dust3d/third_party/libigl/include/igl/fit_rotations.cpp

226 lines
6.6 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "fit_rotations.h"
#include "polar_svd3x3.h"
#include "repmat.h"
#include "verbose.h"
#include "polar_dec.h"
#include "polar_svd.h"
#include "C_STR.h"
#include <iostream>
template <typename DerivedS, typename DerivedD>
IGL_INLINE void igl::fit_rotations(
const Eigen::PlainObjectBase<DerivedS> & S,
const bool single_precision,
Eigen::PlainObjectBase<DerivedD> & R)
{
using namespace std;
const int dim = S.cols();
const int nr = S.rows()/dim;
assert(nr * dim == S.rows());
assert(dim == 3);
// resize output
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
//std::cout<<"S=["<<std::endl<<S<<std::endl<<"];"<<std::endl;
//MatrixXd si(dim,dim);
Eigen::Matrix<typename DerivedS::Scalar,3,3> si;// = Eigen::Matrix3d::Identity();
// loop over number of rotations we're computing
for(int r = 0;r<nr;r++)
{
// build this covariance matrix
for(int i = 0;i<dim;i++)
{
for(int j = 0;j<dim;j++)
{
si(i,j) = S(i*nr+r,j);
}
}
typedef Eigen::Matrix<typename DerivedD::Scalar,3,3> Mat3;
typedef Eigen::Matrix<typename DerivedD::Scalar,3,1> Vec3;
Mat3 ri;
if(single_precision)
{
polar_svd3x3(si, ri);
}else
{
Mat3 ti,ui,vi;
Vec3 _;
igl::polar_svd(si,ri,ti,ui,_,vi);
}
assert(ri.determinant() >= 0);
R.block(0,r*dim,dim,dim) = ri.block(0,0,dim,dim).transpose();
//cout<<matlab_format(si,C_STR("si_"<<r))<<endl;
//cout<<matlab_format(ri.transpose().eval(),C_STR("ri_"<<r))<<endl;
}
}
template <typename DerivedS, typename DerivedD>
IGL_INLINE void igl::fit_rotations_planar(
const Eigen::PlainObjectBase<DerivedS> & S,
Eigen::PlainObjectBase<DerivedD> & R)
{
using namespace std;
const int dim = S.cols();
const int nr = S.rows()/dim;
//assert(dim == 2 && "_planar input should be 2D");
assert(nr * dim == S.rows());
// resize output
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
Eigen::Matrix<typename DerivedS::Scalar,2,2> si;
// loop over number of rotations we're computing
for(int r = 0;r<nr;r++)
{
// build this covariance matrix
for(int i = 0;i<2;i++)
{
for(int j = 0;j<2;j++)
{
si(i,j) = S(i*nr+r,j);
}
}
typedef Eigen::Matrix<typename DerivedD::Scalar,2,2> Mat2;
typedef Eigen::Matrix<typename DerivedD::Scalar,2,1> Vec2;
Mat2 ri,ti,ui,vi;
Vec2 _;
igl::polar_svd(si,ri,ti,ui,_,vi);
#ifndef FIT_ROTATIONS_ALLOW_FLIPS
// Check for reflection
if(ri.determinant() < 0)
{
vi.col(1) *= -1.;
ri = ui * vi.transpose();
}
assert(ri.determinant() >= 0);
#endif
// Not sure why polar_dec computes transpose...
R.block(0,r*dim,dim,dim).setIdentity();
R.block(0,r*dim,2,2) = ri.transpose();
}
}
#ifdef __SSE__
IGL_INLINE void igl::fit_rotations_SSE(
const Eigen::MatrixXf & S,
Eigen::MatrixXf & R)
{
const int cStep = 4;
assert(S.cols() == 3);
const int dim = 3; //S.cols();
const int nr = S.rows()/dim;
assert(nr * dim == S.rows());
// resize output
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
Eigen::Matrix<float, 3*cStep, 3> siBig;
// using SSE decompose cStep matrices at a time:
int r = 0;
for( ; r<nr; r+=cStep)
{
int numMats = cStep;
if (r + cStep >= nr) numMats = nr - r;
// build siBig:
for (int k=0; k<numMats; k++)
{
for(int i = 0;i<dim;i++)
{
for(int j = 0;j<dim;j++)
{
siBig(i + 3*k, j) = S(i*nr + r + k, j);
}
}
}
Eigen::Matrix<float, 3*cStep, 3> ri;
polar_svd3x3_sse(siBig, ri);
for (int k=0; k<cStep; k++)
assert(ri.block(3*k, 0, 3, 3).determinant() >= 0);
// Not sure why polar_dec computes transpose...
for (int k=0; k<numMats; k++)
{
R.block(0, (r + k)*dim, dim, dim) = ri.block(3*k, 0, dim, dim).transpose();
}
}
}
IGL_INLINE void igl::fit_rotations_SSE(
const Eigen::MatrixXd & S,
Eigen::MatrixXd & R)
{
const Eigen::MatrixXf Sf = S.cast<float>();
Eigen::MatrixXf Rf;
fit_rotations_SSE(Sf,Rf);
R = Rf.cast<double>();
}
#endif
#ifdef __AVX__
IGL_INLINE void igl::fit_rotations_AVX(
const Eigen::MatrixXf & S,
Eigen::MatrixXf & R)
{
const int cStep = 8;
assert(S.cols() == 3);
const int dim = 3; //S.cols();
const int nr = S.rows()/dim;
assert(nr * dim == S.rows());
// resize output
R.resize(dim,dim*nr); // hopefully no op (should be already allocated)
Eigen::Matrix<float, 3*cStep, 3> siBig;
// using SSE decompose cStep matrices at a time:
int r = 0;
for( ; r<nr; r+=cStep)
{
int numMats = cStep;
if (r + cStep >= nr) numMats = nr - r;
// build siBig:
for (int k=0; k<numMats; k++)
{
for(int i = 0;i<dim;i++)
{
for(int j = 0;j<dim;j++)
{
siBig(i + 3*k, j) = S(i*nr + r + k, j);
}
}
}
Eigen::Matrix<float, 3*cStep, 3> ri;
polar_svd3x3_avx(siBig, ri);
for (int k=0; k<cStep; k++)
assert(ri.block(3*k, 0, 3, 3).determinant() >= 0);
// Not sure why polar_dec computes transpose...
for (int k=0; k<numMats; k++)
{
R.block(0, (r + k)*dim, dim, dim) = ri.block(3*k, 0, dim, dim).transpose();
}
}
}
#endif
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::fit_rotations<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template void igl::fit_rotations_planar<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template void igl::fit_rotations_planar<Eigen::Matrix<float, -1, -1, 0, -1, -1>, Eigen::Matrix<float, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<float, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<float, -1, -1, 0, -1, -1> >&);
template void igl::fit_rotations<Eigen::Matrix<float,-1,-1,0,-1,-1>,Eigen::Matrix<float,-1,-1,0,-1,-1> >(Eigen::PlainObjectBase<Eigen::Matrix<float,-1,-1,0,-1,-1> > const &,bool,Eigen::PlainObjectBase<Eigen::Matrix<float,-1,-1,0,-1,-1> > &);
#endif