dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Kernel_d/HyperplaneCd.h

240 lines
7.6 KiB
C++
Executable File

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
// Author(s) : Michael Seel
#ifndef CGAL_HYPERPLANECD_H
#define CGAL_HYPERPLANECD_H
#include <CGAL/basic.h>
namespace CGAL {
#define PointCd PointCd2
template <class FT, class LA>
std::istream& operator>>(std::istream&, HyperplaneCd<FT,LA>&);
template <class FT, class LA>
std::ostream& operator<<(std::ostream&, const HyperplaneCd<FT,LA>&);
template <class _FT, class _LA>
class HyperplaneCd : public Handle_for< Tuple_d<_FT,_LA> > {
typedef Tuple_d<_FT,_LA> Tuple;
typedef Handle_for<Tuple> Base;
typedef HyperplaneCd<_FT,_LA> Self;
using Base::ptr;
const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_FT& entry(int i) { return ptr()->v[i]; }
const _FT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }
public:
typedef _FT RT;
typedef _FT FT;
typedef _LA LA;
typedef typename Tuple::const_iterator Coefficient_const_iterator;
HyperplaneCd(int d = 0) : Base( Tuple(d+1) ) {}
template <class InputIterator>
HyperplaneCd(int d, InputIterator first, InputIterator last, const FT& D)
: Base( Tuple(d+1,first,last,D) ) {}
template <class InputIterator>
HyperplaneCd(int d, InputIterator first, InputIterator last)
: Base( Tuple(d+1,first,last) ) {}
template <class ForwardIterator>
void
construct_from_points(ForwardIterator first, ForwardIterator last,
const PointCd<FT,LA>& o, Oriented_side side)
{
// inline due to template parameter
TUPLE_DIM_CHECK(first,last,hyperplane::construction);
CGAL_assertion_msg((first->dimension()==o.dimension()),
"hyperplane::construction: dimensions disagree.");
int d = first->dimension(); // we are in $d$ - dimensional space
int m = static_cast<int>(std::distance(first,last)); // |P| has $m$ points
typename LA::Matrix A(m,d + 1);
for (int i = 0; i < m; i++) { /* define $i$-th equation */
for (int j = 0; j < d; j++)
A(i,j) = first->cartesian(j); // $j$ - th coord of $i$-th point
A(i,d) = 1;
++first;
}
typename LA::Matrix spanning_vecs; // columns span solution
int dim = LA::homogeneous_linear_solver(A,spanning_vecs);
CGAL_assertion_msg(dim != 0,
"HyperplaneCd::constructor: set P is full dimensional.");
if (side == ON_ORIENTED_BOUNDARY)
{ ptr()->v = spanning_vecs.column(0); return; }
FT sum = 0; int j;
for (j = 0; j < dim; j++) {
for (int i = 0; i < d; i++)
sum += spanning_vecs(i,j)*o.cartesian(i);
sum += spanning_vecs(d,j);
if (sum != FT(0)) break;
}
CGAL_assertion_msg(j != dim,
"HyperplaneCd::constructor: cannot use o to determine side.");
ptr()->v = spanning_vecs.column(j);
if ( ( CGAL_NTS sign(sum) > 0 && side == ON_NEGATIVE_SIDE ) ||
( CGAL_NTS sign(sum) < 0 && side == ON_POSITIVE_SIDE ) )
invert_rep();
}
template <class ForwardIterator>
HyperplaneCd(ForwardIterator first, ForwardIterator last,
const PointCd<FT,LA>& o,
Oriented_side side = ON_ORIENTED_BOUNDARY)
: Base( Tuple(o.dimension()+1) )
{ construct_from_points(first,last,o,side); }
HyperplaneCd(const PointCd<FT,LA>& p, const DirectionCd<FT,LA>& dir)
: Base( Tuple(p.dimension()+1) )
{
int d = p.dimension();
CGAL_assertion_msg((dir.dimension() == d),
"HyperplaneCd::constructor: parameter dimensions disagree.");
FT sum = 0;
for (int i = 0; i < d; i++) {
sum += dir.delta(i)*p.cartesian(i);
entry(i) = dir.delta(i);
}
entry(d) = -sum;
