kernel::Segment_3 Segment;
|
|
typedef typename Kernel::Triangle_3 Triangle;
|
|
typedef typename Kernel::Sphere_3 Sphere;
|
|
|
|
typedef typename Triangulation_3::Cell Cell;
|
|
typedef typename Triangulation_3::Vertex Vertex;
|
|
typedef typename Triangulation_3::Edge Edge;
|
|
typedef typename Triangulation_3::Facet Facet;
|
|
typedef typename Triangulation_3::Cell_handle Cell_handle;
|
|
typedef typename Triangulation_3::Vertex_handle Vertex_handle;
|
|
|
|
typedef typename Triangulation_3::Cell_circulator Cell_circulator;
|
|
typedef typename Triangulation_3::Facet_circulator Facet_circulator;
|
|
|
|
typedef typename Triangulation_3::Locate_type Locate_type;
|
|
|
|
typedef typename Triangulation_3::Finite_cells_iterator Finite_cells_iterator;
|
|
typedef typename Triangulation_3::Finite_facets_iterator Finite_facets_iterator;
|
|
typedef typename Triangulation_3::Finite_vertices_iterator Finite_vertices_iterator;
|
|
typedef typename Triangulation_3::Finite_edges_iterator Finite_edges_iterator;
|
|
|
|
typedef typename Triangulation_3::All_cells_iterator All_cells_iterator;
|
|
typedef typename Triangulation_3::All_facets_iterator All_facets_iterator;
|
|
typedef typename Triangulation_3::All_vertices_iterator All_vertices_iterator;
|
|
typedef typename Triangulation_3::All_edges_iterator All_edges_iterator;
|
|
|
|
typedef typename Triangulation_3::Vertex::Edge_incident_facet Edge_incident_facet;
|
|
typedef typename Triangulation_3::Vertex::IO_edge_type IO_edge_type;
|
|
typedef typename Triangulation_3::Vertex::criteria criteria;
|
|
typedef typename Triangulation_3::Vertex::Radius_edge_type Radius_edge_type;
|
|
typedef typename Triangulation_3::Vertex::Border_elt Border_elt;
|
|
typedef typename Triangulation_3::Vertex::Next_border_elt Next_border_elt;
|
|
typedef typename Triangulation_3::Vertex::Intern_successors_type Intern_successors_type;
|
|
typedef typename Triangulation_3::Vertex::Radius_ptr_type Radius_ptr_type;
|
|
|
|
typedef typename Triangulation_3::Vertex::Incidence_request_iterator Incidence_request_iterator;
|
|
typedef typename Triangulation_3::Vertex::Incidence_request_elt Incidence_request_elt;
|
|
|
|
typedef std::pair< Vertex_handle, Vertex_handle > Edge_like;
|
|
typedef CGAL::Triple< Vertex_handle, Vertex_handle, Vertex_handle > Facet_like;
|
|
|
|
typedef std::set<Radius_ptr_type> Ordered_border_type;
|
|
|
|
typedef typename Ordered_border_type::iterator Ordered_border_iterator;
|
|
|
|
enum Validation_case {NOT_VALID, NOT_VALID_CONNECTING_CASE, FINAL_CASE,
|
|
EAR_CASE, EXTERIOR_CASE, CONNECTING_CASE};
|
|
|
|
//=====================================================================
|
|
//=====================================================================
|
|
|
|
|
|
typedef const std::list<std::list<Vertex_handle> > Boundary_range;
|
|
typedef const std::list<Vertex_handle> Vertex_on_boundary_range;
|
|
|
|
private:
|
|
|
|
mutable std::list<std::list<Vertex_handle> > m_boundaries;
|
|
|
|
Timer postprocess_timer, extend_timer, extend2_timer, init_timer;
|
|
|
|
Triangulation_3& T;
|
|
|
|
Ordered_border_type _ordered_border;
|
|
int _number_of_border;
|
|
|
|
const coord_type COS_ALPHA_SLIVER;
|
|
coord_type COS_BETA;
|
|
const int NB_BORDER_MAX;
|
|
coord_type DELTA; // = sampling quality of the border
|
|
coord_type K, min_K;
|
|
const coord_type eps;
|
|
const coord_type inv_eps_2; // 1/(eps^2)
|
|
const coord_type eps_3; // test de ^3 donc points tel 1e-7 soit petit
|
|
const criteria STANDBY_CANDIDATE;
|
|
const criteria STANDBY_CANDIDATE_BIS;
|
|
const criteria NOT_VALID_CANDIDATE;
|
|
|
|
//---------------------------------------------------------------------
|
|
//Pour une visu correcte
|
|
//pour retenir les facettes selectionnees
|
|
int _vh_number;
|
|
int _facet_number;
|
|
|
|
//---------------------------------------------------------------------
|
|
//Pour le post traitement
|
|
mutable int _postprocessing_counter;
|
|
int _size_before_postprocessing;
|
|
|
|
std::list<Point> m_outliers;
|
|
|
|
int _number_of_connected_components;
|
|
|
|
Vertex_handle added_vertex;
|
|
bool deal_with_2d;
|
|
Priority priority;
|
|
int max_connected_component;
|
|
double K_init, K_step;
|
|
std::list<Vertex_handle> interior_edges;
|
|
std::list< Incidence_request_elt > incidence_requests;
|
|
typename std::list< Incidence_request_elt >::iterator sentinel;
|
|
typename std::list<Vertex_handle>::iterator ie_sentinel;
|
|
std::list<Next_border_elt> nbe_pool;
|
|
std::list<Intern_successors_type> ist_pool;
|
|
|
|
|
|
Intern_successors_type* new_border()
|
|
{
|
|
nbe_pool.push_back(Next_border_elt());
|
|
|
|
Next_border_elt* p1 = & nbe_pool.back();
|
|
nbe_pool.push_back(Next_border_elt());
|
|
Next_border_elt* p2 = & nbe_pool.back();
|
|
|
|
Intern_successors_type ist(p1,p2);
|
|
ist_pool.push_back(ist);
|
|
|
|
Intern_successors_type* ret = &ist_pool.back();
|
|
|
|
ret->first->first = NULL;
|
|
ret->second->first = NULL;
|
|
return ret;
|
|
}
|
|
|
|
|
|
inline bool is_on_border(Vertex_handle vh, const int& i) const
|
|
{
|
|
if (vh->m_incident_border == NULL) return false; //vh is interior
|
|
if (vh->m_incident_border->first->first != NULL)
|
|
{
|
|
if (vh->m_incident_border->second->first != NULL)
|
|
return ((vh->m_incident_border->first->second.second == i)||
|
|
(vh->m_incident_border->second->second.second == i));
|
|
return (vh->m_incident_border->first->second.second == i);
|
|
}
|
|
return false; //vh is still exterior
|
|
}
|
|
|
|
|
|
void remove_border_edge(Vertex_handle w, Vertex_handle v)
|
|
{
|
|
if (w->m_incident_border != NULL)
|
|
{
|
|
if (w->m_incident_border->second->first == v)
|
|
{
|
|
w->m_incident_border->second->first = NULL;
|
|
set_interior_edge(w,v);
|
|
return;
|
|
}
|
|
if (w->m_incident_border->first->first == v)
|
|
{
|
|
if (w->m_incident_border->second->first != NULL)
|
|
{
|
|
Next_border_elt* tmp = w->m_incident_border->first;
|
|
w->m_incident_border->first = w->m_incident_border->second;
|
|
w->m_incident_border->second = tmp;
|
|
w->m_incident_border->second->first = NULL;
|
|
set_interior_edge(w,v);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
w->m_incident_border->first->first = NULL;
|
|
set_interior_edge(w,v);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline bool is_interior_edge(Vertex_handle w, Vertex_handle v) const
|
|
{
|
|
|
|
bool r1;
|
|
if(w->m_ie_first == ie_sentinel){
|
|
r1 = false;
|
|
}else {
|
|
typename std::list<Vertex_handle>::iterator b(w->m_ie_first), e(w->m_ie_last);
|
|
e++;
|
|
typename std::list<Vertex_handle>::iterator r = std::find(b, e, v);
|
|
r1 = ( r != e);
|
|
}
|
|
|
|
return r1;
|
|
}
|
|
|
|
//-------------------------------------------------------------------
|
|
// pour gerer certaines aretes interieures: a savoir celle encore connectee au
|
|
// bord (en fait seule, les aretes interieures reliant 2 bords nous
|
|
// interressent...)
