dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Env_sphere_traits_3.h

1290 lines
45 KiB
C++

// Copyright (c) 2005 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Envelope_3/include/CGAL/Env_sphere_traits_3.h $
// $Id: Env_sphere_traits_3.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Michal Meyerovitch <gorgymic@post.tau.ac.il>
// Baruch Zukerman <baruchzu@post.tau.ac.il>
// Ron Wein <wein@post.tau.ac.il>
// Efi Fogel <fogel@post.tau.ac.il>
#ifndef CGAL_ENV_SPHERE_TRAITS_3_H
#define CGAL_ENV_SPHERE_TRAITS_3_H
#include <CGAL/license/Envelope_3.h>
#include <CGAL/Object.h>
#include <CGAL/enum.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Sphere_3.h>
#include <CGAL/functions_on_signs.h>
#include <CGAL/Envelope_3/Envelope_base.h>
#include <CGAL/int.h>
namespace CGAL {
template <class ConicTraits_2>
class Env_sphere_traits_3 : public ConicTraits_2
{
public:
typedef ConicTraits_2 Traits_2;
typedef Env_sphere_traits_3<Traits_2> Self;
typedef typename Traits_2::Point_2 Point_2;
typedef typename Traits_2::Curve_2 Curve_2;
typedef typename Traits_2::X_monotone_curve_2 X_monotone_curve_2;
typedef typename Traits_2::Multiplicity Multiplicity;
typedef typename Traits_2::Rat_kernel Rat_kernel;
typedef typename Traits_2::Alg_kernel Alg_kernel;
typedef typename Traits_2::Nt_traits Nt_traits;
typedef typename Rat_kernel::FT Rational;
typedef typename Rat_kernel::Point_2 Rat_point_2;
typedef typename Rat_kernel::Segment_2 Rat_segment_2;
typedef typename Rat_kernel::Line_2 Rat_line_2;
typedef typename Rat_kernel::Circle_2 Rat_circle_2;
typedef typename Rat_kernel::Point_3 Rat_point_3;
typedef typename Alg_kernel::FT Algebraic;
typedef typename Alg_kernel::Point_2 Alg_point_2;
typedef typename Alg_kernel::Circle_2 Alg_circle_2;
typedef typename Rat_kernel::Sphere_3 Surface_3;
// here we refer to the lower part of the sphere only
typedef Surface_3 Xy_monotone_surface_3;
protected:
typedef std::pair<X_monotone_curve_2,
Multiplicity> Intersection_curve;
public:
class Make_xy_monotone_3 {
protected:
const Self & parent;
public:
Make_xy_monotone_3(const Self * p) : parent(*p)
{}
// create xy-monotone surfaces from a general surface
// return a past-the-end iterator
template <class OutputIterator>
OutputIterator operator()(const Surface_3& s,
bool is_lower,
OutputIterator o) const
{
// our half sphere is of same type as our full sphere since we always
// need only the lower/upper part of each sphere
parent.m_is_lower = is_lower;
*o++ = s;
return o;
}
};
/*! Get a Make_xy_monotone_3 functor object. */
Make_xy_monotone_3
make_xy_monotone_3_object() const
{
return Make_xy_monotone_3(this);
}
class Construct_projected_boundary_2
{
protected:
const Self & parent;
public:
Construct_projected_boundary_2(const Self * p) : parent(*p)
{}
// insert into the OutputIterator all the (2d) curves of the boundary of
// the vertical projection of the surface on the xy-plane
// the OutputIterator value type is X_monotone_curve_2
template <class OutputIterator>
OutputIterator
operator()(const Xy_monotone_surface_3& s, OutputIterator o) const
{
// the projected boundary in a circle, with a projected center,
// and same radius
Rat_point_2 proj_center = parent.project(s.center());
Rat_circle_2 circ(proj_center, s.squared_radius());
Curve_2 curve(circ);
Object objs[2];
CGAL_assertion_code(Object *p = )
parent.make_x_monotone_2_object()(curve, objs);
CGAL_assertion(p == objs + 2);
X_monotone_curve_2 cv1, cv2;
CGAL_assertion(assign(cv1, objs[0]));
CGAL_assertion(assign(cv2, objs[1]));
assign(cv1, objs[0]);
assign(cv2, objs[1]);
if(cv1.is_lower())
{
CGAL_assertion(cv2.is_upper());
*o++ = make_object(std::make_pair(cv1, ON_POSITIVE_SIDE));
*o++ = make_object(std::make_pair(cv2, ON_NEGATIVE_SIDE));
}
else
{
CGAL_assertion(cv2.is_lower());
*o++ = make_object(std::make_pair(cv1, ON_NEGATIVE_SIDE));
*o++ = make_object(std::make_pair(cv2, ON_POSITIVE_SIDE));
}
return o;
}
};
/*! Get a Construct_projected_boundary_2 functor object. */
Construct_projected_boundary_2
construct_projected_boundary_2_object() const
{
return Construct_projected_boundary_2(this);
}
class Construct_projected_intersections_2
{
protected:
const Self & parent;
public:
Construct_projected_intersections_2(const Self * p) : parent(*p)
{}
// insert into OutputIterator all the (2d) projections on the xy plane of
// the intersection objects between the 2 surfaces
// the data type of OutputIterator is Object
template <class OutputIterator>
OutputIterator
operator()(const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2,
OutputIterator o) const
{
Rat_point_3 p1 = s1.center();
Rat_point_3 p2 = s2.center();
const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(),
a2 = p2.x(), b2 = p2.y(), c2 = p2.z();
const Rational sqr_r1 = s1.squared_radius(),
sqr_r2 = s2.squared_radius();
// // the spheres intersect iff d(p1, p2) <= (r1+r2)
// // squaring this twice, we get the condition
// // sqr_d^2 + (1-2*sqr_d)(sqr_r1 + sqr_r2) - 2*sqr_r1*sqr_r2 <= 0
// // with only rational numbers involved.