}
HyperplaneCd(const FT& a, const FT& b, const FT& c) :
Base( Tuple(a,b,c,MatchHelper()) ) {}
HyperplaneCd(int a, int b, int c) :
Base( Tuple(FT(a),FT(b),FT(c),MatchHelper()) ) {}
HyperplaneCd(const FT& a, const FT& b, const FT& c, const FT& d) :
Base( Tuple(a,b,c,d) ) {}
HyperplaneCd(int a, int b, int c, int d) :
Base( Tuple(FT(a),FT(b),FT(c),FT(d)) ) {}
HyperplaneCd(const HyperplaneCd<FT,LA>& h) : Base(h) {}
~HyperplaneCd() {}
int dimension() const { return ptr()->size()-1; }
FT operator[](int i) const
{ CGAL_assertion_msg((0<=i && i<=(dimension())),
"HyperplaneCd::op[]: index out of range.");
return entry(i); }
FT coefficient(int i) const { return entry(i); }
const typename LA::Vector& coefficient_vector() const
{ return vector_rep(); }
Coefficient_const_iterator coefficients_begin() const
{ return ptr()->begin(); }
Coefficient_const_iterator coefficients_end() const
{ return ptr()->end(); }
inline VectorCd<FT,LA> orthogonal_vector() const;
DirectionCd<FT,LA> orthogonal_direction() const
{ return orthogonal_vector().direction(); }
FT value_at(const PointCd<FT,LA>& p) const
{ CGAL_assertion_msg((dimension()==p.dimension()),
"HyperplaneCd::value_at: dimensions disagree.");
FT res(0);
for (int i=0; i<dimension(); ++i)
res += coefficient(i)*p.cartesian(i);
res += coefficient(dimension());
return res;
}
Oriented_side oriented_side(const PointCd<FT,LA>& p) const
{
CGAL_assertion_msg(dimension()==p.dimension(),
"HyperplaneCd::oriented_side: dimensions do not agree.");
return CGAL_NTS sign(value_at(p));
}
bool has_on(const PointCd<FT,LA>& p) const
{ return (oriented_side(p) == ON_ORIENTED_BOUNDARY); }
bool has_on_boundary(const PointCd<FT,LA>& p) const
{ return (oriented_side(p) == ON_ORIENTED_BOUNDARY); }
bool has_on_positive_side(const PointCd<FT,LA>& p) const
{ return (oriented_side(p) == ON_POSITIVE_SIDE); }
bool has_on_negative_side(const PointCd<FT,LA>& p) const
{ return (oriented_side(p) == ON_NEGATIVE_SIDE); }
HyperplaneCd<FT,LA> transform(const Aff_transformationCd<FT,LA>& t) const
{ Aff_transformationCd<FT,LA> t_inv = t.inverse();
typename LA::Vector res = LA::transpose(t_inv.matrix())*vector_rep();
if ( t_inv.is_odd() ) res = -res;
return HyperplaneCd<FT,LA>(dimension(),res.begin(),res.end()); }
static Comparison_result weak_cmp(
const HyperplaneCd<FT,LA>&, const HyperplaneCd<FT,LA>&);
static Comparison_result strong_cmp(
const HyperplaneCd<FT,LA>&, const HyperplaneCd<FT,LA>&);
bool operator==(const HyperplaneCd<FT,LA>& h2) const
{ if (this->identical(h2)) return true;
if (dimension()!=h2.dimension()) return false;
return HyperplaneCd<FT,LA>::strong_cmp(*this,h2) == EQUAL;
}
bool operator!=(const HyperplaneCd<FT,LA>& h2) const
{ return !operator==(h2); }
friend std::istream& operator>> <>
(std::istream&, HyperplaneCd<FT,LA>&);
friend std::ostream& operator<< <>
(std::ostream&, const HyperplaneCd<FT,LA>&);
}; // end of class HyperplaneCd
template <class FT, class LA>
bool weak_equality(const HyperplaneCd<FT,LA>& h1,
const HyperplaneCd<FT,LA>& h2)
/*{\Mfunc test for weak equality. }*/
{ if (h1.identical(h2)) return true;
if (h1.dimension()!=h2.dimension()) return false;
return HyperplaneCd<FT,LA>::weak_cmp(h1,h2) == EQUAL;
}
#undef PointCd
} //namespace CGAL
#endif // CGAL_HYPERPLANECD_H
//----------------------- end of file ----------------------------------