|
|
|
|
inline void set_interior_edge(Vertex_handle w, Vertex_handle v)
|
|
{
|
|
if(w->m_ie_last == ie_sentinel){ // empty set
|
|
CGAL_assertion(w->m_ie_first == w->m_ie_last);
|
|
w->m_ie_last = interior_edges.insert(w->m_ie_last, v);
|
|
w->m_ie_first = w->m_ie_last;
|
|
} else {
|
|
typename std::list<Vertex_handle>::iterator e(w->m_ie_last);
|
|
e++;
|
|
#ifdef DEBUG
|
|
typename std::list<Vertex_handle>::iterator r = std::find(w->m_ie_first, e, v);
|
|
CGAL_assertion(r == e);
|
|
#endif
|
|
w->m_ie_last = interior_edges.insert(e, v);
|
|
}
|
|
}
|
|
|
|
|
|
inline void remove_interior_edge(Vertex_handle w, Vertex_handle v)
|
|
{
|
|
if(w->m_ie_first == ie_sentinel){
|
|
CGAL_assertion(w->m_ie_last == w->m_ie_first);
|
|
} else if(w->m_ie_first == w->m_ie_last){ // there is only one element
|
|
if(*(w->m_ie_first) == v){
|
|
interior_edges.erase(w->m_ie_first);
|
|
w->m_ie_last = ie_sentinel;
|
|
w->m_ie_first = w->m_ie_last;
|
|
}
|
|
} else {
|
|
typename std::list<Vertex_handle>::iterator b(w->m_ie_first), e(w->m_ie_last);
|
|
e++;
|
|
typename std::list<Vertex_handle>::iterator r = std::find(b, e, v);
|
|
if(r != e){
|
|
if(r == w->m_ie_first){
|
|
w->m_ie_first++;
|
|
}
|
|
if(r == w->m_ie_last){
|
|
w->m_ie_last--;
|
|
}
|
|
interior_edges.erase(r);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------
|
|
|
|
inline void set_incidence_request(Vertex_handle w, const Incidence_request_elt& ir)
|
|
{
|
|
if(w->m_ir_last == sentinel ){
|
|
CGAL_assertion(w->m_ir_first == w->m_ir_last);
|
|
w->m_ir_last = incidence_requests.insert(w->m_ir_last, ir);
|
|
w->m_ir_first = w->m_ir_last;
|
|
} else {
|
|
typename std::list<Incidence_request_elt>::iterator e(w->m_ir_last);
|
|
e++;
|
|
w->m_ir_last = incidence_requests.insert(e, ir);
|
|
}
|
|
}
|
|
|
|
inline bool is_incidence_requested(Vertex_handle w) const
|
|
{
|
|
if(w->m_ir_last == sentinel ){
|
|
CGAL_assertion(w->m_ir_first == sentinel );
|
|
}
|
|
return (w->m_ir_last != sentinel );
|
|
}
|
|
|
|
inline Incidence_request_iterator incidence_request_begin(Vertex_handle w)
|
|
{
|
|
return w->m_ir_first;
|
|
}
|
|
|
|
inline Incidence_request_iterator incidence_request_end(Vertex_handle w)
|
|
{
|
|
if(w->m_ir_last != sentinel ){
|
|
CGAL_assertion(w->m_ir_first != sentinel );
|
|
Incidence_request_iterator it(w->m_ir_last);
|
|
it++;
|
|
return it;
|
|
}
|
|
return w->m_ir_last;
|
|
}
|
|
|
|
inline void erase_incidence_request(Vertex_handle w)
|
|
{
|
|
if(w->m_ir_last != sentinel ){
|
|
CGAL_assertion(w->m_ir_first != sentinel );
|
|
w->m_ir_last++;
|
|
incidence_requests.erase(w->m_ir_first, w->m_ir_last);
|
|
w->m_ir_first = sentinel ;
|
|
w->m_ir_last = sentinel ;
|
|
}
|
|
}
|
|
|
|
|
|
void re_init(Vertex_handle w)
|
|
{
|
|
if (w->m_incident_border != NULL)
|
|
{
|
|
w->delete_border();
|
|
}
|
|
|
|
if(w->m_ir_first != sentinel ){
|
|
CGAL_assertion(w->m_ir_last != sentinel );
|
|
typename std::list< Incidence_request_elt >::iterator b(w->m_ir_first), e(w->m_ir_last);
|
|
e++;
|
|
incidence_requests.erase(b, e);
|
|
w->m_ir_first = sentinel ;
|
|
w->m_ir_last = sentinel ;
|
|
}
|
|
|
|
w->m_incident_border = new_border();
|
|
w->m_mark = -1;
|
|
w->m_post_mark = -1;
|
|
}
|
|
|
|
|
|
|
|
inline void dec_mark(Vertex_handle w)
|
|
{
|
|
w->m_mark--;
|
|
if(w->m_mark == 0)
|
|
{
|
|
w->delete_border();
|
|
erase_incidence_request(w);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void initialize_vertices_and_cells()
|
|
{
|
|
|
|
Incidence_request_elt ire;
|
|
incidence_requests.clear();
|
|
incidence_requests.push_back(ire);
|
|
sentinel = incidence_requests.begin();
|
|
|
|
interior_edges.clear();
|
|
interior_edges.push_back(Vertex_handle());
|
|
ie_sentinel = interior_edges.begin();
|
|
|
|
for(All_vertices_iterator fit = T.all_vertices_begin();
|
|
fit != T.all_vertices_end();
|
|
++fit){
|
|
fit->m_ie_first = fit->m_ie_last = ie_sentinel;
|
|
fit->m_ir_first = fit->m_ir_last = sentinel ;
|
|
fit->m_incident_border = new_border();
|
|
}
|
|
}
|
|
|
|
//-------------------- DESTRUCTOR -----------------------------------
|
|
|
|
void clear_vertex(Vertex_handle w)
|
|
{
|
|
if (w->m_incident_border != NULL)
|
|
{
|
|
w->delete_border();
|
|
}
|
|
if(w->m_ir_first != sentinel ){
|
|
CGAL_assertion(w->m_ir_last != sentinel );
|
|
typename std::list< Incidence_request_elt >::iterator b(w->m_ir_first), e(w->m_ir_last);
|
|
e++;
|
|
incidence_requests.erase(b, e);
|
|
}
|
|
|
|
if(w->m_ie_first != ie_sentinel){
|
|
CGAL_assertion(w->m_ie_last != ie_sentinel);
|
|
typename std::list<Vertex_handle>::iterator b(w->m_ie_first), e(w->m_ie_last);
|
|
e++;
|
|
interior_edges.erase(b, e);
|
|
}
|
|
}
|
|
|
|
|
|
void clear_vertices()
|
|
{
|
|
for (All_vertices_iterator vit = T.all_vertices_begin();
|
|
vit != T.all_vertices_end();
|
|
++vit){
|
|
clear_vertex(vit);
|
|
}
|
|
}
|
|
|
|
|
|
public:
|
|
/// \name Creation
|
|
/// @{
|
|
|
|
/*!
|
|
Constructor for the unstructured point cloud given as 3D Delaunay triangulation.
|
|
*/
|
|
Advancing_front_surface_reconstruction(Triangulation_3& dt,
|
|
Priority priority = Priority())
|
|
: T(dt), _number_of_border(1), COS_ALPHA_SLIVER(-0.86),
|
|
NB_BORDER_MAX(15), DELTA(.86), min_K(infinity()),
|
|
eps(1e-7), inv_eps_2(coord_type(1)/(eps*eps)), eps_3(eps*eps*eps),
|
|
STANDBY_CANDIDATE(3), STANDBY_CANDIDATE_BIS(STANDBY_CANDIDATE+1),
|
|
NOT_VALID_CANDIDATE(STANDBY_CANDIDATE+2),
|
|
_vh_number(static_cast<int>(T.number_of_vertices())), _facet_number(0),
|
|
_postprocessing_counter(0), _size_before_postprocessing(0), _number_of_connected_components(0),
|
|
deal_with_2d(false), priority(priority), max_connected_component(-1), K_init(1.1), K_step(.1)
|
|
|
|
{
|
|
if(T.dimension() == 2){
|
|
deal_with_2d = true;
|
|
Finite_vertices_iterator it = T.finite_vertices_begin();
|
|
const Point& p = it->point();
|
|
++it;
|
|
const Point& q = it->point();
|
|
do{
|
|
++it;
|
|
}while(collinear(p,q,it->point()));
|
|
const Point& r = it->point();
|
|
Vector u = q-r;
|
|
Vector v = q-p;
|
|
Vector w = r-p;
|
|
Vector vw = cross_product(v,w);
|
|
double len = (std::max)(u*u,(std::max)(v*v,w*w));
|
|
Point s = p + 10* len * (vw/(vw*vw));
|
|
added_vertex = T.insert(s);
|
|
}
|
|
}
|
|
|
|
/// @}
|
|
|
|
|
|
/*
|
|
~Advancing_front_surface_reconstruction()
|
|
{
|
|
|
|
std::cerr << "postprocessing" << postprocess_timer.time() << std::endl;
|
|
std::cerr << "extend " << extend_timer.time() << std::endl;
|
|
std::cerr << "extend2 " << extend2_timer.time() << std::endl;
|
|
std::cerr << "init " << postprocess_timer.time() << std::endl;
|
|
std::cerr << "#outliers " << number_of_outliers() << std::endl;
|
|
}
|
|
*/
|
|
|
|
typedef Advancing_front_surface_reconstruction_boundary_iterator<Extract> Boundary_iterator;
|
|
|
|
Boundary_iterator boundaries_begin() const
|
|
{
|
|
return Boundary_iterator(*this, next_mark());
|
|
}
|
|
|
|
|
|
Boundary_iterator boundaries_end() const
|
|
{
|
|
return Boundary_iterator(*this);
|
|
}
|
|
|
|
typedef std::list<Point> Outlier_range;
|
|
|
|
typedef CGAL::Triangulation_data_structure_2<AFSR::Surface_vertex_base_2<Kernel,Vertex_handle>,
|
|
AFSR::Surface_face_base_2<Kernel, typename Triangulation_3::Facet> > TDS_2;
|
|
|
|
typedef TDS_2 Triangulation_data_structure_2;
|
|
|
|
mutable TDS_2 _tds_2;
|
|
|
|
mutable typename TDS_2::Vertex_handle _tds_2_inf;
|
|
|
|
/// \name Operations
|
|
/// @{
|
|
|
|
/*!
|
|
runs the surface reconstruction function.
|
|
|
|
\param radius_ratio_bound candidates incident to surface triangles which are not in the beta-wedge
|
|
are discarded, if the ratio of their radius and the radius of the surface triangle is larger than `radius_ratio_bound`.
|
|
Described in Section \ref AFSR_Boundaries
|
|
\param beta half the angle of the wedge in which only the radius of triangles counts for the plausibility of candidates.
|
|
Described in Section \ref AFSR_Selection
|
|
|
|
*/
|
|
void run(double radius_ratio_bound=5, double beta= 0.52)
|
|
{
|
|
K = radius_ratio_bound;
|
|
COS_BETA = cos(beta);
|
|
if(T.dimension() < 3){
|
|
return;
|
|
}
|
|
initialize_vertices_and_cells();
|
|
bool re_init = false;
|
|
do
|
|
{
|
|
_number_of_connected_components++;
|
|
|
|
if ( (re_init = init(re_init)) )
|
|
{
|
|
//std::cerr << "Growing connected component " << _number_of_connected_components << std::endl;
|
|
extend_timer.start();
|
|
extend();
|
|
extend_timer.stop();
|
|
|
|
if ((number_of_facets() > static_cast<int>(T.number_of_vertices()))&&
|
|
(NB_BORDER_MAX > 0))
|
|
// en principe 2*nb_sommets = nb_facettes: y a encore de la marge!!!
|
|
{
|
|
while(postprocessing()){
|
|
extend2_timer.start();
|
|
extend();
|
|
|
|
extend2_timer.stop();
|
|
}
|
|
}
|
|
}
|
|
}while(re_init &&
|
|
((_number_of_connected_components < max_connected_component)||
|
|
(max_connected_component < 0)));
|
|
|
|
_tds_2_inf = AFSR::construct_surface(_tds_2, *this);
|
|
|
|
boundaries();
|
|
clear_vertices();
|
|
}
|
|
|
|
/*!
|
|
returns the reconstructed surface.
|
|
*/
|
|
const Triangulation_data_structure_2& triangulation_data_structure_2() const
|
|
{
|
|
return _tds_2;
|
|
}
|
|
|
|
/*!
|
|
returns the underlying 3D Delaunay triangulation.
|
|
*/
|
|
Triangulation_3&
|
|
triangulation_3() const
|
|
{
|
|
return T;
|
|
}
|
|
|
|
/*!
|
|
returns an iterator range over the outliers.
|
|
*/
|
|
const Outlier_range& outliers() const
|
|
{
|
|
return m_outliers;
|
|
}
|
|
|
|
/*!
|
|
returns an iterator range over the boundaries.
|
|
*/
|
|
const Boundary_range& boundaries() const
|
|
{
|
|
if(has_boundaries() && m_boundaries.empty()){
|
|
Boundary_iterator b = boundaries_begin();
|
|
Boundary_iterator e = boundaries_end();
|
|
for(; b!= e; ++b){
|
|
Vertex_handle v = *b;
|
|
std::list<Vertex_handle> border;
|
|
m_boundaries.push_back(border);
|
|
do {
|
|
m_boundaries.back().push_back(*b);
|
|
++b;
|
|
}while(*b != v);
|
|
}
|
|
}
|
|
|
|
return m_boundaries;
|
|
}
|
|
/// @}
|
|
|
|
/// \name Predicates
|
|
/// @{
|
|
|
|
/*!
|
|
returns `true` if the reconstructed surface has boundaries.
|
|
*/
|
|
bool
|
|
has_boundaries() const
|
|
{
|
|
return _tds_2_inf != typename TDS_2::Vertex_handle();
|
|
}
|
|
|
|
/*!
|
|
returns `true` if the facet is on the surface.
|
|
*/
|
|
bool
|
|
has_on_surface(Facet f) const
|
|
{
|
|
return f.first->has_facet_on_surface(f.second);
|
|
}
|
|
|
|
/*!
|
|
returns `true` if the facet `f2` is on the surface.
|
|
*/
|
|
bool
|
|
has_on_surface(typename Triangulation_data_structure_2::Face_handle f2) const
|
|
{
|
|
return f2->is_on_surface();
|
|
}
|
|
|
|
/*!
|
|
returns `true` if the vertex `v2` is on the surface.
