dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Kernel/function_objects.h

3815 lines
111 KiB
C++

// Copyright (c) 1999,2002,2005
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany)
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Kernel_23/include/CGAL/Kernel/function_objects.h $
// $Id: function_objects.h 4476663 2020-04-08T16:14:44+02:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Stefan Schirra, Sylvain Pion,
// Camille Wormser, Stephane Tayeb, Pierre Alliez
#ifndef CGAL_KERNEL_FUNCTION_OBJECTS_H
#define CGAL_KERNEL_FUNCTION_OBJECTS_H
#include <CGAL/Origin.h>
#include <CGAL/Bbox_2.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/squared_distance_2.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/intersection_2.h>
#include <CGAL/intersection_3.h>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/Kernel/global_functions_3.h>
#include <cmath> // for Compute_dihedral_angle
namespace CGAL {
namespace CommonKernelFunctors {
template <typename K>
class Are_ordered_along_line_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Collinear_2 Collinear_2;
typedef typename K::Collinear_are_ordered_along_line_2
Collinear_are_ordered_along_line_2;
Collinear_2 c;
Collinear_are_ordered_along_line_2 cao;
public:
typedef typename K::Boolean result_type;
Are_ordered_along_line_2() {}
Are_ordered_along_line_2(const Collinear_2& c_,
const Collinear_are_ordered_along_line_2& cao_)
: c(c_), cao(cao_)
{}
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{ return c(p, q, r) && cao(p, q, r); }
};
template <typename K>
class Are_ordered_along_line_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Collinear_3 Collinear_3;
typedef typename K::Collinear_are_ordered_along_line_3
Collinear_are_ordered_along_line_3;
Collinear_3 c;
Collinear_are_ordered_along_line_3 cao;
public:
typedef typename K::Boolean result_type;
Are_ordered_along_line_3() {}
Are_ordered_along_line_3(const Collinear_3& c_,
const Collinear_are_ordered_along_line_3& cao_)
: c(c_), cao(cao_)
{}
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{ return c(p, q, r) && cao(p, q, r); }
};
template <typename K>
class Are_strictly_ordered_along_line_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Collinear_2 Collinear_2;
typedef typename K::Collinear_are_strictly_ordered_along_line_2
Collinear_are_strictly_ordered_along_line_2;
Collinear_2 c;
Collinear_are_strictly_ordered_along_line_2 cao;
public:
typedef typename K::Boolean result_type;
Are_strictly_ordered_along_line_2() {}
Are_strictly_ordered_along_line_2(
const Collinear_2& c_,
const Collinear_are_strictly_ordered_along_line_2& cao_)
: c(c_), cao(cao_)
{}
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{ return c(p, q, r) && cao(p, q, r); }
};
template <typename K>
class Are_strictly_ordered_along_line_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Collinear_3 Collinear_3;
typedef typename K::Collinear_are_strictly_ordered_along_line_3
Collinear_are_strictly_ordered_along_line_3;
Collinear_3 c;
Collinear_are_strictly_ordered_along_line_3 cao;
public:
typedef typename K::Boolean result_type;
Are_strictly_ordered_along_line_3() {}
Are_strictly_ordered_along_line_3(
const Collinear_3& c_,
const Collinear_are_strictly_ordered_along_line_3& cao_)
: c(c_), cao(cao_)
{}
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{ return c(p, q, r) && cao(p, q, r); }
};
template <typename K>
class Assign_2
{
typedef typename K::Object_2 Object_2;
public:
//typedef typename K::Boolean result_type;
typedef bool result_type;
template <class T>
result_type
operator()(T& t, const Object_2& o) const
{ return assign(t, o); }
};
template <typename K>
class Assign_3
{
typedef typename K::Object_3 Object_3;
public:
//typedef typename K::Boolean result_type;
typedef bool result_type;
template <class T>
result_type
operator()(T& t, const Object_3& o) const
{ return assign(t, o); }
};
template <typename K>
class Compare_dihedral_angle_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::FT FT;
public:
typedef typename K::Comparison_result result_type;
result_type
operator()(const Point_3& a1, const Point_3& b1,
const Point_3& c1, const Point_3& d1,
const Point_3& a2, const Point_3& b2,
const Point_3& c2, const Point_3& d2) const
{
const Vector_3 ab1 = b1 - a1;
const Vector_3 ac1 = c1 - a1;
const Vector_3 ad1 = d1 - a1;
const Vector_3 ab2 = b2 - a2;
const Vector_3 ac2 = c2 - a2;
const Vector_3 ad2 = d2 - a2;
return this->operator()(ab1, ac1, ad1, ab2, ac2, ad2);
}
result_type
operator()(const Point_3& a1, const Point_3& b1,
const Point_3& c1, const Point_3& d1,
const FT& cosine) const
{
const Vector_3 ab1 = b1 - a1;
const Vector_3 ac1 = c1 - a1;
const Vector_3 ad1 = d1 - a1;
return this->operator()(ab1, ac1, ad1, cosine);
}
result_type
operator()(const Vector_3& ab1, const Vector_3& ac1, const Vector_3& ad1,
const FT& cosine)
const
{
typedef typename K::FT FT;
typedef typename K::Construct_cross_product_vector_3 Cross_product;
Cross_product xproduct = K().construct_cross_product_vector_3_object();
const Vector_3 abac1 = xproduct(ab1, ac1);
const Vector_3 abad1 = xproduct(ab1, ad1);
const FT sc_prod_1 = abac1 * abad1;
CGAL_kernel_assertion_msg( abac1 != NULL_VECTOR,
"ab1 and ac1 are collinear" );
CGAL_kernel_assertion_msg( abad1 != NULL_VECTOR,
"ab1 and ad1 are collinear" );
if(sc_prod_1 >= 0 ) {
if(cosine >= 0) {
// the two cosine are >= 0, square(cosine) is decreasing on [0,pi/2]
return CGAL::compare(CGAL::square(cosine)*
abac1.squared_length()*abad1.squared_length(),
CGAL::square(sc_prod_1));
}
else {
return SMALLER;
}
}
else {
if(cosine < 0) {
// the two cosine are < 0, square(cosine) is increasing on [pi/2,pi]
return CGAL::compare(CGAL::square(sc_prod_1),
CGAL::square(cosine)*
abac1.squared_length()*abad1.squared_length());
}
else
return LARGER;
}
}
result_type
operator()(const Vector_3& ab1, const Vector_3& ac1, const Vector_3& ad1,
const Vector_3& ab2, const Vector_3& ac2, const Vector_3& ad2)
const
{
typedef typename K::FT FT;
typedef typename K::Construct_cross_product_vector_3 Cross_product;
Cross_product xproduct = K().construct_cross_product_vector_3_object();
const Vector_3 abac1 = xproduct(ab1, ac1);
const Vector_3 abad1 = xproduct(ab1, ad1);