// // todo: check if it helps
// Rat_kernel ratk;
// Rational sqr_d = ratk.compute_squared_distance_3_object()(p1, p2);
// Sign do_inter = CGAL_NTS sign(sqr_d*sqr_d + (1-2*sqr_d)*(sqr_r1+sqr_r2)-2*sqr_r1*sqr_r2);
// if (do_inter == POSITIVE)
// return o;
Nt_traits nt_traits;
// we check if the centers of the 2 spheres have same z coordinate -
// in this case the potential projected intersection is a segment
// (or point)
if (CGAL_NTS compare(c1, c2) == EQUAL)
{
if (CGAL_NTS compare(b1, b2) == EQUAL)
{
if (CGAL_NTS compare(a1, a2) == EQUAL)
// the same center, we have no intersection
// (we don't return overlappings as intersections)
{
return o;
}
// here we have c1 == c2, b1 == b2
// the intersection lies on the plane
// m
// (1) x = --------
// 2(a1-a2)
// where m = (a1^2 - a2^2 + sqr_r2 - sqr_r1)
// which is orthogonal to the xy-plane
// we look at the intersection of this plane with the plane z = c1
// to get the projected segment of the spheres intersection
// we get the quadratic equation:
// A*y^2 + B*y + C = 0, where:
// A = 4(a1-a2)^2
// B = -8b1(a1-a2)^2
// C = m^2 - 4ma1(a1-a2) + 4(a1^2 + b1^2 - sqr_r1)(a1-a2)^2
// (we multiplied the equation by 4(a1-a2)^2 to get integer
// coefficients)
Rational a_diff = a1 - a2;
Rational sqr_a_diff = a_diff * a_diff;
Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2;
Rational sqr_b1 = b1*b1;
Rational m = sqr_a1 - sqr_a2 + sqr_r2 - sqr_r1;
Rational A = 4*sqr_a_diff;
Rational B = -8*b1*sqr_a_diff;
Rational C = 4*sqr_a_diff*(sqr_a1+sqr_b1-sqr_r1) + m*m - 4*m*a1*a_diff;
Algebraic ys[2];
Algebraic *ys_end;
std::ptrdiff_t n_ys;
ys_end = nt_traits.solve_quadratic_equation(A, B, C, ys);
n_ys = ys_end - ys;
if (n_ys == 0)
{
return o; // no intersection
}
// the x coordinate of the solution points
Algebraic xs = m / (2*a_diff);
if (n_ys == 1)
{
// intersection is a point
Point_2 inter_point(xs , ys[0]);
*o++ = make_object(inter_point);
return o;
}
CGAL_assertion(n_ys == 2);
// intersection is a segment, with non-rational endpoints
// so we construct a COLLINEAR conic (with equation as in (1))
// with 2 endpoints
Alg_point_2 end1(xs, ys[0]);
Alg_point_2 end2(xs, ys[1]);
// equation (1) is:
// 2(a1-a2)x - m = 0
Curve_2 res(0,0,0, 2*a_diff, 0, -m, COLLINEAR, end1, end2);
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
else
{
// here we have c1 == c2, b1 != b2.
// the intersection lies on the plane
// -2(a1-a2)x + m
// (1) y = ----------------
// 2(b1-b2)
// where m = (a1^2 + b1^2 - a2^2 - b2^2 + sqr_r2 - sqr_r1)
// which is orthogonal to the xy-plane
// we look at the intersection of this plane with the plane z = c1
// to get the projected segment of the spheres intersection
// we get the quadratic equation:
// A*x^2 + B*x + C = 0
// where
// (a1-a2)^2 m(a1-a2) 2b1(a1-a2)
// A = 1 + --------- B = -2a1 - ---------- + ----------
// (b1-b2)^2 (b1-b2)^2 (b1-b2)
// and m^2 b1*m
// C = a1^2 + b1^2 - sqr_r1 + ---------- - -------
// 4(b1-b2)^2 (b1-b2)
// since we can solve only equations with integer coefficients we
// multiply everything by 4(b1 - b2)^2, and get:
// D*x^2 + E*x + F = 0 where
// D = 4(b1-b2)^2 + 4(a1-a2)^2
// E = -8a1(b1-b2)^2 - 4m(a1-a2) + 8b1(a1-a2)(b1-b2)
// F = 4(a1^2 + b1^2 - sqr_r1)(b1-b2)^2 + m^2 - 4mb1(b1-b2)
// TODO: in the new version coefficients can be rationals
Rational a_diff = a1 - a2;
Rational b_diff = b1 - b2;
Rational sqr_a_diff = a_diff * a_diff;
Rational sqr_b_diff = b_diff * b_diff;
Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2;
Rational sqr_b1 = b1*b1, sqr_b2 = b2*b2;
Rational m = sqr_a1 + sqr_b1 - sqr_a2 - sqr_b2 + sqr_r2 - sqr_r1;
Rational D = 4*sqr_a_diff + 4*sqr_b_diff;
Rational E = -8*a1*sqr_b_diff - 4*m*a_diff + 8*b1*a_diff*b_diff;
Rational F = 4*sqr_b_diff*(sqr_a1+sqr_b1-sqr_r1) + m*m - 4*m*b1*b_diff;
Algebraic xs[2];
Algebraic *xs_end;
std::ptrdiff_t n_xs;
xs_end = nt_traits.solve_quadratic_equation(D, E, F, xs);
n_xs = xs_end - xs;
if (n_xs == 0)
{
return o; // no intersection
}
if (n_xs == 1)
{
// intersection is a point
Point_2 inter_point(xs[0], (-2*a_diff*xs[0] + m)/(2*b_diff) );
*o++ = make_object(inter_point);
return o;
}
CGAL_assertion(n_xs == 2);
// intersection is a segment, with non-rational endpoints
// so we construct a COLLINEAR conic (with equation as in (1))
// with 2 endpoints
Algebraic ys[2];
ys[0] = (-2*a_diff*xs[0] + m)/(2*b_diff);
ys[1] = (-2*a_diff*xs[1] + m)/(2*b_diff);
Alg_point_2 end1(xs[0], ys[0]);
Alg_point_2 end2(xs[1], ys[1]);
// equation (1) is:
// 2(a1-a2)x + 2(b1-b2)y - m = 0
Curve_2 res(0,0,0, 2*a_diff, 2*b_diff, -m, COLLINEAR, end1, end2);
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
}
// now the potential intersection is (a part of) a circle,
// and the projection is (a part of) an ellipse
else
{
// here we have c1 != c2.