|
|
*/
|
|
bool
|
|
has_on_surface(typename Triangulation_data_structure_2::Vertex_handle v2) const
|
|
{
|
|
return v2 != _tds_2_inf;
|
|
}
|
|
/// @}
|
|
|
|
int number_of_connected_components() const
|
|
{
|
|
return _number_of_connected_components;
|
|
}
|
|
|
|
int number_of_facets() const
|
|
{
|
|
return _facet_number;
|
|
}
|
|
|
|
|
|
int number_of_vertices() const
|
|
{
|
|
return _vh_number;
|
|
}
|
|
|
|
|
|
int number_of_outliers() const
|
|
{
|
|
return static_cast<int>(m_outliers.size());
|
|
}
|
|
|
|
typedef typename std::list<Point>::const_iterator Outlier_iterator;
|
|
|
|
|
|
Outlier_iterator outliers_begin() const
|
|
{
|
|
return m_outliers.begin();
|
|
}
|
|
|
|
|
|
Outlier_iterator m_outliers_end() const
|
|
{
|
|
return m_outliers.end();
|
|
}
|
|
|
|
int next_mark() const
|
|
{
|
|
_postprocessing_counter++;
|
|
return _postprocessing_counter;
|
|
}
|
|
|
|
|
|
Next_border_elt* border_elt(const Vertex_handle& v1, const Vertex_handle& v2) const
|
|
{
|
|
return v1->border_elt(v2);
|
|
}
|
|
|
|
|
|
//public
|
|
|
|
IO_edge_type* border_IO_elt(const Vertex_handle& v1, const Vertex_handle& v2)
|
|
{
|
|
return &border_elt(v1,v2)->second.first.second;
|
|
}
|
|
|
|
|
|
IO_edge_type* set_border_elt(const Vertex_handle& v1, const Vertex_handle& v2,
|
|
const Border_elt& e)
|
|
{
|
|
v1->set_next_border_elt(Next_border_elt (v2, e));
|
|
return border_IO_elt(v1, v2);
|
|
}
|
|
|
|
|
|
IO_edge_type* set_again_border_elt(const Vertex_handle& v1, const Vertex_handle& v2,
|
|
const Border_elt& e)
|
|
{
|
|
border_elt(v1,v2)->second = e;
|
|
return border_IO_elt(v1, v2);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool is_border_elt(Edge_like& key, Border_elt& result) const
|
|
{
|
|
Next_border_elt* it12 = border_elt(key.first, key.second);
|
|
if (it12 != NULL)
|
|
{
|
|
result = it12->second;
|
|
return true;
|
|
}
|
|
|
|
Next_border_elt* it21 = border_elt(key.second, key.first);
|
|
if (it21 != NULL)
|
|
{
|
|
result = it21->second;
|
|
std::swap(key.first, key.second);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool is_border_elt(Edge_like& key) const {
|
|
Next_border_elt* it12 = border_elt(key.first, key.second);
|
|
if (it12 != NULL)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
Next_border_elt* it21 = border_elt(key.second, key.first);
|
|
if (it21 != NULL)
|
|
{
|
|
std::swap(key.first, key.second);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool is_ordered_border_elt(const Edge_like& key, Border_elt& result) const
|
|
{
|
|
Next_border_elt* it12 = border_elt(key.first, key.second);
|
|
if (it12 != NULL)
|
|
{
|
|
result = it12->second;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
remove_border_elt(const Edge_like& ordered_key)
|
|
{
|
|
remove_border_edge(ordered_key.first, ordered_key.second);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool is_ordered_border_elt(const Edge_like& e,
|
|
IO_edge_type* &ptr) const
|
|
{
|
|
Vertex_handle v1 = e.first;
|
|
|
|
Next_border_elt* it12 = border_elt(v1, e.second);
|
|
if (it12 != NULL)
|
|
{
|
|
ptr = &it12->second.first.second;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void set_incidence_request(const Vertex_handle& v,
|
|
const criteria& value,
|
|
const Edge_like& e)
|
|
{
|
|
Incidence_request_elt incident_elt(value, e);
|
|
set_incidence_request(v, incident_elt);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool is_interior_edge(const Edge_like& key) const
|
|
// pour gerer certaines aretes interieures: a savoir celle encore connectee au
|
|
// bord (en fait seule, les aretes interieures reliant 2 bords nous
|
|
// interressent...)
|
|
{
|
|
return (is_interior_edge(key.first, key.second)||
|
|
is_interior_edge(key.second, key.first));
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
#ifdef AFSR_LAZY
|
|
|
|
coord_type lazy_squared_radius(const Cell_handle& c)
|
|
{
|
|
if (c->lazy_squared_radius() != NULL)
|
|
return *(c->lazy_squared_radius());
|
|
|
|
c->set_lazy_squared_radius
|
|
(CGAL::squared_radius(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
c->vertex(3)->point()));
|
|
return *(c->lazy_squared_radius());
|
|
}
|
|
|
|
Point lazy_circumcenter(const Cell_handle& c)
|
|
{
|
|
if (c->lazy_circumcenter() != NULL)
|
|
return *(c->lazy_circumcenter());
|
|
|
|
c->set_lazy_circumcenter
|
|
(CGAL::circumcenter(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
c->vertex(3)->point()));
|
|
return *(c->lazy_circumcenter());
|
|
}
|
|
|
|
#endif //NOLAZY
|
|
|
|
//---------------------------------------------------------------------
|
|
Edge_incident_facet next(const Edge_incident_facet& e) const
|
|
{
|
|
Cell_handle c = e.first.first;
|
|
int i = e.second;
|
|
int i1 = e.first.second, i2 = e.first.third;
|
|
int i3 = (6 - e.second - i1 - i2);
|
|
|
|
Cell_handle n = c->neighbor(i);
|
|
int j1 = n->index(c->vertex(i1)), j2 = n->index(c->vertex(i2));
|
|
int j = n->index(c->vertex(i3));
|
|
return Edge_incident_facet(Edge(n, j1, j2), j);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
Edge_incident_facet previous(const Edge_incident_facet& e) const
|
|
{
|
|
Cell_handle c = e.first.first;
|
|
int i = e.second;
|
|
int i1 = e.first.second, i2 = e.first.third;
|
|
int i3 = (6 - e.second - i1 - i2);
|
|
|
|
Cell_handle n = c->neighbor(i3);
|
|
int j1 = n->index(c->vertex(i1)), j2 = n->index(c->vertex(i2));
|
|
int j = n->index(c->vertex(i));
|
|
return Edge_incident_facet(Edge(n, j1, j2), j);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool
|
|
my_coplanar(const Point& p, const Point& q,
|
|
const Point& r, const Point& s) const
|
|
{
|
|
coord_type qpx = q.x()-p.x();
|
|
coord_type qpy = q.y()-p.y();
|
|
coord_type qpz = q.z()-p.z();
|
|
coord_type rpx = r.x()-p.x();
|
|
coord_type rpy = r.y()-p.y();
|
|
coord_type rpz = r.z()-p.z();
|
|
coord_type spx = s.x()-p.x();
|
|
coord_type spy = s.y()-p.y();
|
|
coord_type spz = s.z()-p.z();
|
|
|
|
coord_type den = CGAL::determinant(qpx,qpy,qpz,
|
|
rpx,rpy,rpz,
|
|
spx,spy,spz);
|
|
return (CGAL_NTS abs(den) < eps_3);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool
|
|
my_collinear(const Point& p, const Point& q, const Point& s) const
|
|
{
|
|
coord_type psx = p.x()-s.x();
|
|
coord_type psy = p.y()-s.y();
|
|
coord_type psz = p.z()-s.z();
|
|
coord_type qsx = q.x()-s.x();
|
|
coord_type qsy = q.y()-s.y();
|
|
coord_type qsz = q.z()-s.z();
|
|
coord_type rsx = psy*qsz-psz*qsy;
|
|
coord_type rsy = psz*qsx-psx*qsz;
|
|
coord_type rsz = psx*qsy-psy*qsx;
|
|
|
|
coord_type den = CGAL::determinant(psx,psy,psz,
|
|
qsx,qsy,qsz,
|
|
rsx,rsy,rsz);
|
|
|
|
return (CGAL_NTS abs(den) < eps_3);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
select_facet(const Cell_handle& c, const int& i)
|
|
{
|
|
c->select_facet(i);
|
|
_facet_number++;
|
|
c->set_facet_number(i, _facet_number);
|
|
}
|
|
|
|
|
|
void
|
|
unselect_facet(const Cell_handle& c, const int& i)
|
|
{
|
|
c->unselect_facet(i);
|
|
}
|
|
|
|
|
|
int
|
|
number_of_border_edges()
|
|
{
|
|
int _border_count(0);
|
|
for(Finite_edges_iterator e_it=T.finite_edges_begin();
|
|
e_it!=T.finite_edges_end();
|
|
e_it++)
|
|
{
|
|
Cell_handle c = (*e_it).first;
|
|
int i1 = (*e_it).second, i2 = (*e_it).third;
|
|
Edge_like key(c->vertex(i1), c->vertex(i2));
|
|
|
|
if (is_border_elt(key))
|
|
_border_count++;
|
|
}
|
|
return _border_count;
|
|
}
|
|
|
|
|
|
//=====================================================================
|
|
|
|
|
|
/// \name Priority values
|
|
/// @{
|
|
|
|
/*!
|
|
|
|
computes the priority of the facet `(c,index)` such that the
|
|
facet with the smallest radius of Delaunay sphere has the
|
|
highest priority.
|
|
|
|
\param c handle to the cell containing the facet
|
|
\param index index of the facet in `c`
|
|
|
|
*/
|
|
coord_type
|
|
smallest_radius_delaunay_sphere(const Cell_handle& c,
|
|
const int& index) const
|
|
{
|
|
int i1, i2, i3;
|
|
|
|
if(deal_with_2d && ( (c->vertex((index+1) & 3) == added_vertex)
|
|
|| (c->vertex((index+2) & 3) == added_vertex)
|
|
|| (c->vertex((index+3) & 3) == added_vertex) ))
|
|
{
|
|
return infinity();
|
|
}
|
|
Cell_handle n = c->neighbor(index);
|
|
// lazy evaluation ...
