dust3d/shaders/pbr-joey.frag

154 lines
5.0 KiB
GLSL

// Copy and modified from Joey's code
// https://github.com/JoeyDeVries/LearnOpenGL/blob/master/src/6.pbr/1.1.lighting/1.1.pbr.fs
const float PI = 3.14159265359;
// ----------------------------------------------------------------------------
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / max(denom, 0.001); // prevent divide by zero for roughness=0.0 and NdotH=1.0
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
varying highp vec3 vert;
varying highp vec3 vertNormal;
varying highp vec3 vertColor;
varying highp vec2 vertTexCoord;
varying highp float vertMetalness;
varying highp float vertRoughness;
varying highp vec3 cameraPos;
uniform highp vec3 lightPos;
uniform highp sampler2D textureId;
uniform highp int textureEnabled;
const int MAX_LIGHTS = 8;
struct Light {
vec3 position;
vec3 color;
float intensity;
};
int lightCount;
Light lights[MAX_LIGHTS];
void main()
{
const highp float vertAmbientOcclusion = 1.0;
vec3 albedo = vertColor;
if (textureEnabled == 1) {
albedo = texture2D(textureId, vertTexCoord).rgb;
}
albedo = pow(albedo, vec3(2.2));
lightCount = 3;
float roughness = vertRoughness;
float metalness = vertMetalness;
// Key light
lights[0].position = vec3(5.0, 5.0, 5.0);
lights[0].color = vec3(150.0, 150.0, 150.0);
lights[0].intensity = 0.8;
// Fill light
lights[1].position = vec3(-5.0, 5.0, 5.0);
lights[1].color = vec3(150.0, 150.0, 150.0);
lights[1].intensity = 0.4;
// Rim light
lights[2].position = vec3(0.0, -2.5, -5.0);
lights[2].color = vec3(150.0, 150.0, 150.0);
lights[2].intensity = 0.2;
vec3 N = normalize(vertNormal);
vec3 V = normalize(cameraPos - vert);
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
// of 0.04 and if it's a metal, use the albedo color as F0 (metallic workflow)
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metalness);
// reflectance equation
vec3 Lo = vec3(0.0);
for (int i = 0; i < lightCount; ++i)
{
// calculate per-light radiance
vec3 L = normalize(lights[i].position - vert);
vec3 H = normalize(V + L);
float distance = length(lights[i].position - vert);
float attenuation = 1.0 / (distance * distance);
vec3 radiance = lights[i].color * attenuation;
// Cook-Torrance BRDF
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0);
vec3 nominator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);
vec3 specular = nominator / max(denominator, 0.001); // prevent divide by zero for NdotV=0.0 or NdotL=0.0
// kS is equal to Fresnel
vec3 kS = F;
// for energy conservation, the diffuse and specular light can't
// be above 1.0 (unless the surface emits light); to preserve this
// relationship the diffuse component (kD) should equal 1.0 - kS.
vec3 kD = vec3(1.0) - kS;
// multiply kD by the inverse metalness such that only non-metals
// have diffuse lighting, or a linear blend if partly metal (pure metals
// have no diffuse light).
kD *= 1.0 - metalness;
// scale light by NdotL
float NdotL = max(dot(N, L), 0.0);
// add to outgoing radiance Lo
Lo += lights[i].intensity * (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
}
// ambient lighting (note that the next IBL tutorial will replace
// this ambient lighting with environment lighting).
vec3 ambient = vec3(0.03) * albedo * vertAmbientOcclusion;
vec3 color = ambient + Lo;
// HDR tonemapping
color = color / (color + vec3(1.0));
// gamma correct
color = pow(color, vec3(1.0/2.2));
gl_FragColor = vec4(color, 1.0);
}