// the intersection lies on the plane:
// -2(a1-a2)x -2(b1-b2)y + m
// (*) z = --------------------------
// 2(c1-c2)
// where m = a1^2 + b1^2 + c1^2 - a2^2 - b2^2 - c2^2 + sqr_r2 - sqr_r1
//
// (**) since we deal with only half sphere we are interested
// in the part below min(c1, c2) in the case of lower envelope
// and in the part above max(c1, c2) in the case of upper envelope
//
// substituting z in the sphere equation we get the ellipse equation:
// r*x^2 + s*y^2 + t*x*y + u*x + v*y + w = 0 where:
//
// (a1-a2)^2 (b1-b2)^2 2(a1-a2)(b1-b2)
// r = 1 + --------- s = 1 + --------- t = ---------------
// (c1-c2)^2 (c1-c2)^2 (c1-c2)^2
//
// 2c1(a1-a2) m(a1-a2)
// u = -2a1 + ---------- - ----------
// (c1-c2) (c1-c2)^2
//
// 2c1(b1-b2) m(b1-b2)
// v = -2b1 + ---------- - ---------- // here we have c1 != c2
// (c1-c2) (c1-c2)^2
//
// m*c1 m^2
// w = a1^2 + b1^2 + c1^2 - sqr_r1 - ------- + ----------
// (c1-c2) 4(c1-c2)^2
// since we can solve only equations with integer coefficients we
// multiply everything by 4(c1-c2)^2, and get:
// R*x^2 + S*y^2 + T*x*y + U*x + V*y + W = 0 where:
// R = 4(c1-c2)^2 + 4(a1-a2)^2
// S = 4(c1-c2)^2 + 4(b1-b2)^2
// T = 8(a1-a2)(b1-b2)
// U = -8a1(c1-c2)^2 + 8c1(a1-a2)(c1-c2) - 4m(a1-a2)
// V = -8b1(c1-c2)^2 + 8c1(b1-b2)(c1-c2) - 4m(b1-b2)
// W = 4(a1^2 + b1^2 + c1^2 - sqr_r1)(c1-c2)^2 - 4mc1(c1-c2) + m^2
// TODO: in the new version coefficients can be rationals
Rational a_diff = a1 - a2;
Rational b_diff = b1 - b2;
Rational c_diff = c1 - c2;
Rational sqr_a_diff = a_diff * a_diff;
Rational sqr_b_diff = b_diff * b_diff;
Rational sqr_c_diff = c_diff * c_diff;
Rational sqr_a1 = a1*a1, sqr_a2 = a2*a2;
Rational sqr_b1 = b1*b1, sqr_b2 = b2*b2;
Rational sqr_c1 = c1*c1, sqr_c2 = c2*c2;
Rational m = sqr_a1 + sqr_b1 + sqr_c1 -
sqr_a2 - sqr_b2 - sqr_c2 + sqr_r2 - sqr_r1;
Rational R = 4*sqr_c_diff + 4*sqr_a_diff;
Rational S = 4*sqr_c_diff + 4*sqr_b_diff;
Rational T = 8*a_diff*b_diff;
Rational U = -8*a1*sqr_c_diff + 8*c1*c_diff*a_diff - 4*m*a_diff;
Rational V = -8*b1*sqr_c_diff + 8*c1*c_diff*b_diff - 4*m*b_diff;
Rational W = 4*sqr_c_diff*(sqr_a1+sqr_b1+sqr_c1-sqr_r1) -
4*m*c1*c_diff + m*m;
// if the full spheres do not intersect, the equation we get has no
// real solution, so we should check it:
bool ellipse_is_point = false;
if (!parent.is_valid_conic_equation(R, S, T, U, V, W,
ellipse_is_point))
{
return o;
}
// we need only a part of the ellipse (as stated in (**)) so we
// construct the cutting line, which is:
// equation (*) <= min(c1,c2) -- for lower envelope
// equation (*) >= max(c1,c2) -- for upper envelope
Rational z_plane;
if (parent.m_is_lower)
z_plane = ((c1 < c2) ? c1 : c2);
else
z_plane = ((c1 > c2) ? c1 : c2);
// we get (for lower envelope)
// -2(a1-a2)x -2(b1-b2)y + m
// (*) z = -------------------------- <= z_plane
// 2(c1-c2)
// and since we need integer coefficients, and also need to be in the
// positive side of the line (i.e., our halfplane equation should be of
// type ax+by+c >= 0), we have:
// sign_c_diff* [2(a1-a2)x + 2(b1-b2)y - m + 2(c1-c2)*z_plane] >= 0
// for upper envelope, we should multiply the line equation by -1
int envelope_coef = 1;
if (!parent.m_is_lower)
envelope_coef = -1;
Sign sign_c_diff = CGAL_NTS sign(c_diff);
Rational la = envelope_coef*2*a_diff*sign_c_diff;
Rational lb = envelope_coef*2*b_diff*sign_c_diff;
Rational lc = envelope_coef*sign_c_diff*(2*c_diff*z_plane - m);
if (ellipse_is_point)
{
// as specified in the is_valid_conic_equation method, the
// intersection point is:
//
Rational px = S*(4*U - T*V)/(T*T - 4*S*R);
px = px / 2;
Rational py = -(T*px + V)/(2*S);