|
|
coord_type value = c->smallest_radius(index);
|
|
if ((value >= 0)&&(n->smallest_radius(n->index(c)) == value))
|
|
return value;
|
|
|
|
const Point& cp0 = c->vertex(index)->point();
|
|
const Point& cp1 = c->vertex((index+1) & 3)->point();
|
|
const Point& cp2 = c->vertex((index+2) & 3)->point();
|
|
const Point& cp3 = c->vertex((index+3) & 3)->point();
|
|
|
|
const Point& np0 = n->vertex(0)->point();
|
|
const Point& np1 = n->vertex(1)->point();
|
|
const Point& np2 = n->vertex(2)->point();
|
|
const Point& np3 = n->vertex(3)->point();
|
|
|
|
bool c_is_plane(my_coplanar(cp0, cp1, cp2, cp3));
|
|
bool n_is_plane(my_coplanar(np0, np1, np2, np3));
|
|
|
|
bool c_is_infinite(T.is_infinite(c));
|
|
bool n_is_infinite(T.is_infinite(n));
|
|
if ((c_is_plane && n_is_plane)||
|
|
(c_is_plane && n_is_infinite)||
|
|
(n_is_plane && c_is_infinite)||
|
|
my_collinear(cp1, cp2, cp3))
|
|
value = infinity();
|
|
else
|
|
{
|
|
if (c_is_infinite||n_is_infinite||c_is_plane||n_is_plane)
|
|
{
|
|
int ind;
|
|
Cell_handle cc;
|
|
if(c_is_infinite||c_is_plane)
|
|
{
|
|
cc = n;
|
|
ind = n->index(c);
|
|
}
|
|
else
|
|
{
|
|
cc = c;
|
|
ind = index;
|
|
}
|
|
i1 = (ind+1) & 3;
|
|
i2 = (ind+2) & 3;
|
|
i3 = (ind+3) & 3;
|
|
|
|
const Point& pp0 = cc->vertex(ind)->point();
|
|
const Point& pp1 = cc->vertex(i1)->point();
|
|
const Point& pp2 = cc->vertex(i2)->point();
|
|
const Point& pp3 = cc->vertex(i3)->point();
|
|
|
|
Sphere facet_sphere(pp1, pp2, pp3);
|
|
if (squared_distance(facet_sphere.center(), pp0) <
|
|
facet_sphere.squared_radius())
|
|
{
|
|
#ifdef AFSR_LAZY
|
|
value = lazy_squared_radius(cc);
|
|
#else
|
|
// qualified with CGAL, to avoid a compilation error with clang
|
|
if(volume(pp0, pp1, pp2, pp3) != 0){
|
|
value = CGAL::squared_radius(pp0, pp1, pp2, pp3);
|
|
} else {
|
|
typedef Exact_predicates_exact_constructions_kernel EK;
|
|
Cartesian_converter<Kernel, EK> to_exact;
|
|
Cartesian_converter<EK, Kernel> back_from_exact;
|
|
value = back_from_exact(CGAL::squared_radius(to_exact(pp0),
|
|
to_exact(pp1),
|
|
to_exact(pp2),
|
|
to_exact(pp3)));
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
value = facet_sphere.squared_radius();
|
|
}
|
|
else
|
|
{
|
|
Point cc, cn;
|
|
#ifdef AFSR_LAZY
|
|
cc = lazy_circumcenter(c);
|
|
cn = lazy_circumcenter(n);
|
|
#else
|
|
cc = CGAL::circumcenter(cp0, cp1, cp2, cp3);
|
|
cn = CGAL::circumcenter(np0, np1, np2, np3);
|
|
#endif
|
|
// computation of the distance of cp1 to the dual segment cc, cn...
|
|
Vector V(cc - cn), Vc(cc - cp1), Vn(cp1 - cn);
|
|
coord_type ac(V * Vc), an(V * Vn), norm_V(V * V);
|
|
if ((ac > 0) && (an > 0))
|
|
{
|
|
value = (Vc*Vc) - ac*ac/norm_V;
|
|
if ((value < 0)||(norm_V > inv_eps_2)){
|
|
// qualified with CGAL, to avoid a compilation error with clang
|
|
value = CGAL::squared_radius(cp1, cp2, cp3);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ac <= 0)
|
|
value = squared_distance(cc, cp1);
|
|
else // (an <= 0)
|
|
value = squared_distance(cn, cp1);
|
|
}
|
|
}
|
|
}
|
|
// cache computed values
|
|
c->set_smallest_radius(index, value);
|
|
n->set_smallest_radius(n->index(c), value);
|
|
|
|
return value;
|
|
}
|
|
|
|
/*!
|
|
|
|
returns the infinite floating value that prevents a facet to be used.
|
|
*/
|
|
coord_type infinity() const { return std::numeric_limits<coord_type>::infinity(); }
|
|
/// @}
|
|
|
|
//---------------------------------------------------------------------
|
|
// For a border edge e we determine the incident facet which has the highest
|
|
// chance to be a natural extension of the surface
|
|
|
|
Radius_edge_type
|
|
compute_value(const Edge_incident_facet& e)
|
|
{
|
|
Cell_handle c = e.first.first;
|
|
int i = e.second;
|
|
int i1 = e.first.second, i2 = e.first.third;
|
|
int i3 = 6 - e.second - i1 - i2;
|
|
|
|
Edge_incident_facet e_it = e;
|
|
|
|
coord_type min_valueP = NOT_VALID_CANDIDATE,
|
|
min_valueA = infinity();
|
|
Facet min_facet, min_facetA;
|
|
bool border_facet(false);
|
|
|
|
coord_type pscal;
|
|
const Point& p1 = c->vertex(i1)->point();
|
|
const Point& p2 = c->vertex(i2)->point();
|
|
const Point& pc = c->vertex(i3)->point();
|
|
|
|
Vector P2P1 = p1-p2, P2Pn, PnP1;
|
|
|
|
Vector v2, v1 = cross_product(pc-p2, P2P1);
|
|
|
|
coord_type norm, norm1 = v1*v1;
|
|
coord_type norm12 = P2P1*P2P1;
|
|
|
|
e_it = next(e_it);
|
|
|
|
do
|
|
{
|
|
Cell_handle neigh = e_it.first.first;
|
|
Facet facet_it(neigh, e_it.second);
|
|
|
|
if (!T.is_infinite(facet_it))
|
|
{
|
|
int n_ind = facet_it.second;
|
|
int n_i1 = e_it.first.second;
|
|
int n_i2 = e_it.first.third;
|
|
int n_i3 = 6 - n_ind - n_i1 - n_i2;
|
|
|
|
coord_type tmp=0;
|
|
|
|
tmp = priority (*this, neigh, n_ind);
|
|
|
|
Edge_like el1(neigh->vertex(n_i1),neigh->vertex(n_i3)),
|
|
el2(neigh->vertex(n_i2),neigh->vertex(n_i3));
|
|
|
|
if ((tmp != infinity())&&
|
|
neigh->vertex(n_i3)->not_interior()&&
|
|
(!is_interior_edge(el1))&&(!is_interior_edge(el2)))
|
|
{
|
|
const Point& pn = neigh->vertex(n_i3)->point();
|
|
|
|
P2Pn = pn-p2;
|
|
v2 = cross_product(P2P1,P2Pn);
|
|
|
|
//pas necessaire de normer pour un bon echantillon:
|
|
// on peut alors tester v1*v2 >= 0
|
|
norm = sqrt(norm1 * (v2*v2));
|
|
pscal = v1*v2;
|
|
// check if the triangle will produce a sliver on the surface
|
|
bool sliver_facet = (pscal <= COS_ALPHA_SLIVER*norm);
|
|
|
|
if (!sliver_facet)
|
|
{
|
|
if (tmp < min_valueA)
|
|
{
|
|
PnP1 = p1-pn;
|
|
// DELTA represente la qualite d'echantillonnage du bord
|
|
// We skip triangles having an internal angle along e
|
|
// whose cosinus is smaller than -DELTA
|
|
// that is the angle is larger than arcos(-DELTA)
|
|
border_facet = !((P2P1*P2Pn >=
|
|
-DELTA*sqrt(norm12*(P2Pn*P2Pn)))&&
|
|
(P2P1*PnP1 >=
|
|
-DELTA*sqrt(norm12*(PnP1*PnP1))));
|
|
// \todo investigate why we simply do not skip this triangle
|
|
// but continue looking for a better candidate
|
|
// if (!border_facet){
|
|
min_facetA = facet_it;
|
|
min_valueA = tmp;
|
|
min_valueP = pscal/norm;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
e_it = next(e_it);
|
|
}
|
|
while(e_it.first.first != c);
|
|
|
|
criteria value;
|
|
|
|
if ((min_valueA == infinity()) || border_facet) // bad facets case
|
|
{
|
|
min_facet = Facet(c, i); // !!! sans aucune signification....
|
|
value = NOT_VALID_CANDIDATE; // Attention a ne pas inserer dans PQ
|
|
}
|
|
else
|
|
{
|
|
min_facet = min_facetA;
|
|
|
|
//si on considere seulement la pliure value appartient a [0, 2]
|
|
//value = coord_type(1) - min_valueP;
|
|
|
|
// si la pliure est bonne on note suivant le alpha sinon on prend en compte la
|
|
// pliure seule... pour discriminer entre les bons slivers...
|
|
// si on veut discriminer les facettes de bonnes pliures plus finement
|
|
// alors -(1+1/min_valueA) app a [-inf, -1]
|
|
// -min_valueP app a [-1, 1]
|
|
|
|
if (min_valueP > COS_BETA)
|
|
value = -(coord_type(1) + coord_type(1)/min_valueA);
|
|
else
|
|
{
|
|
//on refuse une trop grande non-uniformite
|
|
coord_type tmp = priority (*this, c, i);
|
|
if (min_valueA <= K * tmp)
|
|
value = - min_valueP;
|
|
else
|
|
{
|
|
value = STANDBY_CANDIDATE; // tres mauvais candidat mauvaise pliure
|
|
// + grand alpha... a traiter plus tard....
|
|
min_K =
|
|
(std::min)(min_K,
|
|
min_valueA/tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
Cell_handle n = min_facet.first;
|
|
int ni1 = n->index(c->vertex(i1)), ni2 = n->index(c->vertex(i2));
|
|
|
|
return
|
|
Radius_edge_type(value, IO_edge_type(e, Edge_incident_facet
|
|
(Edge(n, ni1, ni2),
|
|
min_facet.second)));
|
|
}
|
|
|
|
//=====================================================================
|
|
// The parameter re_init is false the first time only
|
|
// Returns true, iff it found a face where the next surface can grow
|
|
bool
|
|
init(const bool& re_init)
|
|
{
|
|
init_timer.start();
|
|
Facet min_facet;
|
|
coord_type min_value = infinity();
|
|
int i1, i2, i3;
|
|
|
|
if (!re_init){
|
|
Finite_facets_iterator end = T.finite_facets_end();
|
|
for(Finite_facets_iterator facet_it = T.finite_facets_begin();
|
|
facet_it != end;
|
|
++facet_it)
|
|
{
|
|
coord_type value = priority (*this, (*facet_it).first,
|
|
(*facet_it).second);
|
|
if (value < min_value)
|
|
{
|
|
min_facet = *facet_it;
|
|
min_value = value;
|
|
}
|
|
}
|
|
}else{ //if (re_init)
|
|
Finite_facets_iterator end = T.finite_facets_end();
|
|
for(Finite_facets_iterator facet_it = T.finite_facets_begin();
|
|
facet_it != end;
|
|
++facet_it)
|
|
{
|
|
Cell_handle c = (*facet_it).first;
|
|
int index = (*facet_it).second;
|
|
if (c->vertex((index+1) & 3)->is_exterior())
|
|
if (c->vertex((index+2) & 3)->is_exterior())
|
|
if (c->vertex((index+3) & 3)->is_exterior())
|
|
{
|
|
coord_type value = priority (*this, c, index);
|
|
|
|
// we might not want the triangle, for example because it is too large
|
|
if(value == infinity()){
|
|
value = min_value;
|
|
}
|
|
|
|
if (value < min_value)
|
|
{
|
|
min_facet = *facet_it;
|
|
min_value = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (min_value != infinity())
|
|
{
|
|
Cell_handle c_min = min_facet.first;
|
|
|
|
int ind = min_facet.second;
|
|
i1 = (ind+1) & 3;
|
|
i2 = (ind+2) & 3;
|
|
i3 = (ind+3) & 3;
|
|
|
|
Radius_edge_type e12, e23, e31;
|
|
|
|
e12 = compute_value(Edge_incident_facet(Edge(c_min, i1, i2), ind));
|
|
e23 = compute_value(Edge_incident_facet(Edge(c_min, i2, i3), ind));
|
|
e31 = compute_value(Edge_incident_facet(Edge(c_min, i3, i1), ind));
|
|
|
|
IO_edge_type* p12 = set_border_elt(c_min->vertex(i1), c_min->vertex(i2),
|
|
Border_elt(e12, _number_of_border));
|
|
IO_edge_type* p23 = set_border_elt(c_min->vertex(i2), c_min->vertex(i3),
|
|
Border_elt(e23, _number_of_border));
|
|
IO_edge_type* p31 = set_border_elt(c_min->vertex(i3), c_min->vertex(i1),
|
|
Border_elt(e31, _number_of_border));
|
|
|
|
c_min->vertex(i1)->inc_mark();
|
|
c_min->vertex(i2)->inc_mark();
|
|
c_min->vertex(i3)->inc_mark();
|
|
_ordered_border.insert(Radius_ptr_type (e12.first, p12));
|
|
_ordered_border.insert(Radius_ptr_type (e23.first, p23));
|
|
_ordered_border.insert(Radius_ptr_type (e31.first, p31));
|
|
|
|
select_facet(c_min, ind);
|
|
init_timer.stop();
|
|
return true;
|
|
}
|
|
init_timer.stop();
|
|
return false;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
// test de reciprocite avant de recoller une oreille anti-singularite
|
|
int
|
|
test_merge(const Edge_like& ordered_key, const Border_elt& result,
|
|
const Vertex_handle& v, const coord_type& ear_alpha)
|
|
{
|
|
Edge_incident_facet Ifacet = result.first.second.first;
|
|
|
|
const Point& p1 = (ordered_key.first)->point();
|
|
const Point& p2 = (ordered_key.second)->point();
|
|
const Point& pc = v->point();
|
|
|
|
Cell_handle neigh = Ifacet.first.first;
|
|
int n_ind = Ifacet.second;
|
|
int n_i1 = Ifacet.first.second;
|
|
int n_i2 = Ifacet.first.third;
|
|
int n_i3 = (6 - n_ind - n_i1 - n_i2);
|
|
|
|
const Point& pn = neigh->vertex(n_i3)->point();
|
|
Vector v1 = cross_product(pc-p2,p1-p2),
|
|
v2 = cross_product(p1-p2,pn-p2);
|
|
coord_type norm = sqrt((v1*v1)*(v2*v2));
|
|
|
|
if (v1*v2 > COS_BETA*norm)
|
|
return 1; // label bonne pliure sinon:
|
|
|
|
if (ear_alpha <= K * priority(*this, neigh, n_ind))
|
|
return 2; // label alpha coherent...