const FT sc_prod_1 = abac1 * abad1;
const Vector_3 abac2 = xproduct(ab2, ac2);
const Vector_3 abad2 = xproduct(ab2, ad2);
const FT sc_prod_2 = abac2 * abad2;
CGAL_kernel_assertion_msg( abac1 != NULL_VECTOR,
"ab1 and ac1 are collinear" );
CGAL_kernel_assertion_msg( abad1 != NULL_VECTOR,
"ab1 and ad1 are collinear" );
CGAL_kernel_assertion_msg( abac2 != NULL_VECTOR,
"ab2 and ac2 are collinear" );
CGAL_kernel_assertion_msg( abad2 != NULL_VECTOR,
"ab2 and ad2 are collinear" );
if(sc_prod_1 >= 0 ) {
if(sc_prod_2 >= 0) {
// the two cosine are >= 0, cosine is decreasing on [0,1]
return CGAL::compare(CGAL::square(sc_prod_2)*
abac1.squared_length()*abad1.squared_length(),
CGAL::square(sc_prod_1)*
abac2.squared_length()*abad2.squared_length());
}
else {
return SMALLER;
}
}
else {
if(sc_prod_2 < 0) {
// the two cosine are < 0, cosine is increasing on [-1,0]
return CGAL::compare(CGAL::square(sc_prod_1)*
abac2.squared_length()*abad2.squared_length(),
CGAL::square(sc_prod_2)*
abac1.squared_length()*abad1.squared_length());
}
else
return LARGER;
}
}
};
template < typename K >
class Compare_power_distance_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::Point_3 Point_3;
typedef typename K::Comparison_result Comparison_result;
typedef Comparison_result result_type;
Comparison_result operator()(const Point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r) const
{
return compare_power_distanceC3(p.x(), p.y(), p.z(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight());
}
};
template < typename K >
class Construct_weighted_circumcenter_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::Point_3 Point_3;
typedef typename K::FT FT;
typedef Point_3 result_type;
Point_3 operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s) const
{
FT x, y, z;
weighted_circumcenterC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight(),
s.x(), s.y(), s.z(), s.weight(),
x,y,z);
return Point_3(x,y,z);
}
Point_3 operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r) const
{
FT x, y, z;
weighted_circumcenterC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight(),
x,y,z);
return Point_3(x,y,z);
}
Point_3 operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q) const
{
FT x, y, z;
weighted_circumcenterC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
x,y,z);
return Point_3(x,y,z);
}
};
template < class K >
class Power_side_of_bounded_power_circle_2
{
public:
typedef typename K::Weighted_point_2 Weighted_point_2;
typedef Bounded_side result_type;
Bounded_side operator()(const Weighted_point_2& p,
const Weighted_point_2& q,
const Weighted_point_2& r,
const Weighted_point_2& t) const
{
K traits;
typename K::Orientation_2 orientation = traits.orientation_2_object();
typename K::Construct_point_2 wp2p = traits.construct_point_2_object();
typename K::Power_side_of_oriented_power_circle_2 power_test =
traits.power_side_of_oriented_power_circle_2_object();
typename K::Orientation o = orientation(wp2p(p),wp2p(q),wp2p(r));
typename K::Oriented_side os = power_test(p,q,r,t);
CGAL_assertion(o != COPLANAR);
return enum_cast<Bounded_side>(o * os);
}
Bounded_side operator()(const Weighted_point_2& p,
const Weighted_point_2& q,
const Weighted_point_2& t) const
{
return power_side_of_bounded_power_circleC2(p.x(), p.y(), p.weight(),
q.x(), q.y(), q.weight(),
t.x(), t.y(), t.weight());
}
Bounded_side operator()(const Weighted_point_2& p,
const Weighted_point_2& t) const
{
return enum_cast<Bounded_side>(
- CGAL_NTS sign( CGAL_NTS square(p.x() - t.x()) +
CGAL_NTS square(p.y() - t.y()) +
p.weight() - t.weight()) );
}
};
// operator ()
// return the sign of the power test of last weighted point
// with respect to the smallest sphere orthogonal to the others
template< typename K >
class Power_side_of_bounded_power_sphere_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::Sign Sign;
typedef Bounded_side result_type;
Bounded_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s,
const Weighted_point_3 & t) const
{
K traits;
typename K::Orientation_3 orientation = traits.orientation_3_object();
typename K::Construct_point_3 wp2p = traits.construct_point_3_object();
typename K::Power_side_of_oriented_power_sphere_3 power_test =
traits.power_side_of_oriented_power_sphere_3_object();
typename K::Orientation o = orientation(wp2p(p),wp2p(q),wp2p(r),wp2p(s));
typename K::Oriented_side os = power_test(p,q,r,s,t);
// Power_side_of_oriented_power_sphere_3
// returns in fact minus the 5x5 determinant of lifted (p,q,r,s,t)
CGAL_assertion(o != COPLANAR);
return enum_cast<Bounded_side>(o * os);
}
Bounded_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s) const
{
return power_side_of_bounded_power_sphereC3(
p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight(),
s.x(), s.y(), s.z(), s.weight());
}
Bounded_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r) const
{
return power_side_of_bounded_power_sphereC3(
p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight());
}
Bounded_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q) const
{
return enum_cast<Bounded_side>(
- CGAL_NTS sign( CGAL_NTS square(p.x()-q.x()) +
CGAL_NTS square(p.y()-q.y()) +
CGAL_NTS square(p.z()-q.z()) +
p.weight() - q.weight()));
}
};
template < typename K >
class Power_side_of_oriented_power_sphere_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::Oriented_side Oriented_side;
typedef Oriented_side result_type;
Oriented_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s,
const Weighted_point_3 & t) const
{
return power_side_of_oriented_power_sphereC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight(),
s.x(), s.y(), s.z(), s.weight(),
t.x(), t.y(), t.z(), t.weight());
}
// The methods below are currently undocumented because the definition of
// orientation is unclear for 3, 2, and 1 point configurations in a 3D space.
// One should be (very) careful with the order of vertices when using them,
// as swapping points will change the result and one must therefore have a
// precise idea of what is the positive orientation in the full space.
// For example, these functions are (currently) used safely in the regular
// triangulations classes because we always call them on vertices of
// triangulation cells, which are always positively oriented.