// should check if the point is in the non-negative side of the
// line
if (CGAL_NTS sign(la*px + lb*py +lc) != NEGATIVE)
{
*o++ = make_object(Point_2(px, py));
}
return o;
}
// EBEB 2012/06/29: Added because of
// no matching function for call to 'compare(CGAL::Env_sphere_traits_3<Conic_traits_2>::Rational&, int)
Rational zero(0);
// if (a1==a2) and (b1==b2) (*) is a plane parallel to the xy-plane
// and either all ellipse (which should be a circle) is the
// intersection - in which case lc >= 0
// or there is no intersection at all between the 2 half spheres -
// in which case lc < 0
if (CGAL_NTS compare(a_diff, zero) == EQUAL &&
CGAL_NTS compare(b_diff, zero) == EQUAL)
{
Sign sign_lc = CGAL_NTS sign(lc);
if (sign_lc != NEGATIVE)
{
Curve_2 res(R, S, T, U, V, W);
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
return o;
}
// find the intersection of the line
// la * x + lb * y + lc = 0
// with the conic
// R*x^2 + S*y^2 + T*xy + U*x + V*y + W = 0
Alg_point_2 source, target, pmid;
std::ptrdiff_t n_inter_points;
if (CGAL_NTS compare(lb, zero) != EQUAL)
{
// Find the x-coordinates of the intersection points of the conic
// curve and the line y = -(la*x + lc) / lb:
// we get a quadratic equation Ax^2 + Bx + C = 0
// where A = lb*lb*R + la*(la*S - lb*T)
// B = 2*la*lc*S - lb*(lc*T + la*V - lb*U)
// C = S*lc*lc + lb*(lb*W - lc*V)
Rational A = lb*lb*R + la*(la*S - lb*T),
B = 2*la*lc*S - lb*(lc*T + la*V - lb*U),
C = S*lc*lc + lb*(lb*W - lc*V);
Algebraic inter_xs[2];
Algebraic *inter_xs_end;
inter_xs_end = nt_traits.solve_quadratic_equation(A, B, C, inter_xs);
n_inter_points = inter_xs_end - inter_xs;
if (n_inter_points > 0)
source = Alg_point_2(inter_xs[0],
-(la*inter_xs[0] + lc) / Algebraic(lb));
if (n_inter_points == 2)
{
target = Alg_point_2(inter_xs[1],
-(la*inter_xs[1] + lc) / Algebraic(lb));
// Get the conic points whose x-coordinate are in the middle of the
// two endpoints.
// since inter_xs[0] and inter_xs[1] are the roots of a quadratic
// equation Ax^2 + Bx + C = 0, their sum is -B/A which is rational
Algebraic x_mid = Algebraic(Rational(-B/(2*A)));
//Algebraic x_mid = (inter_xs[0] + inter_xs[1]) / 2;
Alg_point_2 x_mid_point(x_mid, 0);
CGAL_precondition_code(int x_mid_n_y_points;);
Alg_point_2 x_mid_y_points[2];
Curve_2 inter_cv(R, S, T, U, V, W);
CGAL_precondition_code(x_mid_n_y_points = )
inter_cv.points_at_x(x_mid_point, x_mid_y_points);
CGAL_precondition(x_mid_n_y_points > 0);
Algebraic y1 = x_mid_y_points[0].y(), y2 = x_mid_y_points[1].y();
if (CGAL_NTS compare(Algebraic(la)*x_mid + Algebraic(lb)*y1 + Algebraic(lc),
Algebraic(0)
) == LARGER)
{
pmid = Alg_point_2(x_mid, y1);
}
else
{
CGAL_assertion(CGAL_NTS compare(Algebraic(la)*x_mid + Algebraic(lb)*y2 + Algebraic(lc),
Algebraic(0)) == LARGER);
pmid = Alg_point_2(x_mid, y2);
}
}
}
else
{ // lb == 0
CGAL_assertion(CGAL_NTS compare(la, zero) != EQUAL);
// Find the intersection of the vertical line x = -lc / la:
Rational inter_x = -lc/la;
// we should solve the quadratic equation A*y^2 + B*y + C = 0
// where A = S
// B = T*inter_x + V
// C = R*inter_x^2 + U*inter_x + W
Rational A = S,
B = T*inter_x + V,
C = R*inter_x*inter_x + U*inter_x + W;
Algebraic inter_points[2];
Algebraic *inter_points_end;
inter_points_end =
nt_traits.solve_quadratic_equation(A, B, C, inter_points);
n_inter_points = inter_points_end - inter_points;
if (n_inter_points > 0)
source = Alg_point_2(Algebraic(inter_x), inter_points[0]);
if (n_inter_points == 2)
{
target = Alg_point_2(Algebraic(inter_x), inter_points[1]);
// Get the conic points whose y-coordinate are in the middle of the
// two endpoints.