|
|
|
|
return 0; //sinon oreille a rejeter...
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
ordered_map_erase(const criteria& value, const IO_edge_type* pkey)
|
|
{
|
|
_ordered_border.erase(Radius_ptr_type(value,(IO_edge_type*)pkey));
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
force_merge(const Edge_like& ordered_key, const Border_elt& result)
|
|
{
|
|
criteria value = result.first.first;
|
|
IO_edge_type* pkey = border_IO_elt(ordered_key.first, ordered_key.second);
|
|
|
|
ordered_map_erase(value, pkey);
|
|
|
|
remove_border_elt(ordered_key);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
dequeue_incidence_request(const Vertex_handle& v)
|
|
{
|
|
if (is_incidence_requested(v))
|
|
{
|
|
for(Incidence_request_iterator v_it = incidence_request_begin(v);
|
|
v_it != incidence_request_end(v);
|
|
v_it++)
|
|
{
|
|
IO_edge_type* ptr;
|
|
|
|
if (is_ordered_border_elt(v_it->second, ptr))
|
|
_ordered_border.insert(Radius_ptr_type(v_it->first, ptr));
|
|
}
|
|
erase_incidence_request(v);
|
|
}
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
merge_ear(const Edge_like& ordered_el1, const Border_elt& result1,
|
|
const Edge_like& ordered_key,
|
|
const Vertex_handle& v1, const Vertex_handle& v2,
|
|
const Edge_incident_facet& edge_Ifacet_2)
|
|
{
|
|
remove_border_elt(ordered_key);
|
|
force_merge(ordered_el1, result1);
|
|
Radius_edge_type e2 = compute_value(edge_Ifacet_2);
|
|
IO_edge_type* p2;
|
|
if (ordered_el1.first == v1)
|
|
p2 = set_border_elt(v2, ordered_el1.second,
|
|
Border_elt(e2,result1.second));
|
|
else
|
|
p2 = set_border_elt(ordered_el1.first, v2,
|
|
Border_elt(e2,result1.second));
|
|
dec_mark(v1);
|
|
|
|
_ordered_border.insert(Radius_ptr_type(e2.first, p2));
|
|
|
|
//depiler les eventuelles requettes de connections avortees... zones etoilees,
|
|
//en effet le bord a change donc on peut peut etre maintenant.
|
|
dequeue_incidence_request(v2);
|
|
if (ordered_el1.first == v1)
|
|
dequeue_incidence_request(ordered_el1.second);
|
|
else
|
|
dequeue_incidence_request(ordered_el1.first);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
border_extend(const Edge_like& ordered_key, const Border_elt& result12,
|
|
const Vertex_handle& v1, const Vertex_handle& v2,
|
|
const Vertex_handle& v3,
|
|
const Radius_edge_type& e1, const Radius_edge_type& e2,
|
|
IO_edge_type* &p1, IO_edge_type* &p2)
|
|
{
|
|
remove_border_elt(ordered_key);
|
|
|
|
//depiler v3 avant de le mettre a jour... pour reperer s'il est sur un bord
|
|
if (v3->is_on_border())
|
|
dequeue_incidence_request(v3);
|
|
|
|
if (ordered_key.first == v1)
|
|
{
|
|
p1 = set_border_elt(v1, v3, Border_elt(e1,result12.second));
|
|
p2 = set_border_elt(v3, v2, Border_elt(e2,result12.second));
|
|
}
|
|
else
|
|
{
|
|
p2 = set_border_elt(v2, v3, Border_elt(e2,result12.second));
|
|
p1 = set_border_elt(v3, v1, Border_elt(e1,result12.second));
|
|
}
|
|
|
|
v3->inc_mark();
|
|
|
|
//depiler les eventuelles requettes de connections avortees... zones etoilees,
|
|
//en effet le bord a change donc on peut peut etre maintenant.
|
|
dequeue_incidence_request(v1);
|
|
dequeue_incidence_request(v2);
|
|
}
|
|
|
|
//=====================================================================
|
|
Validation_case
|
|
validate(const Edge_incident_facet& edge_Efacet,
|
|
const criteria& value)
|
|
{
|
|
int i = (6 - edge_Efacet.second
|
|
- edge_Efacet.first.second
|
|
- edge_Efacet.first.third);
|
|
Cell_handle c = edge_Efacet.first.first;
|
|
|
|
Vertex_handle v1 = c->vertex(edge_Efacet.first.second),
|
|
v2 = c->vertex(edge_Efacet.first.third);
|
|
|
|
Edge_like ordered_el1(c->vertex(i), v1);
|
|
Edge_like ordered_el2(c->vertex(i), v2);
|
|
Border_elt result1, result2, result12;
|
|
|
|
Edge_like ordered_key(v1,v2);
|
|
|
|
if (!is_border_elt(ordered_key, result12))
|
|
std::cerr << "+++probleme coherence bord <validate>" << std::endl;
|
|
|
|
bool is_border_el1 = is_border_elt(ordered_el1, result1),
|
|
is_border_el2 = is_border_elt(ordered_el2, result2);
|
|
|
|
Radius_edge_type e1, e2;
|
|
if (c->vertex(i)->not_interior())
|
|
{
|
|
if ((!is_interior_edge(ordered_el1))&&
|
|
(!is_interior_edge(ordered_el2)))
|
|
{
|
|
//toujours utile meme avec l'essai de try_to_close_border avant
|
|
//validate pour la resolution de singularite par oreille qui elle
|
|
//doit etre dans Delaunay.
|
|
if (is_border_el1&&is_border_el2)
|
|
{
|
|
remove_border_elt(ordered_key);
|
|
force_merge(ordered_el1, result1);
|
|
force_merge(ordered_el2, result2);
|
|
|
|
dec_mark(v1);
|
|
dec_mark(v2);
|
|
dec_mark(c->vertex(i));
|
|
|
|
select_facet(c, edge_Efacet.second);
|
|
|
|
return FINAL_CASE;
|
|
}
|
|
//---------------------------------------------------------------------
|
|
//on peut alors marquer v1 et on pourrait essayer de merger
|
|
//sans faire de calcul inutile???
|
|
if (is_border_el1)
|
|
{
|
|
Edge_incident_facet edge_Ifacet_2(Edge(c, i, edge_Efacet.first.third),
|
|
edge_Efacet.second);
|
|
merge_ear(ordered_el1, result1,
|
|
ordered_key, v1, v2, edge_Ifacet_2);
|
|
|
|
select_facet(c, edge_Efacet.second);
|
|
|
|
return EAR_CASE;
|
|
}
|
|
//---------------------------------------------------------------------
|
|
//idem pour v2
|
|
if (is_border_el2)
|
|
{
|
|
Edge_incident_facet edge_Ifacet_1(Edge(c, i, edge_Efacet.first.second),
|
|
edge_Efacet.second);
|
|
merge_ear(ordered_el2, result2,
|
|
ordered_key, v2, v1, edge_Ifacet_1);
|
|
select_facet(c, edge_Efacet.second);
|
|
|
|
return EAR_CASE;
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
if ((!is_border_el1)&&(!is_border_el2))
|
|
{
|
|
// si on veut s'interdir de spliter un bord (pelure d'orange....)
|
|
// seulement c->vertex(i)->is_exterior()
|
|
// pour s'autoriser des split de bord surface a bord->sphere ou Moebius...
|
|
// alors || is_on_same_border:
|
|
// if (c->vertex(i)->is_exterior() || is_on_same_border)
|
|
// pour passer au tore (changementde type de topologie)
|
|
// recoller deux bord different...
|
|
// if (c->vertex(i)->not_interior() deja teste en haut
|
|
|
|
if(c->vertex(i)->is_exterior())
|
|
{
|
|
Edge_incident_facet edge_Ifacet_1(Edge(c, i, edge_Efacet.first.second),
|
|
edge_Efacet.second);
|
|
|
|
Edge_incident_facet edge_Ifacet_2(Edge(c, i, edge_Efacet.first.third),
|
|
edge_Efacet.second);
|
|
e1 = compute_value(edge_Ifacet_1);
|
|
e2 = compute_value(edge_Ifacet_2);
|
|
|
|
IO_edge_type* p1;
|
|
IO_edge_type* p2;
|
|
|
|
border_extend(ordered_key, result12,
|
|
v1, v2, c->vertex(i),
|
|
e1, e2, p1, p2);
|
|
|
|
// if e1 contain infinity there is no candidates to
|
|
// continue: compute_value is not valid...
|
|
|
|
_ordered_border.insert(Radius_ptr_type(e1.first, p1));
|
|
|
|
_ordered_border.insert(Radius_ptr_type(e2.first, p2));
|
|
|
|
select_facet(c, edge_Efacet.second);
|
|
|
|
return EXTERIOR_CASE;
|
|
}
|
|
else // c->vertex(i) is a border point (and now there's only 1
|
|
// border incident to a point... _mark<1 even if th orientation
|
|
// may be such as one vh has 2 successorson the same border...
|
|
{
|
|
// a ce niveau on peut tester si le recollement se fait en
|
|
// maintenant la compatibilite d'orientation des bords (pour
|
|
// surface orientable...) ou si elle est brisee...
