dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Euler_integrator_2.h

120 lines
3.7 KiB
C++
Executable File

// Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Abdelkrim Mebarki <Abdelkrim.Mebarki@sophia.inria.fr>
#ifndef CGAL_EULER_INTEGRATOR_2_H_
#define CGAL_EULER_INTEGRATOR_2_H_
#include <CGAL/license/Stream_lines_2.h>
#include <CGAL/basic.h>
namespace CGAL {
// The class Euler_integrator_2 is a model of the concept Integrator
template <class VectorField_2>
class Euler_integrator_2
{
public:
typedef Euler_integrator_2<VectorField_2> self;
typedef typename VectorField_2::FT FT;
typedef typename VectorField_2::Point_2 Point_2;
typedef typename VectorField_2::Vector_2 Vector_2;
typedef typename VectorField_2::Vector_field_2 Vector_field_2;
protected:
FT default_integration_step;
public:
Euler_integrator_2();
Euler_integrator_2(const FT & integration_step);
inline Point_2 operator()(const Point_2 & p, const Vector_field_2 &
vector_field_2, const bool & index) const;
inline Point_2 operator()(const Point_2 & p, const Vector_field_2 &
vector_field_2, const FT &
integration_step, const bool & index)
const;
inline Point_2 operator()(const Point_2 & p, const Vector_field_2 &
vector_field_2, const FT &
integration_step, Vector_2 v, const bool &
index) const;
inline FT get_default_integration_step()
{
return default_integration_step;
}
// just for debugging
inline FT distance(const Point_2 & p, const Point_2 & q)
{
return sqrt(((p.x() - q.x())*(p.x() - q.x()))+((p.y() - q.y())*(p.y() - q.y())));
}
};
template <class Vector_field>
Euler_integrator_2<Vector_field>::Euler_integrator_2()
: default_integration_step(1.0)
{}
// An additional parameter in the constructor to specify the default integration step
template <class Vector_field>
Euler_integrator_2<Vector_field>::Euler_integrator_2(const FT & integration_step)
: default_integration_step(integration_step)
{}
template <class Vector_field>
inline typename Euler_integrator_2<Vector_field>::Point_2
Euler_integrator_2<Vector_field>::operator()
(const Point_2 & p, const Vector_field_2 & , const FT & integration_step, Vector_2 v, const bool & index) const
{
if (!index)
{
Vector_2 v_t(v.x()*(-1),v.y()*(-1));
v = v_t;
}
Vector_2 Euler_step(v.x()*integration_step,
v.y()*integration_step);
return Point_2(p.x() + Euler_step.x(), p.y() + Euler_step.y());
}
template <class Vector_field>
inline typename Euler_integrator_2<Vector_field>::Point_2
Euler_integrator_2<Vector_field>::operator()
(const Point_2 & p, const Vector_field_2 & vector_field_2, const FT & integration_step, const bool & index) const
{
Vector_2 v;
v = vector_field_2.get_field(p).first;
return this->operator()(p, vector_field_2, integration_step, v, index);
}
template <class Vector_field>
inline typename Euler_integrator_2<Vector_field>::Point_2
Euler_integrator_2<Vector_field>::operator()
(const Point_2 & p, const Vector_field_2 & vector_field_2, const bool & index) const
{
return this->operator()(p, vector_field_2, default_integration_step,index);
}
} //namespace CGAL
#endif