// since inter_points[0] & inter_points[1] are roots of quadratic
// equation, their sum is -B/A, and mid_y is -B/2A
Algebraic y_mid = Algebraic(Rational(-B/(2*A)));
Alg_point_2 y_mid_point(0, y_mid);
Alg_point_2 y_mid_x_points[2];
Curve_2 inter_cv(R, S, T, U, V, W);
CGAL_precondition_code(int y_mid_n_x_points =)
inter_cv.points_at_y(y_mid_point, y_mid_x_points);
CGAL_precondition(y_mid_n_x_points > 0);
Algebraic x1 = y_mid_x_points[0].x(), x2 = y_mid_x_points[1].x();
if (CGAL_NTS compare(
Algebraic(la)*x1 + Algebraic(lb)*y_mid + Algebraic(lc),
Algebraic(0)) == LARGER)
{
pmid = Alg_point_2(x1, y_mid);
}
else
{
CGAL_assertion(CGAL_NTS compare (
Algebraic(la)*x2 + Algebraic(lb)*y_mid + Algebraic(lc),
Algebraic(0)) == LARGER);
pmid = Alg_point_2(x2, Algebraic(y_mid));
}
}
}
if (n_inter_points < 2)
{
// we should check whether the ellipse is in the positive side of the
// line - in which case we return the full ellipse
// or not - in which case there is no intersection if
// n_inter_points = 0, and a point intersection (equal to source)
// if n_inter_points = 1
// for this, we find a point inside the ellipse and substitute
// its coordinates in the line equation
Curve_2 inter_cv(R, S, T, U, V, W);
Alg_point_2 vtan_ps[2];
CGAL_assertion_code(int n_vtan_ps =)
inter_cv.vertical_tangency_points(vtan_ps);
CGAL_assertion(n_vtan_ps == 2);
Algebraic lval = Algebraic(la)*vtan_ps[0].x() +
Algebraic(lb)*vtan_ps[0].y() + Algebraic(lc);
Sign lval_sign = CGAL_NTS sign(lval);
if (lval_sign == POSITIVE)
{
// the full ellipse is in the positive side
parent.add_curve_to_output(inter_cv, o);
//*o++ = make_object(Intersection_curve(inter_cv, TRANSVERSAL));
return o;
}
else if (lval_sign == NEGATIVE)
{
// the full ellipse is in the negative side, except maybe the point
// source in the case n_inter_points = 1 (which lies on the line)
if (n_inter_points == 1)
*o++ = make_object(Point_2(source));
return o;
}
CGAL_assertion(lval_sign == ZERO);
// in this case lval_sign lies on the line, so it must be that
// n_inter_points == 1 and source = vtan_ps[0]
CGAL_assertion(n_inter_points == 1 && source == vtan_ps[0]);
// so we try the other vertical tangency point
lval = Algebraic(la)*vtan_ps[1].x() +
Algebraic(lb)*vtan_ps[1].y() + Algebraic(lc);
lval_sign = CGAL_NTS sign(lval);
CGAL_assertion(lval_sign != ZERO);
if (lval_sign == POSITIVE)
parent.add_curve_to_output(inter_cv, o);
//*o++ = make_object(Intersection_curve(inter_cv, TRANSVERSAL));
else
*o++ = make_object(Point_2(source));
return o;
}
CGAL_assertion(n_inter_points == 2);
// find the correct orientation of the conic between the 2 endpoints
// it should lie on the positive side of line
// If the mid-point forms a left-turn with the source and the target
// points, the orientation is positive (going counterclockwise).
// Otherwise, it is negative (going clockwise).
Alg_kernel k;
typename Alg_kernel::Orientation_2 orient_f = k.orientation_2_object();
Orientation orient;
if (orient_f(source, pmid, target) == LEFT_TURN)
orient = CGAL::COUNTERCLOCKWISE;
else
orient = CGAL::CLOCKWISE;
Curve_2 res(R, S, T, U, V, W, orient, source, target);
CGAL_assertion(res.is_valid());
parent.add_curve_to_output(res, o);
//*o++ = make_object(Intersection_curve(res, TRANSVERSAL));
}
return o;
}
};
/*! Get a Construct_projected_intersections_2 functor object. */
Construct_projected_intersections_2
construct_projected_intersections_2_object() const
{
return Construct_projected_intersections_2(this);
}
class Compare_z_at_xy_3
{
protected:
const Self & parent;
public:
Compare_z_at_xy_3(const Self * p) : parent(*p)
{}
// check which of the surfaces is closer to the envelope at the xy
// coordinates of point (i.e. lower if computing the lower envelope, or
// upper if computing the upper envelope)
// precondition: the surfaces are defined in point
Comparison_result operator()(const Point_2& p,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Comparison_result c2 = compare_in_point_second_method(p, s1, s2);
CGAL_expensive_assertion_code(
Comparison_result c1 = compare_in_point_first_method(p, s1, s2);
);
CGAL_expensive_assertion(c1 == c2);
return c2;
}
// check which of the surfaces is closer to the envelope at the xy
// coordinates of cv (i.e. lower if computing the lower envelope, or upper
// if computing the upper envelope)
// precondition: the surfaces are defined in all points of cv, and the
// answer is the same for each of these points
Comparison_result operator()(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
// we compute a middle point on cv and use the previous function
Point_2 mid = parent.construct_middle_point(cv);
Comparison_result res =
parent.compare_z_at_xy_3_object()(mid, s1, s2);
return res;
}
protected:
// first method of compare in point, calculates the z value of both
// surfaces, and compares them
Comparison_result
compare_in_point_first_method(const Point_2& p,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
// find the z coordinates of surface 1 over p
Algebraic z1 = parent.compute_envelope_z_in_point(p, s1);
// find the z coordinates of surface 2 over p
Algebraic z2 = parent.compute_envelope_z_in_point(p, s2);
Sign res = CGAL_NTS sign(z1 - z2);
if (parent.m_is_lower)
return res;
else
return -res;
}
// second method of compare in point
// p = (x1, y1)