Oriented_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s) const
{
//CGAL_kernel_precondition( coplanar(p, q, r, s) );
//CGAL_kernel_precondition( !collinear(p, q, r) );
return power_side_of_oriented_power_sphereC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight(),
s.x(), s.y(), s.z(), s.weight());
}
Oriented_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r) const
{
//CGAL_kernel_precondition( collinear(p, q, r) );
//CGAL_kernel_precondition( p.point() != q.point() );
return power_side_of_oriented_power_sphereC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight());
}
Oriented_side operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q) const
{
//CGAL_kernel_precondition( p.point() == r.point() );
return power_side_of_oriented_power_sphereC3(p.weight(),q.weight());
}
};
template < typename K >
class Compute_weight_2
{
public:
typedef typename K::Weighted_point_2 Weighted_point_2;
typedef typename K::FT Weight;
typedef const Weight& result_type;
const Weight& operator()(const Weighted_point_2 & p) const
{
return p.rep().weight();
}
};
template < typename K >
class Compute_weight_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::FT Weight;
typedef const Weight& result_type;
const Weight& operator()(const Weighted_point_3 & p) const
{
return p.rep().weight();
}
};
template < typename K >
class Compute_power_product_2
{
public:
typedef typename K::Weighted_point_2 Weighted_point_2;
typedef typename K::FT FT;
typedef FT result_type;
FT operator()(const Weighted_point_2 & p,
const Weighted_point_2 & q) const
{
return power_productC2(p.x(), p.y(), p.weight(),
q.x(), q.y(), q.weight());
}
};
template < typename K >
class Compute_power_product_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::FT FT;
typedef FT result_type;
FT operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q) const
{
return power_productC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight());
}
};
template < typename K >
class Compute_squared_radius_smallest_orthogonal_circle_2
{
public:
typedef typename K::Weighted_point_2 Weighted_point_2;
typedef typename K::FT FT;
typedef FT result_type;
FT operator()(const Weighted_point_2& p,
const Weighted_point_2& q,
const Weighted_point_2& r) const
{
return squared_radius_orthogonal_circleC2(p.x(), p.y(), p.weight(),
q.x(), q.y(), q.weight(),
r.x(), r.y(), r.weight());
}
FT operator()(const Weighted_point_2& p,
const Weighted_point_2& q) const
{
return squared_radius_smallest_orthogonal_circleC2(p.x(), p.y(), p.weight(),
q.x(), q.y(), q.weight());
}
FT operator()(const Weighted_point_2& p) const
{
return - p.weight();
}
};
template < typename K >
class Compute_squared_radius_smallest_orthogonal_sphere_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::FT FT;
typedef FT result_type;
FT operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s) const
{
return squared_radius_orthogonal_sphereC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight(),
s.x(), s.y(), s.z(), s.weight());
}
FT operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r) const
{
return squared_radius_smallest_orthogonal_sphereC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight(),
r.x(), r.y(), r.z(), r.weight());
}
FT operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q) const
{
return squared_radius_smallest_orthogonal_sphereC3(p.x(), p.y(), p.z(), p.weight(),
q.x(), q.y(), q.z(), q.weight());
}
FT operator()(const Weighted_point_3 & p) const
{
return - p.weight();
}
};
// Compute the square radius of the sphere centered in t
// and orthogonal to the sphere orthogonal to p,q,r,s
template< typename K>
class Compute_power_distance_to_power_sphere_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::FT FT;
typedef FT result_type;
result_type operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s,
const Weighted_point_3 & t) const
{
return power_distance_to_power_sphereC3 (p.x(),p.y(),p.z(),FT(p.weight()),
q.x(),q.y(),q.z(),FT(q.weight()),
r.x(),r.y(),r.z(),FT(r.weight()),
s.x(),s.y(),s.z(),FT(s.weight()),
t.x(),t.y(),t.z(),FT(t.weight()));
}
};
template <typename K>
class Compare_weighted_squared_radius_3
{
public:
typedef typename K::Weighted_point_3 Weighted_point_3;
typedef typename K::Comparison_result Comparison_result;
typedef typename K::FT FT;
typedef Comparison_result result_type;
result_type operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const Weighted_point_3 & s,
const FT& w) const
{
return CGAL::compare(squared_radius_orthogonal_sphereC3(
p.x(),p.y(),p.z(),p.weight(),
q.x(),q.y(),q.z(),q.weight(),
r.x(),r.y(),r.z(),r.weight(),
s.x(),s.y(),s.z(),s.weight()),
w);
}
result_type operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const Weighted_point_3 & r,
const FT& w) const
{
return CGAL::compare(squared_radius_smallest_orthogonal_sphereC3(
p.x(),p.y(),p.z(),p.weight(),
q.x(),q.y(),q.z(),q.weight(),
r.x(),r.y(),r.z(),r.weight()),
w);
}
result_type operator()(const Weighted_point_3 & p,
const Weighted_point_3 & q,
const FT& w) const
{
return CGAL::compare(squared_radius_smallest_orthogonal_sphereC3(
p.x(),p.y(),p.z(),p.weight(),
q.x(),q.y(),q.z(),q.weight()),
w);
}
result_type operator()(const Weighted_point_3 & p,
const FT& w) const
{
return CGAL::compare(-p.weight(), w);
}
};
template <typename K>
class Compare_slope_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Comparison_result result_type;
result_type operator()(const Point_3& p, const Point_3& q, const Point_3& r, const Point_3& s) const
{
Comparison_result sign_pq = CGAL::compare(q.z(),p.z());
Comparison_result sign_rs = CGAL::compare(s.z(),r.z());
if(sign_pq != sign_rs){
return CGAL::compare(static_cast<int>(sign_pq), static_cast<int>(sign_rs));
}
if((sign_pq == EQUAL) && (sign_rs == EQUAL)){
return EQUAL;
}
CGAL_assertion( (sign_pq == sign_rs) && (sign_pq != EQUAL) );
Comparison_result res = CGAL::compare(square(p.z() - q.z()) * (square(r.x()-s.x())+square(r.y()-s.y())),
square(r.z() - s.z()) * (square(p.x()-q.x())+square(p.y()-q.y())));
return (sign_pq == SMALLER) ? opposite(res) : res;
}
};
template <typename K>
class Compare_squared_distance_2
{
typedef typename K::FT FT;
public:
typedef typename K::Comparison_result result_type;
template <class T1, class T2>
result_type
operator()(const T1& p, const T2& q, const FT& d2) const
{
return CGAL::compare(squared_distance(p, q), d2);
}
template <class T1, class T2, class T3, class T4>
result_type
operator()(const T1& p, const T2& q, const T3& r, const T4& s) const
{
return CGAL::compare(squared_distance(p, q), squared_distance(r, s));
}
};
template <typename K>
class Compare_squared_distance_3
{
typedef typename K::FT FT;
public:
typedef typename K::Comparison_result result_type;
template <class T1, class T2>
result_type
operator()(const T1& p, const T2& q, const FT& d2) const
{
return CGAL::compare(squared_distance(p, q), d2);
}
template <class T1, class T2, class T3, class T4>
result_type
operator()(const T1& p, const T2& q, const T3& r, const T4& s) const
{
return CGAL::compare(squared_distance(p, q), squared_distance(r, s));
}
};
template <typename K>
class Compute_approximate_angle_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef typename K::FT result_type;
result_type
operator()(const Vector_3& u, const Vector_3& v) const
{
K k;
typename K::Compute_scalar_product_3 scalar_product =
k.compute_scalar_product_3_object();
double product = CGAL::sqrt(to_double(scalar_product(u,u)) * to_double(scalar_product(v,v)));
if(product == 0)
return 0;
// cosine
double dot = to_double(scalar_product(u,v));
double cosine = dot / product;
if(cosine > 1.){
cosine = 1.;
}
if(cosine < -1.){
cosine = -1.;
}
return std::acos(cosine) * 180./CGAL_PI;
}
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{
K k;
typename K::Construct_vector_3 vector = k.construct_vector_3_object();
Vector_3 u = vector(q,p);
Vector_3 v = vector(q,r);
return this->operator()(u,v);
}
};
template <typename K>
class Compute_approximate_dihedral_angle_3
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::FT result_type;
result_type
operator()(const Point_3& a, const Point_3& b, const Point_3& c, const Point_3& d) const
{
K k;
typename K::Construct_vector_3 vector = k.construct_vector_3_object();
typename K::Construct_cross_product_vector_3 cross_product =
k.construct_cross_product_vector_3_object();
typename K::Compute_squared_distance_3 sq_distance =
k.compute_squared_distance_3_object();
typename K::Compute_scalar_product_3 scalar_product =
k.compute_scalar_product_3_object();
typedef typename K::Vector_3 Vector_3;
typedef typename K::FT FT;
const Vector_3 ab = vector(a,b);
const Vector_3 ac = vector(a,c);
const Vector_3 ad = vector(a,d);
const Vector_3 abad = cross_product(ab,ad);
const double x = CGAL::to_double(scalar_product(cross_product(ab,ac), abad));
const double l_ab = CGAL::sqrt(CGAL::to_double(sq_distance(a,b)));
const double y = l_ab * CGAL::to_double(scalar_product(ac,abad));
return FT(std::atan2(y, x) * 180 / CGAL_PI );
}
};
template <typename K>
class Compute_area_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Triangle_3 Triangle_3;
public:
typedef FT result_type;
FT
operator()( const Triangle_3& t ) const
{
return CGAL_NTS sqrt(K().compute_squared_area_3_object()(t));
}
FT
operator()( const Point_3& p, const Point_3& q, const Point_3& r ) const
{
return CGAL_NTS sqrt(K().compute_squared_area_3_object()(p, q, r));
}
};
template <typename K>
class Compute_squared_distance_2
{
typedef typename K::FT FT;
public:
typedef FT result_type;
// There are 25 combinaisons, we use a template.
template <class T1, class T2>
FT
operator()( const T1& t1, const T2& t2) const
{ return internal::squared_distance(t1, t2, K()); }
};
template <typename K>
class Compute_squared_distance_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
public:
typedef FT result_type;
// There are 25 combinaisons, we use a template.
template <class T1, class T2>
FT
operator()( const T1& t1, const T2& t2) const
{ return internal::squared_distance(t1, t2, K()); }
FT
operator()( const Point_3& pt1, const Point_3& pt2) const
{
typedef typename K::Vector_3 Vector_3;
Vector_3 vec = pt2 - pt1;
return vec*vec;
}
};
template <typename K>
class Compute_squared_length_2
{
typedef typename K::FT FT;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Vector_2 Vector_2;
public:
typedef FT result_type;
FT
operator()( const Vector_2& v) const
{ return CGAL_NTS square(K().compute_x_2_object()(v)) +
CGAL_NTS square(K().compute_y_2_object()(v));}
FT
operator()( const Segment_2& s) const
{ return K().compute_squared_distance_2_object()(s.source(), s.target()); }
};
template <typename K>
class Compute_squared_length_3
{
typedef typename K::FT FT;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef FT result_type;
FT
operator()( const Vector_3& v) const
{ return v.rep().squared_length(); }
FT
operator()( const Segment_3& s) const
{ return s.squared_length(); }
};
template <typename K>
class Compute_a_2
{
typedef typename K::RT RT;
typedef typename K::Line_2 Line_2;
public:
typedef RT result_type;
RT
operator()(const Line_2& l) const
{
return l.rep().a();
}
};
template <typename K>
class Compute_a_3
{
typedef typename K::RT RT;
typedef typename K::Plane_3 Plane_3;
public:
typedef RT result_type;
RT
operator()(const Plane_3& l) const
{
return l.rep().a();
}
};
template <typename K>
class Compute_b_2
{
typedef typename K::RT RT;
typedef typename K::Line_2 Line_2;
public:
typedef RT result_type;
RT
operator()(const Line_2& l) const
{
return l.rep().b();
}
};
template <typename K>
class Compute_b_3
{
typedef typename K::RT RT;
typedef typename K::Plane_3 Plane_3;
public:
typedef RT result_type;
RT
operator()(const Plane_3& l) const
{
return l.rep().b();
}
};
template <typename K>
class Compute_c_2
{
typedef typename K::RT RT;
typedef typename K::Line_2 Line_2;
public:
typedef RT result_type;
RT
operator()(const Line_2& l) const
{
return l.rep().c();
}
};
template <typename K>
class Compute_c_3
{
typedef typename K::RT RT;
typedef typename K::Plane_3 Plane_3;
public:
typedef RT result_type;
RT
operator()(const Plane_3& l) const
{
return l.rep().c();
}
};
template <typename K>
class Compute_d_3
{
typedef typename K::RT RT;
typedef typename K::Plane_3 Plane_3;
public:
typedef RT result_type;
RT
operator()(const Plane_3& l) const