|
|
Edge_incident_facet edge_Ifacet_1(Edge(c, i, edge_Efacet.first.second),
|
|
edge_Efacet.second);
|
|
Edge_incident_facet edge_Ifacet_2(Edge(c, i, edge_Efacet.first.third),
|
|
edge_Efacet.second);
|
|
|
|
e1 = compute_value(edge_Ifacet_1);
|
|
e2 = compute_value(edge_Ifacet_2);
|
|
|
|
if ((e1.first >= STANDBY_CANDIDATE)&&(e2.first >= STANDBY_CANDIDATE))
|
|
return NOT_VALID_CONNECTING_CASE;
|
|
|
|
// vu compute value: les candidats oreilles fournis sont sans
|
|
// aretes interieures et le sommet oppose n'est pas non plus interieur
|
|
Edge_incident_facet ear1 = e1.second.second;
|
|
Edge_incident_facet ear2 = e2.second.second;
|
|
|
|
int ear1_i = (6 - ear1.second
|
|
- ear1.first.second
|
|
- ear1.first.third);
|
|
Cell_handle ear1_c = ear1.first.first;
|
|
Border_elt result_ear1;
|
|
|
|
int ear2_i = (6 - ear2.second
|
|
- ear2.first.second
|
|
- ear2.first.third);
|
|
Cell_handle ear2_c = ear2.first.first;
|
|
Border_elt result_ear2;
|
|
|
|
Edge_like ear1_e, ear2_e;
|
|
// pour maintenir la reconstruction d'une surface orientable :
|
|
// on verifie que les bords se recollent dans des sens opposes
|
|
if (ordered_key.first==v1)
|
|
{
|
|
ear1_e = Edge_like(c->vertex(i), ear1_c ->vertex(ear1_i));
|
|
ear2_e = Edge_like(ear2_c ->vertex(ear2_i), c->vertex(i));
|
|
}
|
|
else
|
|
{
|
|
ear1_e = Edge_like(ear1_c ->vertex(ear1_i), c->vertex(i));
|
|
ear2_e = Edge_like(c->vertex(i), ear2_c ->vertex(ear2_i));
|
|
}
|
|
|
|
//maintient la surface orientable
|
|
bool is_border_ear1 = is_ordered_border_elt(ear1_e, result_ear1);
|
|
bool is_border_ear2 = is_ordered_border_elt(ear2_e, result_ear2);
|
|
bool ear1_valid(false), ear2_valid(false);
|
|
if (is_border_ear1&&(e1.first < STANDBY_CANDIDATE)&&
|
|
(e1.first <= value)&&
|
|
(result12.second==result_ear1.second))
|
|
{
|
|
ear1_valid = test_merge(ear1_e, result_ear1, v1,
|
|
priority(*this, ear1_c, ear1.second)) != 0;
|
|
}
|
|
if (is_border_ear2&&(e2.first < STANDBY_CANDIDATE)&&
|
|
(e2.first <= value)&&
|
|
(result12.second==result_ear2.second))
|
|
{
|
|
ear2_valid = test_merge(ear2_e, result_ear2, v2,
|
|
priority(*this, ear2_c, ear2.second)) != 0;
|
|
}
|
|
if ((!ear1_valid)&&(!ear2_valid))
|
|
return NOT_VALID_CONNECTING_CASE;
|
|
|
|
IO_edge_type* p1;
|
|
IO_edge_type* p2;
|
|
|
|
border_extend(ordered_key, result12,
|
|
v1, v2, c->vertex(i),
|
|
e1, e2, p1, p2);
|
|
|
|
if (ear1_valid&&ear2_valid&&(ear1_e==ear2_e))
|
|
{
|
|
if (e1.first < e2.first)
|
|
{
|
|
Validation_case res = validate(ear1, e1.first);
|
|
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
|
|
std::cerr << "+++probleme de recollement : cas "
|
|
<< res << std::endl;
|
|
e2 = compute_value(edge_Ifacet_2);
|
|
|
|
if (ordered_key.first == v1)
|
|
p2 = set_again_border_elt(c->vertex(i), v2,
|
|
Border_elt(e2, result2.second));
|
|
else
|
|
p2 = set_again_border_elt(v2, c->vertex(i),
|
|
Border_elt(e2, result2.second));
|
|
|
|
_ordered_border.insert(Radius_ptr_type(e2.first, p2));
|
|
}
|
|
else
|
|
{
|
|
Validation_case res = validate(ear2, e2.first);
|
|
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
|
|
std::cerr << "+++probleme de recollement : cas "
|
|
<< res << std::endl;
|
|
e1 = compute_value(edge_Ifacet_1);
|
|
|
|
if (ordered_key.first == v1)
|
|
p1 = set_again_border_elt(v1, c->vertex(i),
|
|
Border_elt(e1, result1.second));
|
|
else
|
|
p1 = set_again_border_elt(c->vertex(i), v1,
|
|
Border_elt(e1, result1.second));
|
|
|
|
_ordered_border.insert(Radius_ptr_type(e1.first, p1));
|
|
}
|
|
}
|
|
else// les deux oreilles ne se recollent pas sur la meme arete...
|
|
{
|
|
// on resoud la singularite.
|
|
if (ear1_valid)
|
|
{
|
|
Validation_case res = validate(ear1, e1.first);
|
|
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
|
|
std::cerr << "+++probleme de recollement : cas "
|
|
<< res << std::endl;
|
|
}
|
|
if (ear2_valid)
|
|
{
|
|
Validation_case res = validate(ear2, e2.first);
|
|
if (!((res == EAR_CASE)||(res == FINAL_CASE)))
|
|
std::cerr << "+++probleme de recollement : cas "
|
|
<< res << std::endl;
|
|
}
|
|
// on met a jour la PQ s'il y a lieu... mais surtout pas
|
|
// avant la resolution de la singularite
|
|
if (!ear1_valid)
|
|
{
|
|
_ordered_border.insert(Radius_ptr_type(e1.first, p1));
|
|
}
|
|
if (!ear2_valid)
|
|
{
|
|
_ordered_border.insert(Radius_ptr_type(e2.first, p2));
|
|
}
|
|
}
|
|
select_facet(c, edge_Efacet.second);
|
|
return CONNECTING_CASE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return NOT_VALID;
|
|
}
|
|
|
|
//=====================================================================
|
|
void
|
|
re_compute_values()
|
|
{
|
|
if(!_ordered_border.empty())
|
|
{
|
|
Ordered_border_type _ordered_border_tmp;
|
|
do
|
|
{
|
|
Ordered_border_iterator e_it = _ordered_border.begin();
|
|
Edge_incident_facet mem_Ifacet = e_it->second->first;
|
|
Cell_handle c_tmp = mem_Ifacet.first.first;
|
|
_ordered_border.erase(e_it);
|
|
Vertex_handle v1 = c_tmp->vertex(mem_Ifacet.first.second);
|
|
Vertex_handle v2 = c_tmp->vertex(mem_Ifacet.first.third);
|
|
|
|
Radius_edge_type new_candidate;
|
|
new_candidate = compute_value(mem_Ifacet);
|
|
|
|
if (new_candidate.first == STANDBY_CANDIDATE)
|
|
{
|
|
// a garder pour un K un peu plus grand...
|
|
new_candidate.first = STANDBY_CANDIDATE_BIS;
|
|
}
|
|
|
|
Border_elt result;
|
|
Edge_like key_tmp(v1,v2);
|
|
is_border_elt(key_tmp, result);
|
|
IO_edge_type* pnew =
|
|
set_again_border_elt(key_tmp.first, key_tmp.second,
|
|
Border_elt (new_candidate, result.second));
|
|
_ordered_border_tmp.insert(Radius_ptr_type(new_candidate.first, pnew));
|
|
}
|
|
while(!_ordered_border.empty());
|
|
|
|
_ordered_border.swap(_ordered_border_tmp);
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
extend()
|
|
{
|
|
// initilisation de la variable globale K: qualite d'echantillonnage requise
|
|
K = K_init; // valeur d'initialisation de K pour commencer prudemment...
|
|
|
|
Vertex_handle v1, v2;
|
|
if (_ordered_border.empty()){
|
|
return;
|
|
}
|
|
do
|
|
{
|
|
min_K = infinity(); // pour retenir le prochain K necessaire pour progresser...
|
|
do
|
|
{
|
|
|
|
Ordered_border_iterator e_it = _ordered_border.begin();
|
|
|
|
criteria value = e_it->first;
|
|
if (value >= STANDBY_CANDIDATE)
|
|
re_compute_values();
|
|
else
|
|
{
|
|
Edge_incident_facet candidate = e_it->second->second;
|
|
Cell_handle c_ext = candidate.first.first;
|
|
int i1, i2 , i3;
|
|
i1 = candidate.first.second;
|
|
i2 = candidate.first.third;
|
|
i3 = (6 - i1- i2 - candidate.second);
|
|
|
|
Edge_incident_facet mem_Ifacet = e_it->second->first;
|
|
Cell_handle c_tmp = mem_Ifacet.first.first;
|
|
|
|
v1 = c_tmp->vertex(mem_Ifacet.first.second);
|
|
v2 = c_tmp->vertex(mem_Ifacet.first.third);
|
|
|
|
Radius_edge_type mem_e_it(e_it->first, *e_it->second);
|
|
|
|
_ordered_border.erase(e_it);
|
|
Validation_case validate_result = validate(candidate, value);
|
|
if ((validate_result == NOT_VALID)||
|
|
(validate_result == NOT_VALID_CONNECTING_CASE))
|
|
{
|
|
Radius_edge_type new_candidate;
|
|
Border_elt result;
|
|
Edge_like key_tmp(v1,v2);
|
|
is_border_elt(key_tmp, result);
|
|
|
|
if (validate_result == NOT_VALID_CONNECTING_CASE)
|
|
set_incidence_request(c_ext->vertex(i3), value, key_tmp);
|
|
|
|
if (validate_result == NOT_VALID)
|
|
{
|
|
new_candidate = compute_value(mem_Ifacet);
|
|
if ((new_candidate != mem_e_it))
|
|
// &&(new_candidate.first < NOT_VALID_CANDIDATE))
|
|
{
|
|
IO_edge_type* pnew =
|
|
set_again_border_elt(key_tmp.first, key_tmp.second,
|
|
Border_elt (new_candidate, result.second));
|
|
_ordered_border.insert(Radius_ptr_type(new_candidate.first,
|
|
pnew));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while((!_ordered_border.empty())&&
|
|
(_ordered_border.begin()->first < STANDBY_CANDIDATE_BIS));
|
|
|
|
K += (std::max)(K_step, min_K - K + eps);
|
|
// on augmente progressivement le K mais on a deja rempli sans
|
|
// faire des betises auparavant...
|
|
}
|
|
while((!_ordered_border.empty())&&(K <= K)&&(min_K != infinity()));
|
|
|
|
#ifdef VERBOSE
|
|
if ((min_K < infinity())&&(!_ordered_border.empty())) {
|
|
std::cout << " [ next K required = " << min_K << " ]" << std::endl;
|
|
}
|
|
#endif // VERBOSE
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
// En principe, si l'allocateur de cellules etait bien fait on aurait pas besoin
|
|
// de mettre a jour les valeurs rajoutees pour les cellules a la main...