// s1: (x-a1)^2 + (y-b1)^2 + (z-c1)^2 = r1^2
// s2: (x-a2)^2 + (y-b2)^2 + (z-c2)^2 = r2^2
// (both lower parts or upper parts)
// then in point p we get:
// s1(p): (z-c1)^2 = r1^2 - (x1-a1)^2 - (y1-b1)^2 = A1
// s2(p): (z-c2)^2 = r2^2 - (x1-a2)^2 - (y1-b2)^2 = A2
// so we get z - ci = +- sqrt(Ai) where -sqrt(Ai) is for the lower part
// and +sqrt(Ai) is for the upper part
// we now need to compute the sign of:
// c1 - sqrt(A1) - (c2 - sqrt(A2)) - for lower envelope
// c1 + sqrt(A1) - (c2 + sqrt(A2)) - for upper envelope
Comparison_result
compare_in_point_second_method(const Point_2& p,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Rat_point_3 p1 = s1.center();
Rat_point_3 p2 = s2.center();
const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(),
a2 = p2.x(), b2 = p2.y(), c2 = p2.z();
const Rational sqr_r1 = s1.squared_radius(),
sqr_r2 = s2.squared_radius();
const Algebraic x1 = p.x(), y1 = p.y();
Rational c_diff = c1 - c2;
Algebraic x_diff1 = x1 - a1, y_diff1 = y1 - b1;
Algebraic x_diff2 = x1 - a2, y_diff2 = y1 - b2;
Algebraic A1 = sqr_r1 - x_diff1*x_diff1 - y_diff1*y_diff1;
Algebraic A2 = sqr_r2 - x_diff2*x_diff2 - y_diff2*y_diff2;
if (CGAL_NTS sign(A1) == NEGATIVE)
std::cout << "A1 = " << A1 << std::endl;
if (CGAL_NTS sign(A2) == NEGATIVE)
std::cout << "A2 = " << A2 << std::endl;
Sign res;
// sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f is a CGAL method which
// computes the sign of quantity: a + b * sqrt(e) + c * sqrt(f)
res = CGAL::sign_a_plus_b_x_sqrt_e_plus_c_x_sqrt_f(Algebraic(c_diff),
Algebraic(-1),
Algebraic(1),
A1,
A2);
return res;
}
};
/*! Get a Compare_z_at_xy_3 functor object. */
Compare_z_at_xy_3
compare_z_at_xy_3_object() const
{
return Compare_z_at_xy_3(this);
}
class Compare_z_at_xy_above_3
{
protected:
const Self & parent;
public:
Compare_z_at_xy_above_3(const Self * p) : parent(*p)
{}
// check which of the surfaces is closer to the envelope on the points above
// the curve cv (i.e. lower if computing the lower envelope, or upper if
// computing the upper envelope)
// precondition: the surfaces are defined above cv
// the choise between s1 and s2 for the envelope is the same
// for every point in the infinitesimal region above cv
// the surfaces are EQUAL over the curve cv
Comparison_result
operator()(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Comparison_result res = parent.compare_on_side(cv, s1, s2, false);
return res;
}
};
/*! Get a Compare_z_at_xy_above_3 functor object. */
Compare_z_at_xy_above_3
compare_z_at_xy_above_3_object() const
{
return Compare_z_at_xy_above_3(this);
}
class Compare_z_at_xy_below_3
{
protected:
const Self & parent;
public:
Compare_z_at_xy_below_3(const Self * p) : parent(*p)
{}
Comparison_result
operator()(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2) const
{
Comparison_result res = parent.compare_on_side(cv, s1, s2, true);
return res;
}
};
/*! Get a Compare_z_at_xy_below_3 functor object. */
Compare_z_at_xy_below_3
compare_z_at_xy_below_3_object() const
{
return Compare_z_at_xy_below_3(this);
}
/***************************************************************************/
// public method needed for testing
// checks if point is in the xy-range of surf
class Is_defined_over
{
protected:
const Self & parent;
public:
Is_defined_over(const Self * p) : parent(*p)
{}
// checks if point is in the xy-range of surf
bool operator()(const Point_2& p, const Xy_monotone_surface_3& s) const
{
// project the surface on the plane
Rat_point_2 proj_center = parent.project(s.center());
Rat_circle_2 boundary(proj_center, s.squared_radius());
Nt_traits nt_traits;
Alg_kernel k;
Alg_point_2 aproj_center(proj_center.x(), proj_center.y());
Alg_circle_2 aboundary(aproj_center, nt_traits.convert(s.squared_radius()));
// check if the projected point is inside the projected boundary
return (!k.has_on_unbounded_side_2_object()(aboundary, p));
}
};
/*! Get a Is_defined_over functor object. */
Is_defined_over is_defined_over_object() const
{
return Is_defined_over(this);
}
/***************************************************************************/
// helper methods
// compare the surfaces over the side (as specified in the compare_on_right
// parameter) of the curve, assuming they are defined there
Comparison_result compare_on_side(const X_monotone_curve_2& cv,
const Xy_monotone_surface_3& s1,
const Xy_monotone_surface_3& s2,
bool compare_on_right) const
{
// cv(x,y) : r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
// let p be the leftmost endpoint of cv, p=(x0, y0)
// the tangence of cv at p is a line. on the infinitesimal region
// near p the relation between the surfaces to the right of cv is
// the same as the relation between the tangences of the surfaces
// in p to the right of this line (unless the tangence of the surface
// is vertical)
// we take a point in the internal of the curve, not an endpoint
// since we assume that such point represents better what is going
// on all internal curve points
Point_2 cv_point = construct_middle_point(cv);
Algebraic x0 = cv_point.x(), y0 = cv_point.y();
// d(cv)/dx : 2r*x + 2s*y*dy/dx + t*y + t*x*dy/dx +u + v*dy/dx = 0
// in point p=(x0,y0) we get
// dy m
// -- = y' = - where m = -2rx0 -ty0 - u
// dx n n = 2sy0 + tx0 + v
// if n != 0 (if n = 0 we have a vertical line).