{
return l.rep().d();
}
};
template <typename K>
class Compute_x_at_y_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef FT result_type;
FT
operator()(const Line_2& l, const FT& y) const
{
CGAL_kernel_precondition( ! l.is_degenerate() );
return (FT(-l.b())*y - FT(l.c()) )/FT(l.a());
}
};
template <typename K>
class Compute_y_at_x_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef FT result_type;
FT
operator()(const Line_2& l, const FT& x) const
{
CGAL_kernel_precondition_msg( ! l.is_vertical(),
"Compute_y_at_x(FT x) is undefined for vertical line");
return (FT(-l.a())*x - FT(l.c()) )/FT(l.b());
}
};
template <typename K>
class Compute_xmin_2
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_rectangle_2& r) const
{
return (r.min)().x();
}
};
template <typename K>
class Compute_xmin_3
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_cuboid_3& r) const
{
return (r.min)().x();
}
};
template <typename K>
class Compute_xmax_2
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_rectangle_2& r) const
{
return (r.max)().x();
}
};
template <typename K>
class Compute_xmax_3
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_cuboid_3& r) const
{
return (r.max)().x();
}
};
template <typename K>
class Compute_ymin_2
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_rectangle_2& r) const
{
return (r.min)().y();
}
};
template <typename K>
class Compute_ymin_3
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_cuboid_3& r) const
{
return (r.min)().y();
}
};
template <typename K>
class Compute_ymax_2
{
typedef typename K::FT FT;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_rectangle_2& r) const
{
return (r.max)().y();
}
};
template <typename K>
class Compute_ymax_3
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_cuboid_3& r) const
{
return (r.max)().y();
}
};
template <typename K>
class Compute_zmin_3
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_cuboid_3& r) const
{
return (r.min)().z();
}
};
template <typename K>
class Compute_zmax_3
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef FT Cartesian_coordinate_type;
//typedef typename K::Cartesian_coordinate_type Cartesian_coordinate_type;
public:
typedef FT result_type;
Cartesian_coordinate_type
operator()(const Iso_cuboid_3& r) const
{
return (r.max)().z();
}
};
template <typename K>
class Compute_L_infinity_distance_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
public:
typedef FT result_type;
result_type
operator()(const Point_2& p,
const Point_2& q) const
{
return (std::max)( CGAL::abs( K().compute_x_2_object()(p) - K().compute_x_2_object()(q)),
CGAL::abs( K().compute_y_2_object()(p) - K().compute_y_2_object()(q)) );
}
};
template <typename K>
class Compute_L_infinity_distance_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
public:
typedef FT result_type;
result_type
operator()(const Point_3& p,
const Point_3& q) const
{
return (std::max)( CGAL::abs( K().compute_x_3_object()(p) - K().compute_x_3_object()(q)),
(std::max)(CGAL::abs( K().compute_y_3_object()(p) - K().compute_y_3_object()(q)),
CGAL::abs( K().compute_z_3_object()(p) - K().compute_z_3_object()(q))));
}
};
template <typename K>
class Construct_center_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Circle_2 Circle_2;
public:
typedef const Point_2& result_type;
result_type
operator()(const Circle_2& c) const
{ return c.rep().center(); }
};
template <typename K>
class Construct_center_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Circle_3 Circle_3;
public:
typedef const Point_3& result_type;
result_type
operator()(const Sphere_3& s) const
{ return s.rep().center(); }
result_type
operator()(const Circle_3& c) const
{ return c.rep().center(); }
};
template <typename K>
class Construct_circle_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Circle_2 Circle_2;
typedef typename Circle_2::Rep Rep;
public:
typedef Circle_2 result_type;
Rep // Circle_2
operator()( Return_base_tag,
const Point_2& center, const FT& squared_radius,
Orientation orientation = COUNTERCLOCKWISE) const
{ return Rep(center, squared_radius, orientation); }
Rep // Circle_2
operator()( Return_base_tag,
const Point_2& p, const Point_2& q, const Point_2& r) const
{
typename K::Orientation_2 orientation;
typename K::Compute_squared_distance_2 squared_distance;
typename K::Construct_circumcenter_2 circumcenter;
typename K::Orientation orient = orientation(p, q, r);
CGAL_kernel_precondition( orient != COLLINEAR);
Point_2 center = circumcenter(p, q, r);
return Rep(center, squared_distance(p, center), orient);
}
Rep // Circle_2
operator()( Return_base_tag,
const Point_2& p, const Point_2& q,
Orientation orientation = COUNTERCLOCKWISE) const
{
CGAL_kernel_precondition( orientation != COLLINEAR);
typename K::Compute_squared_distance_2 squared_distance;
typename K::Construct_midpoint_2 midpoint;
if (p != q) {
Point_2 center = midpoint(p, q);
return Rep(center, squared_distance(p, center), orientation);
} else
return Rep(p, FT(0), orientation);
}
Rep // Circle_2
operator()( Return_base_tag,
const Point_2& p, const Point_2& q,
const FT& bulge) const
{
typename K::Compute_squared_distance_2 squared_distance;
const FT sqr_bulge = CGAL::square(bulge);
const FT common = (FT(1) - sqr_bulge) / (FT(4)*bulge);
const FT x_coord = (p.x() + q.x())/FT(2)
+ common*(p.y() - q.y());
const FT y_coord = (p.y() + q.y())/FT(2)
+ common*(q.x() - p.x());
const FT sqr_rad = squared_distance(p, q)
* (FT(1)/sqr_bulge + FT(2) + sqr_bulge) / FT(16);
return Rep(Point_2(x_coord, y_coord), sqr_rad);
}
Rep // Circle_2
operator()( Return_base_tag, const Point_2& center,
Orientation orientation = COUNTERCLOCKWISE) const
{
CGAL_kernel_precondition( orientation != COLLINEAR );
return Rep(center, FT(0), orientation);
}
Circle_2
operator()( const Point_2& center, const FT& squared_radius,
Orientation orientation = COUNTERCLOCKWISE) const
{
return this->operator()(Return_base_tag(),
center, squared_radius, orientation);
}
Circle_2
operator()( const Point_2& p, const Point_2& q, const Point_2& r) const
{
return this->operator()(Return_base_tag(), p, q, r);
}
Circle_2
operator()( const Point_2& p, const Point_2& q,