|
|
|
|
void
|
|
re_init_for_free_cells_cache(const Vertex_handle& vh)
|
|
{
|
|
std::list<Cell_handle> ch_set;
|
|
T.incident_cells(vh, std::back_inserter(ch_set));
|
|
for (typename std::list<Cell_handle>::iterator c_it = ch_set.begin();
|
|
c_it != ch_set.end();
|
|
c_it++)
|
|
(*c_it)->clear();
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
swap_selected_facets_on_conflict_boundary(const Vertex_handle& vh)
|
|
{
|
|
std::list<Cell_handle> ch_set;
|
|
T.incident_cells(vh, std::back_inserter(ch_set));
|
|
for (typename std::list<Cell_handle>::iterator c_it = ch_set.begin();
|
|
c_it != ch_set.end(); c_it++)
|
|
{
|
|
Cell_handle c = *c_it;
|
|
int index = c->index(vh);
|
|
Cell_handle neigh = c->neighbor(index);
|
|
int n_ind = neigh->index(c);
|
|
neigh->set_smallest_radius(n_ind, -1); // pour obliger le recalcul
|
|
// si c est selectionnee c'est qu'elle est aussi le mem_IFacet renvoye par
|
|
// compute_value... donc a swapper aussi
|
|
if (c->is_selected_facet(index))
|
|
{
|
|
int fn = c->facet_number(index);
|
|
unselect_facet(c, index);
|
|
neigh->select_facet(n_ind);
|
|
neigh->set_facet_number(n_ind, fn);
|
|
int i1 = (n_ind+1) & 3;
|
|
int i2 = (n_ind+2) & 3;
|
|
int i3 = (n_ind+3) & 3;
|
|
Edge_like key(neigh->vertex(i1), neigh->vertex(i2));
|
|
|
|
if (is_border_elt(key))
|
|
{
|
|
Edge_incident_facet ei_facet(Edge(neigh, i1, i2),
|
|
n_ind);
|
|
*border_IO_elt(key.first, key.second) =
|
|
IO_edge_type(ei_facet, ei_facet);
|
|
}
|
|
key = Edge_like(neigh->vertex(i1), neigh->vertex(i3));
|
|
if (is_border_elt(key))
|
|
{
|
|
Edge_incident_facet ei_facet(Edge(neigh, i1, i3),
|
|
n_ind);
|
|
*border_IO_elt(key.first, key.second) =
|
|
IO_edge_type(ei_facet, ei_facet);
|
|
}
|
|
key = Edge_like(neigh->vertex(i3), neigh->vertex(i2));
|
|
if (is_border_elt(key))
|
|
{
|
|
Edge_incident_facet ei_facet(Edge(neigh, i3, i2),
|
|
n_ind);
|
|
*border_IO_elt(key.first, key.second) =
|
|
IO_edge_type(ei_facet, ei_facet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
Facet
|
|
next_surface_facet(const Edge_incident_facet& start)
|
|
{
|
|
Edge_incident_facet circ = next(start);
|
|
Cell_handle c = start.first.first;
|
|
do
|
|
{
|
|
Cell_handle ch = circ.first.first;
|
|
int ind = circ.second;
|
|
Cell_handle neigh = ch->neighbor(ind);
|
|
int n_ind = neigh->index(ch);
|
|
if (ch->is_selected_facet(ind)){
|
|
return Facet(ch, ind);
|
|
}
|
|
if (neigh->is_selected_facet(n_ind)){
|
|
return Facet(neigh, n_ind);
|
|
}
|
|
circ = next(circ);
|
|
}
|
|
while(circ.first.first != c);
|
|
// si on passe par la, alors y a eu un probleme....
|
|
std::cerr << "+++probleme dans la MAJ avant remove..." << std::endl;
|
|
return Facet(c, start.second);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
retract_border_for_incident_facets(const Vertex_handle& vh)
|
|
{
|
|
Next_border_elt border_elt = *(vh->first_incident());
|
|
int border_index = border_elt.second.second;
|
|
Vertex_handle vh_succ = border_elt.first;
|
|
IO_edge_type io_edge = border_elt.second.first.second;
|
|
Edge_incident_facet i_facet = io_edge.first;
|
|
Cell_handle c = i_facet.first.first;
|
|
int i1 = c->index(vh);
|
|
int i2 = c->index(vh_succ);
|
|
int index = i_facet.second;
|
|
int i3 = 6 - index - i1 - i2;
|
|
Vertex_handle vh_int = c->vertex(i3);
|
|
ordered_map_erase(border_elt.second.first.first,
|
|
border_IO_elt(vh, vh_succ));
|
|
remove_border_edge(vh, vh_succ);
|
|
// 1- a virer au cas ou car vh va etre detruit
|
|
remove_interior_edge(vh_succ, vh);
|
|
bool while_cond(true);
|
|
do
|
|
{
|
|
_facet_number--;
|
|
|
|
CGAL_assertion(c->is_selected_facet(index));
|
|
unselect_facet(c, index);
|
|
|
|
Facet f32 =
|
|
next_surface_facet(Edge_incident_facet(Edge(c, i3, i2),
|
|
index));
|
|
|
|
if (!vh_int->is_on_border())
|
|
{
|
|
re_init(vh_int);
|
|
vh_int->inc_mark();
|
|
}
|
|
|
|
Edge_incident_facet e32(Edge(f32.first,
|
|
f32.first->index(vh_int),
|
|
f32.first->index(vh_succ)), f32.second);
|
|
Radius_edge_type rad_elt_32(STANDBY_CANDIDATE, IO_edge_type(e32, e32));
|
|
Border_elt result;
|
|
if (is_ordered_border_elt(Edge_like(vh_int, vh), result))
|
|
{
|
|
ordered_map_erase(result.first.first, border_IO_elt(vh_int, vh));
|
|
remove_border_edge(vh_int, vh);
|
|
// 1- a virer au cas ou car vh va etre detruit
|
|
remove_interior_edge(vh_int, vh);
|
|
while_cond = false;
|
|
}
|
|
// a titre preventif... on essaye de s'assurer de marquer les aretes
|
|
// interieures au sens large...
|
|
|
|
// 2- a virer a tout pris pour que maintenir le sens de interior edge
|
|
remove_interior_edge(vh_int, vh_succ);
|
|
remove_interior_edge(vh_succ, vh_int);
|
|
|
|
IO_edge_type* p32 = set_border_elt(vh_int, vh_succ,
|
|
Border_elt(rad_elt_32, border_index));
|
|
_ordered_border.insert(Radius_ptr_type (STANDBY_CANDIDATE, p32));
|
|
|
|
// incrementation...
|
|
if (while_cond)
|
|
{
|
|
Facet f31 =
|
|
next_surface_facet(Edge_incident_facet(Edge(c, i3, i1),
|
|
index));
|
|
|
|
c = f31.first;
|
|
index = f31.second;
|
|
i1 = c->index(vh);
|
|
vh_succ = vh_int;
|
|
i2 = c->index(vh_int);
|
|
i3 = 6 - index - i1 - i2;
|
|
vh_int = c->vertex(i3);
|
|
}
|
|
}
|
|
while(while_cond);
|
|
}
|
|
|
|
//---------------------------------------------------------------------
|
|
bool
|
|
create_singularity(const Vertex_handle& vh)
|
|
{
|
|
// Pour reperer le cas de triangle isole
|
|
if (vh->is_on_border())
|
|
{
|
|
// vh sommet 0
|
|
Next_border_elt border_elt = *(vh->first_incident());
|
|
Vertex_handle vh_1 = border_elt.first;// sommet 1
|
|
border_elt = *(vh_1->first_incident());
|
|
Vertex_handle vh_2 = border_elt.first;// sommet 2
|
|
border_elt = *(vh_2->first_incident());
|
|
Vertex_handle vh_3 = border_elt.first;// sommet 0 ???
|
|
Cell_handle c;
|
|
int i, j, k;
|
|
if ((vh_3 == vh)&&(T.is_facet(vh, vh_1, vh_2, c, i ,j ,k)))
|
|
{
|
|
int l = 6-i-j-k;
|
|
Cell_handle neigh = c->neighbor(l);
|
|
|
|
if
|
|
(c->is_selected_facet(l)||neigh->is_selected_facet(neigh->index(c)))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
// Reperer le cas d'aretes interieures...
|
|
std::list<Vertex_handle> vh_list;
|
|
T.incident_vertices(vh, std::back_inserter(vh_list));
|
|
|
|
for (typename std::list<Vertex_handle>::iterator v_it = vh_list.begin();
|
|
v_it != vh_list.end(); v_it++)
|
|
if ((*v_it)->is_on_border() && is_interior_edge(Edge_like(vh, *v_it)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
store_outlier(const Point& p){
|
|
m_outliers.push_back(p);
|
|
}
|
|
|
|
|
|
void dec_vh_number()
|
|
{
|
|
_vh_number--;
|
|
}
|
|
|
|
|
|
struct Remove : public CGAL::cpp98::unary_function<Vertex_handle, bool>
|
|
{
|
|
|
|
Extract& E;
|
|
Triangulation_3& T;
|
|
|
|
Remove(Extract& E_, Triangulation_3& T_) : E(E_), T(T_) {}
|
|
|
|
bool operator()(Vertex_handle vh) {
|
|
if (vh->is_exterior())
|
|
{
|
|
E.swap_selected_facets_on_conflict_boundary(vh);
|
|
E.re_init_for_free_cells_cache(vh);
|
|
Point p = vh->point();
|
|
T.remove(vh);
|
|
E.dec_vh_number();
|
|
E.store_outlier(p);
|
|
|
|
return true;
|
|
}
|
|
else if (vh->is_on_border()&&(!E.create_singularity(vh)))
|
|
{
|
|
E.swap_selected_facets_on_conflict_boundary(vh);
|
|
E.retract_border_for_incident_facets(vh);
|
|
E.re_init_for_free_cells_cache(vh);
|
|
Point p = vh->point();
|
|
T.remove(vh);
|
|
E.dec_vh_number();
|
|
E.store_outlier(p);
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{ }
|
|
return false;
|
|
}
|
|
};
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
bool
|
|
postprocessing()
|
|
{
|
|
postprocess_timer.start();
|
|
|
|
_postprocessing_counter++;
|
|
|
|
std::list<Vertex_handle> L_v;
|
|
|
|
// Pour controler les sommets choisis sur le bord...
|
|
|
|
// nombre d'aretes a partir duquel on considere que c'est irrecuperable NB_BORDER_MAX
|
|
|
|
int vh_on_border_inserted(0);
|
|
for(Finite_vertices_iterator v_it = T.finite_vertices_begin();
|
|
v_it != T.finite_vertices_end();
|
|
v_it++)
|
|
{
|
|
erase_incidence_request(v_it);
|
|
if ((v_it->is_on_border())&&
|
|
(!v_it->is_post_marked(_postprocessing_counter)))
|
|
{
|
|
std::list<Vertex_handle> L_v_tmp;
|
|
Vertex_handle vprev_it(v_it), done(vprev_it), vh_it;
|
|
// Vertex_handle vsucc_it;
|
|
int v_count(0);
|
|
// collect all vertices on the border
|
|
do
|
|
{
|
|
vh_it = vprev_it->first_incident()->first;
|
|
L_v_tmp.push_back(vh_it);
|
|
vh_it->set_post_mark(_postprocessing_counter);
|
|
vprev_it = vh_it;
|
|
v_count++;
|
|
}
|
|
while((vprev_it != done)&&(v_count < NB_BORDER_MAX));
|
|
// we stopped either because we did a complete tour, or because
|
|
// the border was so long that we consider it as too big to close
|
|
// e.g., if it is a terrain with only one real border at the exterior
|
|
if (v_count < NB_BORDER_MAX)
|
|
{
|
|
L_v.insert(L_v.begin(), L_v_tmp.begin(), L_v_tmp.end());
|
|
vh_on_border_inserted += v_count;
|
|
}
|
|
|
|
}
|
|
if (v_it->is_exterior())
|
|
L_v.push_back(v_it);
|
|
}
|
|
|
|
std::size_t itmp, L_v_size_mem;
|
|
L_v_size_mem = L_v.size();
|
|
if ((vh_on_border_inserted != 0)&& // pour ne post-traiter que les bords
|
|
(L_v.size() < .1 * _size_before_postprocessing))
|
|
{
|
|
{
|
|
do
|
|
{
|
|
itmp = L_v.size();
|
|
typename std::list<Vertex_handle>::iterator new_end =
|
|
std::remove_if(L_v.begin(), L_v.end(), Remove(*this,T));
|
|
L_v.erase(new_end, L_v.end());
|
|
}
|
|
while (!L_v.empty() && (L_v.size() < itmp));
|
|
}
|
|
#ifdef VERBOSE
|
|
if(L_v.size() > 0){
|
|
std::cout << " " << L_v.size() << " non regular points." << std::endl;
|
|
}
|
|
#endif // VERBOSE
|
|
re_compute_values();
|
|
}
|
|
else{
|
|
postprocess_timer.stop();
|
|
return false;
|
|
}
|
|
// we stop if we removed more than 10% of points or after 20 rounds
|
|
if ((L_v_size_mem == L_v.size())||
|
|
((_size_before_postprocessing - T.number_of_vertices()) >
|
|
.1 * _size_before_postprocessing)||
|
|
(_postprocessing_counter > 20)){
|
|
postprocess_timer.stop();
|
|
return false;
|
|
}
|
|
|
|
min_K = infinity();
|
|
// fin--
|
|
// if (_postprocessing_counter < 5)
|
|
// return true;
|
|
postprocess_timer.stop();
|
|
return true;
|
|
}
|
|
|
|
}; // class Advancing_front_surface_reconstruction
|
|
|
|
namespace AFSR {
|
|
|
|
template <typename T>
|
|
struct Auto_count : public CGAL::cpp98::unary_function<const T&,std::pair<T,std::size_t> >{
|
|
mutable std::size_t i;
|
|
|
|
Auto_count()
|
|
: i(0)
|
|
{}
|
|
|
|
std::pair<T,std::size_t> operator()(const T& p) const {
|
|
return std::make_pair(p,i++);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename CC>
|
|
struct Auto_count_cc : public CGAL::cpp98::unary_function<const T&,std::pair<T,std::size_t> >{
|
|
mutable std::size_t i;
|
|
CC cc;
|
|
|
|
Auto_count_cc(CC cc)
|
|
: i(0), cc(cc)
|
|
{}
|
|
|
|
template <typename T2>
|
|
std::pair<T,std::size_t> operator()(const T2& p) const {
|
|
return std::make_pair(cc(p),i++);
|
|
}
|
|
};
|
|
}
|
|
|
|
/*!