//
// So the tangence equation (in p) is:
// n = 0: x = x0
// n != 0: y - y0 = y'(x-x0) ==> -y'x + y + (y'x0 - y0) = 0
// and in general we have:
// -m*x + n*y + (m*x0 -n*y0) = 0 (with integer coordinates)
const Rational r = cv.r(), s = cv.s(), t = cv.t(),
u = cv.u(), v = cv.v(), w = cv.w();
Algebraic m = -1 * (2*r*x0 + t*y0 + u);
Algebraic n = 2*s*y0 + t*x0 + v;
// line coefficients: A3, B3, C3
Algebraic A3 = -1*m, B3 = n, C3 = m*x0 - n*y0;
// the tangences of the spheres (in point (x0,y0,z0)):
Algebraic z0 = compute_envelope_z_in_point(cv_point, s1);
// we assume the surfaces are equal over cv:
CGAL_expensive_precondition_code(
Algebraic z0_2 = compute_envelope_z_in_point(cv_point, s2);
)
// this test can be very time consuming ...
CGAL_expensive_precondition(CGAL_NTS compare(z0, z0_2) == EQUAL);
// the sphere i : fi(x,y,z) = (x-ai)^2 + (y-bi)^2 + (z-ci)^2 - ri^2 = 0
// dfi / dx = 2(x-ai) + 2(z-ci)*dz/dx = 0
// dfi / dy = 2(y-bi) + 2(z-ci)*dz/dy = 0
// if z = ci the tangent plane is vertical - if only one of the tangent
// planes is vertical, them its sphere wins (i.e. is on envelope).
// we assume not both are tangent, since this means that they are the
// same sphere
// if z != ci the tangent plane is:
// z-z0 = dz/dx (x-x0) + dz/dy (y-y0)
// ==>
// (x0-ai)(x-x0) + (y0-bi)(y-y0) + (z0-ci)(z-z0) = 0
// Ai*x + Bi*y + Ci*z + Di = 0
// where Ai = (x0-ai)
// Bi = (y0-bi)
// Ci = (z0-ci)
// Di = -(x0-ai)x0 - (y0-bi)y0 - (z0-ci)z0
//
// and we solve the problem as for triangles
Rat_point_3 p1 = s1.center();
Rat_point_3 p2 = s2.center();
const Rational a1 = p1.x(), b1 = p1.y(), c1 = p1.z(),
a2 = p2.x(), b2 = p2.y(), c2 = p2.z();
Algebraic A1 = x0 - a1, B1 = y0 - b1, C1 = z0 - c1;
Algebraic A2 = x0 - a2, B2 = y0 - b2, C2 = z0 - c2;
if (C1 != 0 && C2 != 0)
{
Sign sign1 = CGAL_NTS sign((A2*A3+B2*B3)/C2-(A1*A3+B1*B3)/C1);
// to make sure the direction is correct, we take a second point on the
// line: for vertical line we take (x0, y0+1)
// otherwise we take (x0+1, y0+ m/n)
Algebraic x1, y1;
if (n == 0)
{
x1 = x0;
y1 = y0+1;
}
else
{
x1 = x0+1;
y1 = y0 + (m/n);
}
Sign sign2 = CGAL_NTS sign(-B3*x1+A3*y1-(-B3*x0+A3*y0));
// the answer negates according to the side of the line we ask of
Sign sign3 = (compare_on_right ? (CGAL_NTS sign(1)) :
(CGAL_NTS sign(-1)));
return sign1 * sign2 * sign3;
}
else if (C1 != 0 && C2 == 0)
{
// sphere 2 is on the envelope (both lower & upper)
return LARGER;
}
else if (C1 == 0 && C2 != 0)
{
// sphere 1 is on the envelope (both lower & upper)
return SMALLER;
}
else
CGAL_error();
return EQUAL;
}
Rat_point_2 project(const Rat_point_3& p) const
{
return Rat_point_2(p.x(), p.y());
}
// compute the z coordinate of the surface s in point p on the envelope
// (i.e. take lower point if lower envelope, upper otherwise)
// precondition: s is defined at p
Algebraic compute_envelope_z_in_point(const Point_2& p,
const Xy_monotone_surface_3& s) const
{
Algebraic res;
// the point coordinates
const Algebraic x1 = p.x(), y1 = p.y();
// the surface equations
Rat_point_3 center = s.center();
const Rational a = center.x(), b = center.y(), c = center.z();
const Rational sqr_r = s.squared_radius();
// we substitute x1 and y1 in the equation of s
// (x-a)^2 + (y-b)^2 + (z-c)^2 = r^2
// and get a quadratic equation of z:
// z^2 - 2cz + [(x1-a)^2 + (y1-b)^2 + c^2 - r^2] = 0
Algebraic x_diff = x1 - a, y_diff = y1 - b;
// the coefficients are:
Algebraic A = 1,
B = -2*c,
C = x_diff*x_diff + y_diff*y_diff + c*c - sqr_r;
Algebraic zs[2];
Algebraic *zs_end;
std::ptrdiff_t n_zs;
Nt_traits nt_traits;
zs_end = nt_traits.solve_quadratic_equation(A, B, C, zs);
n_zs = zs_end - zs;
CGAL_precondition(n_zs > 0);
if (n_zs == 1)
// only one point is defined at p, this is the result
return zs[0];
CGAL_assertion(n_zs == 2);
Comparison_result comp = CGAL_NTS compare(zs[0], zs[1]);
if (m_is_lower)
res = ((comp == SMALLER) ? zs[0] : zs[1]);
else
res = ((comp == LARGER) ? zs[0] : zs[1]);
return res;
}
// construct the point in the middle of cv
Point_2 construct_middle_point(const X_monotone_curve_2& cv) const
{
// get the x-value of the middle point
Alg_kernel k;
Alg_point_2 mid_x = k.construct_midpoint_2_object()(cv.source(),
cv.target());
// TODO_NEW_DESIGN - this is not implemented in X_monotone_curve_2, but maybe we want it there?