Orientation orientation = COUNTERCLOCKWISE) const
{
return this->operator()(Return_base_tag(), p, q, orientation);
}
Circle_2
operator()( const Point_2& p, const Point_2& q,
const FT& bulge) const
{
return this->operator()(Return_base_tag(), p, q, bulge);
}
Circle_2
operator()( const Point_2& center,
Orientation orientation = COUNTERCLOCKWISE) const
{
return this->operator()(Return_base_tag(), center, orientation);
}
};
template < typename K >
class Construct_circle_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Circle_3 Circle_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Direction_3 Direction_3;
typedef typename Circle_3::Rep Rep;
public:
typedef Circle_3 result_type;
Rep
operator() (Return_base_tag, const Point_3& p,
const FT& sr, const Plane_3& plane) const
{ return Rep(p, sr, plane); }
Rep
operator() (Return_base_tag, const Point_3& p,
const FT& sr, const Vector_3& v) const
{ return Rep(p, sr, v); }
Rep
operator() (Return_base_tag, const Point_3& p,
const FT& sr, const Direction_3& d) const
{ return Rep(p, sr, d); }
Rep
operator() (Return_base_tag, const Sphere_3& s1,
const Sphere_3& s2) const
{ return Rep(s1, s2); }
Rep
operator() (Return_base_tag, const Plane_3& p,
const Sphere_3& s) const
{ return Rep(p, s); }
Rep
operator() (Return_base_tag, const Plane_3& p,
const Sphere_3& s, int a) const
{ return Rep(p, s, a); }
Rep
operator() (Return_base_tag, const Point_3& p1,
const Point_3& p2, const Point_3& p3) const
{ return Rep(p1, p2, p3); }
Circle_3
operator()(const Point_3& p, const FT& sr,
const Plane_3& plane) const
{ return this->operator()(Return_base_tag(), p, sr, plane); }
Circle_3
operator() (const Point_3& p, const FT& sr,
const Vector_3& v) const
{ return this->operator()(Return_base_tag(), p, sr, v); }
Circle_3
operator() (const Point_3& p, const FT& sr,
const Direction_3& d) const
{ return this->operator()(Return_base_tag(), p, sr, d); }
Circle_3
operator() (const Sphere_3& s1, const Sphere_3& s2) const
{ return this->operator()(Return_base_tag(), s1, s2); }
Circle_3
operator() (const Plane_3& p, const Sphere_3& s) const
{ return this->operator()(Return_base_tag(), p, s); }
Circle_3
operator() (const Sphere_3& s, const Plane_3& p) const
{ return this->operator()(Return_base_tag(), p, s); }
Circle_3
operator() (const Plane_3& p, const Sphere_3& s, int a) const
{ return this->operator()(Return_base_tag(), p, s, a); }
Circle_3
operator() (const Sphere_3& s, const Plane_3& p, int a) const
{ return this->operator()(Return_base_tag(), p, s, a); }
Circle_3
operator()( const Point_3& p1, const Point_3& p2, const Point_3& p3) const
{ return this->operator()(Return_base_tag(), p1, p2, p3); }
};
template <typename K>
class Construct_iso_cuboid_3
{
typedef typename K::RT RT;
typedef typename K::Point_3 Point_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename Iso_cuboid_3::Rep Rep;
public:
typedef Iso_cuboid_3 result_type;
Rep // Iso_cuboid_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q, int) const
{ return Rep(p, q, 0); }
Rep // Iso_cuboid_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q) const
{ return Rep(p, q); }
Rep // Iso_cuboid_3
operator()(Return_base_tag, const Point_3 &left, const Point_3 &right,
const Point_3 &bottom, const Point_3 &top,
const Point_3 &far_, const Point_3 &close) const
{ return Rep(left, right, bottom, top, far_, close); }
Rep // Iso_cuboid_3
operator()(Return_base_tag, const RT& min_hx, const RT& min_hy, const RT& min_hz,
const RT& max_hx, const RT& max_hy, const RT& max_hz,
const RT& hw) const
{ return Rep(min_hx, min_hy, min_hz, max_hx, max_hy, max_hz, hw); }
Rep // Iso_cuboid_3
operator()(Return_base_tag, const RT& min_hx, const RT& min_hy, const RT& min_hz,
const RT& max_hx, const RT& max_hy, const RT& max_hz) const
{ return Rep(min_hx, min_hy, min_hz, max_hx, max_hy, max_hz); }
Iso_cuboid_3
operator()(const Point_3& p, const Point_3& q, int) const
{ return this->operator()(Return_base_tag(), p, q, 0); }
Iso_cuboid_3
operator()(const Point_3& p, const Point_3& q) const
{ return this->operator()(Return_base_tag(), p, q); }
Iso_cuboid_3
operator()(const Point_3 &left, const Point_3 &right,
const Point_3 &bottom, const Point_3 &top,
const Point_3 &far_, const Point_3 &close) const
{ return this->operator()(Return_base_tag(), left, right, bottom, top, far_, close); }
Iso_cuboid_3
operator()(const RT& min_hx, const RT& min_hy, const RT& min_hz,
const RT& max_hx, const RT& max_hy, const RT& max_hz,
const RT& hw) const
{ return this->operator()(Return_base_tag(), min_hx, min_hy, min_hz, max_hx, max_hy, max_hz, hw); }
Iso_cuboid_3
operator()(const RT& min_hx, const RT& min_hy, const RT& min_hz,
const RT& max_hx, const RT& max_hy, const RT& max_hz) const
{ return this->operator()(Return_base_tag(), min_hx, min_hy, min_hz, max_hx, max_hy, max_hz); }
};
template <typename K>
class Construct_line_line_intersection_point_3
{
typedef typename K::Line_3 Line;
typedef typename K::Point_3 Point;
typename K::Construct_line_3 construct_line;
public:
typedef Point result_type;
Point
operator()(const Point& l11, const Point& l12,
const Point& l21, const Point& l22) const
{
Line l1 = construct_line(l11, l12);
Line l2 = construct_line(l21, l22);
typename cpp11::result_of<typename K::Intersect_3(Line,Line)>::type
res = typename K::Intersect_3()(l1,l2);
CGAL_assertion(res!=boost::none);
const Point* e_pt = boost::get<Point>(&(*res));
CGAL_assertion(e_pt!=nullptr);
return *e_pt;
}
};
template <typename K>
class Construct_max_vertex_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef const Point_2& result_type;
result_type
operator()(const Iso_rectangle_2& r) const
{ return (r.rep().max)(); }
result_type
operator()(const Segment_2& s) const
{ return (s.max)(); }
};
template <typename K>
class Construct_min_vertex_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
public:
typedef const Point_2& result_type;
result_type
operator()(const Iso_rectangle_2& r) const
{ return (r.rep().min)(); }
result_type
operator()(const Segment_2& s) const
{ return (s.min)(); }
};
template <typename K>
class Construct_max_vertex_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
public:
typedef const Point_3& result_type;
result_type
operator()(const Iso_cuboid_3& r) const
{ return (r.rep().max)(); }
result_type
operator()(const Segment_3& s) const
{ return (s.rep().max)(); }
};
template <typename K>
class Construct_min_vertex_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
public:
typedef const Point_3& result_type;
result_type
operator()(const Iso_cuboid_3& r) const
{ return (r.rep().min)(); }
result_type
operator()(const Segment_3& s) const
{ return (s.rep().min)(); }
};
template <typename K>
class Construct_normal_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
Vector_3
operator()(const Point_3& p,const Point_3& q, const Point_3& r) const
{
CGAL_kernel_precondition(! K().collinear_3_object()(p,q,r) );
Vector_3 res = CGAL::cross_product(q-p, r-p);
return res; }
};
template <typename K>
class Construct_object_2
{
typedef typename K::Object_2 Object_2;
public:
typedef Object_2 result_type;
template <class Cls>
Object_2
operator()( const Cls& c) const
{ return make_object(c); }
};
template <typename K>
class Construct_object_3
{
typedef typename K::Object_3 Object_3;
public:
typedef Object_3 result_type;
template <class Cls>
Object_3
operator()( const Cls& c) const
{ return make_object(c); }
};
template <typename K>
class Construct_opposite_circle_2
{
typedef typename K::Circle_2 Circle_2;
public:
typedef Circle_2 result_type;
Circle_2
operator()( const Circle_2& c) const
{ return c.opposite(); }
};
template <typename K>
class Construct_opposite_direction_2
{
typedef typename K::Direction_2 Direction_2;
typedef typename Direction_2::Rep Rep;
public:
typedef Direction_2 result_type;
Direction_2
operator()( const Direction_2& d) const
{ return Rep(-d.dx(), -d.dy()); }
};
template <typename K>
class Construct_opposite_direction_3
{
typedef typename K::Direction_3 Direction_3;
typedef typename Direction_3::Rep Rep;
public:
typedef Direction_3 result_type;
Direction_3
operator()( const Direction_3& d) const
{ return Rep(-d.dx(), -d.dy(), -d.dz()); }
};
template <typename K>
class Construct_opposite_line_2
{
typedef typename K::Line_2 Line_2;
public:
typedef Line_2 result_type;
Line_2
operator()( const Line_2& l) const
{ return Line_2( -l.a(), -l.b(), -l.c()); }
};
template <typename K>
class Construct_opposite_line_3
{
typedef typename K::Line_3 Line_3;
public:
typedef Line_3 result_type;
Line_3
operator()( const Line_3& l) const
{ return l.rep().opposite(); }
};
template <typename K>
class Construct_opposite_plane_3
{
typedef typename K::Plane_3 Plane_3;
public:
typedef Plane_3 result_type;
Plane_3
operator()( const Plane_3& p) const
{ return p.rep().opposite(); }
};
template <typename K>
class Construct_opposite_ray_2
{
typedef typename K::Ray_2 Ray_2;
public:
typedef Ray_2 result_type;
Ray_2
operator()( const Ray_2& r) const
{ return r.opposite(); }
};
template <typename K>
class Construct_opposite_ray_3
{
typedef typename K::Ray_3 Ray_3;
public:
typedef Ray_3 result_type;
Ray_3
operator()( const Ray_3& r) const
{ return r.opposite(); }
};
template <typename K>
class Construct_opposite_segment_2
{
typedef typename K::Segment_2 Segment_2;
public:
typedef Segment_2 result_type;
Segment_2
operator()( const Segment_2& s) const
{ return Segment_2(s.target(), s.source()); }
};
template <typename K>
class Construct_opposite_segment_3
{
typedef typename K::Segment_3 Segment_3;
public:
typedef Segment_3 result_type;
Segment_3
operator()( const Segment_3& s) const
{ return s.rep().opposite(); }
};
template <typename K>
class Construct_opposite_sphere_3
{
typedef typename K::Sphere_3 Sphere_3;
public:
typedef Sphere_3 result_type;
Sphere_3
operator()( const Sphere_3& s) const
{ return s.rep().opposite(); }
};
template <typename K>
class Construct_opposite_triangle_2
{
typedef typename K::Triangle_2 Triangle_2;
public:
typedef Triangle_2 result_type;
Triangle_2
operator()( const Triangle_2& t) const
{ return Triangle_2(t.vertex(0), t.vertex(2), t.vertex(1));}
};
template <typename K>
class Construct_perpendicular_line_3
{
typedef typename K::Line_3 Line_3;
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Line_3 result_type;
Line_3
operator()( const Plane_3& pl, const Point_3& p) const
{ return pl.rep().perpendicular_line(p); }
};
template <typename K>
class Construct_perpendicular_plane_3
{
typedef typename K::Line_3 Line_3;
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Plane_3 result_type;
Plane_3
operator()( const Line_3& l, const Point_3& p) const
{ return l.rep().perpendicular_plane(p); }
};
template <typename K>
class Construct_plane_3
{
typedef typename K::RT RT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Direction_3 Direction_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Circle_3 Circle_3;
typedef typename Plane_3::Rep Rep;
public:
typedef Plane_3 result_type;
Rep // Plane_3
operator()(Return_base_tag, const RT& a, const RT& b, const RT& c, const RT& d) const
{ return Rep(a, b, c, d); }
Rep // Plane_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q, const Point_3& r) const
{ return Rep(p, q, r); }
Rep // Plane_3
operator()(Return_base_tag, const Point_3& p, const Direction_3& d) const
{ return Rep(p, d); }
Rep // Plane_3
operator()(Return_base_tag, const Point_3& p, const Vector_3& v) const
{ return Rep(p, v); }
Rep // Plane_3
operator()(Return_base_tag, const Line_3& l, const Point_3& p) const
{ return Rep(l, p); }
Rep // Plane_3
operator()(Return_base_tag, const Ray_3& r, const Point_3& p) const
{ return Rep(r, p); }
Rep // Plane_3
operator()(Return_base_tag, const Segment_3& s, const Point_3& p) const
{ return Rep(s, p); }
Rep // Plane_3
operator()(Return_base_tag, const Circle_3 & c) const
{ return c.rep().supporting_plane(); }
Plane_3
operator()(const RT& a, const RT& b, const RT& c, const RT& d) const
{ return this->operator()(Return_base_tag(), a, b, c, d); }
Plane_3
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
{ return this->operator()(Return_base_tag(), p, q, r); }
Plane_3
operator()(const Point_3& p, const Direction_3& d) const
{ return this->operator()(Return_base_tag(), p, d); }
Plane_3
operator()(const Point_3& p, const Vector_3& v) const