|
|
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
|
|
|
For a sequence of points computes a sequence of index triples
|
|
describing the faces of the reconstructed surface.
|
|
|
|
\tparam PointInputIterator must be an input iterator with 3D points as value type. This point type must
|
|
be convertible to `Exact_predicates_inexact_constructions_kernel::Point_3` with the `Cartesian_converter`.
|
|
\tparam IndicesOutputIterator must be an output iterator to which
|
|
`CGAL::cpp11::array<std::size_t, 3>` can be assigned.
|
|
|
|
\param b iterator on the first point of the sequence
|
|
\param e past the end iterator of the point sequence
|
|
\param out output iterator
|
|
\param radius_ratio_bound candidates incident to surface triangles which are not in the beta-wedge
|
|
are discarded, if the ratio of their radius and the radius of the surface triangle is larger than `radius_ratio_bound`.
|
|
Described in Section \ref AFSR_Boundaries
|
|
\param beta half the angle of the wedge in which only the radius of triangles counts for the plausibility of candidates.
|
|
Described in Section \ref AFSR_Selection
|
|
|
|
*/
|
|
template <typename PointInputIterator, typename IndicesOutputIterator>
|
|
IndicesOutputIterator
|
|
advancing_front_surface_reconstruction(PointInputIterator b,
|
|
PointInputIterator e,
|
|
IndicesOutputIterator out,
|
|
double radius_ratio_bound = 5,
|
|
double beta = 0.52 )
|
|
{
|
|
typedef Exact_predicates_inexact_constructions_kernel Kernel;
|
|
typedef Advancing_front_surface_reconstruction_vertex_base_3<Kernel> LVb;
|
|
typedef Advancing_front_surface_reconstruction_cell_base_3<Kernel> LCb;
|
|
|
|
typedef Triangulation_data_structure_3<LVb,LCb> Tds;
|
|
typedef Delaunay_triangulation_3<Kernel,Tds> Triangulation_3;
|
|
|
|
typedef Advancing_front_surface_reconstruction<Triangulation_3> Reconstruction;
|
|
typedef typename std::iterator_traits<PointInputIterator>::value_type InputPoint;
|
|
typedef typename Kernel_traits<InputPoint>::Kernel InputKernel;
|
|
typedef Cartesian_converter<InputKernel,Kernel> CC;
|
|
typedef Kernel::Point_3 Point_3;
|
|
|
|
CC cc=CC();
|
|
Triangulation_3 dt( boost::make_transform_iterator(b, AFSR::Auto_count_cc<Point_3,CC>(cc)),
|
|
boost::make_transform_iterator(e, AFSR::Auto_count_cc<Point_3,CC>(cc) ) );
|
|
|
|
Reconstruction R(dt);
|
|
R.run(radius_ratio_bound, beta);
|
|
write_triple_indices(out, R);
|
|
return out;
|
|
}
|
|
|
|
/*!
|
|
\ingroup PkgAdvancingFrontSurfaceReconstruction
|
|
|
|
For a sequence of points computes a sequence of index triples
|
|
describing the faces of the reconstructed surface.
|
|
|
|
\tparam PointInputIterator must be an input iterator with 3D points as value type. This point type must
|
|
be convertible to `Exact_predicates_inexact_constructions_kernel::Point_3` with the `Cartesian_converter`.
|
|
\tparam IndicesOutputIterator must be an output iterator to which
|
|
`CGAL::cpp11::array<std::size_t, 3>` can be assigned.
|
|
\tparam Priority must be a functor with `double operator()(AdvancingFront,Cell_handle,int)` returning the
|
|
priority of the facet `(Cell_handle,int)`.
|
|
|
|
\param b iterator on the first point of the sequence
|
|
\param e past the end iterator of the point sequence
|
|
\param out output iterator
|
|
\param radius_ratio_bound candidates incident to surface triangles which are not in the beta-wedge
|
|
are discarded, if the ratio of their radius and the radius of the surface triangle is larger than `radius_ratio_bound`.
|
|
Described in Section \ref AFSR_Boundaries
|
|
\param beta half the angle of the wedge in which only the radius of triangles counts for the plausibility of candidates.
|
|
Described in Section \ref AFSR_Selection
|
|
\param priority allows the user to choose how candidate triangles are prioritized.
|
|
|
|
*/
|
|
template <typename PointInputIterator, typename IndicesOutputIterator, typename Priority>
|
|
IndicesOutputIterator
|
|
advancing_front_surface_reconstruction(PointInputIterator b,
|
|
PointInputIterator e,
|
|
IndicesOutputIterator out,
|
|
Priority priority,
|
|
double radius_ratio_bound = 5,
|
|
double beta = 0.52 )
|
|
{
|
|
typedef Exact_predicates_inexact_constructions_kernel Kernel;
|
|
typedef Advancing_front_surface_reconstruction_vertex_base_3<Kernel> LVb;
|
|
typedef Advancing_front_surface_reconstruction_cell_base_3<Kernel> LCb;
|
|
|
|
typedef Triangulation_data_structure_3<LVb,LCb> Tds;
|
|
typedef Delaunay_triangulation_3<Kernel,Tds> Triangulation_3;
|
|
|
|
typedef Advancing_front_surface_reconstruction<Triangulation_3,Priority> Reconstruction;
|
|
typedef typename std::iterator_traits<PointInputIterator>::value_type InputPoint;
|
|
typedef typename Kernel_traits<InputPoint>::Kernel InputKernel;
|
|
typedef Cartesian_converter<InputKernel,Kernel> CC;
|
|
typedef Kernel::Point_3 Point_3;
|
|
|
|
CC cc=CC();
|
|
Triangulation_3 dt( boost::make_transform_iterator(b, AFSR::Auto_count_cc<Point_3,CC>(cc)),
|
|
boost::make_transform_iterator(e, AFSR::Auto_count_cc<Point_3,CC>(cc) ) );
|
|
|
|
Reconstruction R(dt, priority);
|
|
R.run(radius_ratio_bound, beta);
|
|
write_triple_indices(out, R);
|
|
return out;
|
|
}
|
|
|
|
|
|
template <typename PointInputIterator, typename Kernel, typename Items, template < class T, class I, class A> class HDS, typename Alloc,typename Priority>
|
|
void
|
|
advancing_front_surface_reconstruction(PointInputIterator b,
|
|
PointInputIterator e,
|
|
Polyhedron_3<Kernel,Items,HDS,Alloc>& polyhedron,
|
|
Priority priority,
|
|
double radius_ratio_bound = 5,
|
|
double beta = 0.52)
|
|
{
|
|
typedef Advancing_front_surface_reconstruction_vertex_base_3<Kernel> LVb;
|
|
typedef Advancing_front_surface_reconstruction_cell_base_3<Kernel> LCb;
|
|
|
|
typedef Triangulation_data_structure_3<LVb,LCb> Tds;
|
|
typedef Delaunay_triangulation_3<Kernel,Tds> Triangulation_3;
|
|
|
|
typedef Advancing_front_surface_reconstruction<Triangulation_3,Priority> Reconstruction;
|
|
typedef typename std::iterator_traits<PointInputIterator>::value_type InputPoint;
|
|
typedef typename Kernel_traits<InputPoint>::Kernel InputKernel;
|
|
typedef Cartesian_converter<InputKernel,Kernel> CC;
|
|
typedef typename Kernel::Point_3 Point_3;
|
|
|
|
CC cc=CC();
|
|
Triangulation_3 dt( boost::make_transform_iterator(b, AFSR::Auto_count_cc<Point_3,CC>(cc)),
|
|
boost::make_transform_iterator(e, AFSR::Auto_count_cc<Point_3,CC>(cc) ) );
|
|
|
|
Reconstruction R(dt, priority);
|
|
R.run(radius_ratio_bound, beta);
|
|
AFSR::construct_polyhedron(polyhedron, R);
|
|
}
|
|
|
|
|
|
template <typename PointInputIterator, typename Kernel, typename Items, template < class T, class I, class A> class HDS, typename Alloc>
|
|
void
|
|
advancing_front_surface_reconstruction(PointInputIterator b,
|
|
PointInputIterator e,
|
|
Polyhedron_3<Kernel,Items,HDS,Alloc>& polyhedron,
|
|
double radius_ratio_bound = 5,
|
|
double beta = 0.52)
|
|
{
|
|
typedef Advancing_front_surface_reconstruction_vertex_base_3<Kernel> LVb;
|
|
typedef Advancing_front_surface_reconstruction_cell_base_3<Kernel> LCb;
|
|
|
|
typedef Triangulation_data_structure_3<LVb,LCb> Tds;
|
|
typedef Delaunay_triangulation_3<Kernel,Tds> Triangulation_3;
|
|
|
|
typedef Advancing_front_surface_reconstruction<Triangulation_3> Reconstruction;
|
|
typedef typename std::iterator_traits<PointInputIterator>::value_type InputPoint;
|
|
typedef typename Kernel_traits<InputPoint>::Kernel InputKernel;
|
|
typedef Cartesian_converter<InputKernel,Kernel> CC;
|
|
typedef typename Kernel::Point_3 Point_3;
|
|
CC cc=CC();
|
|
Triangulation_3 dt( boost::make_transform_iterator(b, AFSR::Auto_count_cc<Point_3,CC>(cc)),
|
|
boost::make_transform_iterator(e, AFSR::Auto_count_cc<Point_3,CC>(cc) ) );
|
|
|
|
Reconstruction R(dt);
|
|
R.run(radius_ratio_bound, beta);
|
|
AFSR::construct_polyhedron(polyhedron, R);
|
|
}
|
|
|
|
|
|
|
|
} // namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_ADVANCING_FRONT_SURFACE_RECONSTRUCTION_H
|