// if (cv.is_segment())
// return mid_x;
if (cv.is_vertical())
return Point_2(mid_x);
return Point_2(cv.point_at_x(mid_x));
}
// for the test
Point_2 construct_middle_point(const Point_2& p1, const Point_2& p2) const
{
Alg_kernel k;
return Point_2(k.construct_midpoint_2_object()(p1, p2));
}
// check if the equation
// r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
// has real solutions
// is_point is set to true if the equation represents just one point
template <class NT>
bool is_valid_conic_equation(const NT& r, const NT& s, const NT& t,
const NT& u, const NT& v, const NT& w,
bool &is_point) const
{
// initialize is_point to false, and will change it when we detect
// that the equation represents a point
is_point = false;
// (*) r*x^2 + s*y^2 + t*xy + u*x + v*y + w = 0
// we fix x, and get a 1-variable quadratic equation:
// (**) s*y^2 + (tx + v)*y + (rx^2 + ux + w) = 0
// (*) has real solution (x,y) iff there exists x such that (**) has a
// solution y, i.e. discriminant(**) >= 0
// discriminant(**) = f(x) = (tx + v)^2 -4s(rx^2 + ux + w)
// = (t^2 - 4sr)*x^2 + (stv - 4su)*x + (v^2 - 4sw)
// = A*x^2 + B*x + C >= 0
// where A = t^2 - 4sr
// B = stv - 4su
// C = v^2 - 4sw
// so we should check if there exists x such that f(x) >= 0
// if A > 0 we have a smiling parabula, and a positive answer
// (the conic equation in this case represents hyperbola or 2
// intersecting lines)
Sign sign_A = CGAL_NTS sign(t*t - 4*s*r);
if (sign_A == POSITIVE)
return true;
// if A < 0 we have a sad parabula, so we should check if it crosses the
// x-axis, i.e. if the equation f(x) = 0 has a real solution x.
// this means that discriminant(f(x)) >= 0
// discriminant(f(x)) = B^2 - 4AC
// = (2tv-4su)^2 - 4(t^2-4sr)(v^2-4sw)
// = s(-tvu + su^2 + wt^2 + rv^2 - 4srw)
if (sign_A == NEGATIVE)
{
// (in this case the conic equation represents ellipse, circle, point
// or no curve)
Sign sign_s = CGAL_NTS sign(s);
Sign sign_eq = CGAL_NTS sign(-t*v*u + s*u*u + w*t*t + r*v*v - 4*s*r*w);
// if sign_eq = 0 then discriminant(f(x))=0, and so we have only one x
// solution for f(x), say x0. since we get f(x0)=0 and f(x)<0 forall
// x!=x0, we have only one solution for (**). So the equation represents
// a point with coordinates x0=-B/2A, y0=-(tx0 + v)/2s
if (sign_eq == ZERO)
is_point = true;
Sign sign_disc = CGAL_NTS sign(int(sign_s * sign_eq));
return (sign_disc != NEGATIVE);
}
// if A = 0 we get (***) f(x) = (stv - 4su)*x + (v^2 - 4sw) = B*x + C
// if B != 0 we get a line equation, which always has x
// such that f(x) >= 0
// if B = 0 then f(x) = v^2 - 4sw = C and should check its sign
CGAL_assertion(sign_A == ZERO);
// (in this case the conic equation represents parabola, 2 parallel lines,
// 1 line or no curve)
Sign sign_B = CGAL_NTS sign(s*(t*v - 4*u));
if (sign_B != ZERO)
return true;
Sign sign_C = CGAL_NTS sign(v*v - 4*s*w);
return (sign_C != NEGATIVE);
}
// for the test:
Point_2 vertical_ray_shoot_2(const Point_2& pt,
const X_monotone_curve_2& cv) const
{
if (cv.is_vertical())
{
Alg_kernel k;
if (!k.less_y_2_object()(cv.left(), pt))
return cv.left();
else
{
CGAL_assertion(k.less_y_2_object()(cv.right(), pt));
return cv.right();
}
}
else
return cv.point_at_x(pt);
}
template <class OutputIterator>
OutputIterator add_curve_to_output(const Curve_2& c, OutputIterator oi) const
{
Object objs[2];
Object* p_obj = this->make_x_monotone_2_object()(c, objs);
for(Object* o = objs; o != p_obj; ++o)
{
X_monotone_curve_2 cv;
if(assign(cv, *o))
{
*oi++ = make_object(Intersection_curve(cv, 1));
}
else
{
Point_2 pt;
CGAL_assertion(assign(pt, *o));
assign(pt, *o);
*oi++ = make_object(pt);
}
}
return oi;
}
/*! Default constructor. */
Env_sphere_traits_3() : m_is_lower(true)
{}
protected:
mutable bool m_is_lower;
};
/*!
* Compare two spheres: first compare their center points in an
* xyz-lexicographic order, then by their radii.
*/
template <class Kernel>
bool operator< (const CGAL::Sphere_3<Kernel> & a,
const CGAL::Sphere_3<Kernel> & b)
{
Kernel k;
Comparison_result res = k.compare_xyz_3_object()(a.center(), b.center());
if (res == EQUAL)
{
res = CGAL::compare (a.squared_radius(), b.squared_radius());
}
return (res == SMALLER);
}
/*!
* Compare two spheres for equality.
*/
template <class Kernel>
bool operator== (const typename Kernel::Sphere_3& a,
const typename Kernel::Sphere_3& b)
{
Kernel k;
if (! k.equal_3_object() (a.center(), b.center()))
return (false);
return (CGAL::compare (a.squared_radius(), b.squared_radius()) == EQUAL);
}
} //namespace CGAL
#endif // ENVELOPE_SPHERES_TRAITS_3_H