{ return this->operator()(Return_base_tag(), p, v); }
Plane_3
operator()(const Line_3& l, const Point_3& p) const
{ return this->operator()(Return_base_tag(), l, p); }
Plane_3
operator()(const Ray_3& r, const Point_3& p) const
{ return this->operator()(Return_base_tag(), r, p); }
Plane_3
operator()(const Segment_3& s, const Point_3& p) const
{ return this->operator()(Return_base_tag(), s, p); }
Plane_3
operator()(const Circle_3 & c) const
{ return this->operator()(Return_base_tag(), c); }
};
template <typename K>
class Construct_plane_line_intersection_point_3
{
typedef typename K::Plane_3 Plane;
typedef typename K::Line_3 Line;
typedef typename K::Point_3 Point;
typename K::Construct_plane_3 construct_plane;
typename K::Construct_line_3 construct_line;
public:
typedef Point result_type;
Point
operator()(const Point& p1, const Point& p2, const Point& p3,
const Point& l1, const Point& l2) const
{
Plane plane = construct_plane(p1, p2, p3);
Line line = construct_line( l1, l2 );
typename cpp11::result_of<typename K::Intersect_3(Plane,Line)>::type
res = typename K::Intersect_3()(plane,line);
CGAL_assertion(res!=boost::none);
const Point* e_pt = boost::get<Point>(&(*res));
CGAL_assertion(e_pt!=nullptr);
return *e_pt;
}
Point
operator()(const Plane& plane,
const Point& l1, const Point& l2) const
{
Line line = construct_line( l1, l2 );
typename cpp11::result_of<typename K::Intersect_3(Plane,Line)>::type
res = typename K::Intersect_3()(plane,line);
CGAL_assertion(res!=boost::none);
const Point* e_pt = boost::get<Point>(&(*res));
CGAL_assertion(e_pt!=nullptr);
return *e_pt;
}
};
template <typename K>
class Construct_point_on_2
{
typedef typename K::FT FT;
typedef typename K::Point_2 Point_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Ray_2 Ray_2;
public:
typedef Point_2 result_type;
Point_2
operator()( const Line_2& l, const FT i) const
{ return l.point(i); }
Point_2
operator()( const Segment_2& s, int i) const
{ return s.point(i); }
Point_2
operator()( const Ray_2& r, const FT i) const
{ return r.point(i); }
};
template <typename K>
class Construct_point_on_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Point_3 result_type;
Point_3
operator()( const Line_3& l, const FT i) const
{ return l.rep().point(i); }
Point_3
operator()( const Segment_3& s, int i) const
{ return s.point(i); }
Point_3
operator()( const Ray_3& r, const FT i) const
{ return r.rep().point(i); }
Point_3
operator()( const Plane_3& p) const
{ return p.rep().point(); }
};
template <typename K>
class Construct_projected_xy_point_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Point_2 result_type;
Point_2
operator()( const Plane_3& h, const Point_3& p) const
{ return h.rep().to_2d(p); }
};
template <typename K>
class Construct_ray_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Direction_2 Direction_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Ray_2 Ray_2;
typedef typename Ray_2::Rep Rep;
public:
typedef Ray_2 result_type;
Rep // Ray_2
operator()(Return_base_tag, const Point_2& p, const Point_2& q) const
{ return Rep(p, q); }
Rep // Ray_2
operator()(Return_base_tag, const Point_2& p, const Vector_2& v) const
{ return Rep(p, K().construct_translated_point_2_object()(p, v)); }
Rep // Ray_2
operator()(Return_base_tag, const Point_2& p, const Direction_2& d) const
{ return Rep(p, K().construct_translated_point_2_object()(p, d.to_vector())); }
Rep // Ray_2
operator()(Return_base_tag, const Point_2& p, const Line_2& l) const
{ return Rep(p, K().construct_translated_point_2_object()(p, l.to_vector())); }
Ray_2
operator()(const Point_2& p, const Point_2& q) const
{ return this->operator()(Return_base_tag(), p, q); }
Ray_2
operator()(const Point_2& p, const Vector_2& v) const
{ return this->operator()(Return_base_tag(), p, v); }
Ray_2
operator()(const Point_2& p, const Direction_2& d) const
{ return this->operator()(Return_base_tag(), p, d); }
Ray_2
operator()(const Point_2& p, const Line_2& l) const
{ return this->operator()(Return_base_tag(), p, l); }
};
template <typename K>
class Construct_ray_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Direction_3 Direction_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Ray_3 Ray_3;
typedef typename Ray_3::Rep Rep;
public:
typedef Ray_3 result_type;
Rep // Ray_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q) const
{ return Rep(p, q); }
Rep // Ray_3
operator()(Return_base_tag, const Point_3& p, const Vector_3& v) const
{ return Rep(p, v); }
Rep // Ray_3
operator()(Return_base_tag, const Point_3& p, const Direction_3& d) const
{ return Rep(p, d); }
Rep // Ray_3
operator()(Return_base_tag, const Point_3& p, const Line_3& l) const
{ return Rep(p, l); }
Ray_3
operator()(const Point_3& p, const Point_3& q) const
{ return this->operator()(Return_base_tag(), p, q); }
Ray_3
operator()(const Point_3& p, const Vector_3& v) const
{ return this->operator()(Return_base_tag(), p, v); }
Ray_3
operator()(const Point_3& p, const Direction_3& d) const
{ return this->operator()(Return_base_tag(), p, d); }
Ray_3
operator()(const Point_3& p, const Line_3& l) const
{ return this->operator()(Return_base_tag(), p, l); }
};
template <typename K>
class Construct_segment_2
{
typedef typename K::Segment_2 Segment_2;
typedef typename Segment_2::Rep Rep;
typedef typename K::Point_2 Point_2;
public:
typedef Segment_2 result_type;
Rep // Segment_2
operator()(Return_base_tag, const Point_2& p, const Point_2& q) const
{ return Rep(p, q); }
Segment_2
operator()( const Point_2& p, const Point_2& q) const
{ return this->operator()(Return_base_tag(), p, q); }
};
template <typename K>
class Construct_segment_3
{
typedef typename K::Segment_3 Segment_3;
typedef typename K::Point_3 Point_3;
typedef typename Segment_3::Rep Rep;
public:
typedef Segment_3 result_type;
Rep // Segment_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q) const
{ return Rep(p, q); }
Segment_3
operator()( const Point_3& p, const Point_3& q) const
{ return this->operator()(Return_base_tag(), p, q); }
};
template <typename K>
class Construct_source_2
{
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Point_2 Point_2;
public:
typedef const Point_2& result_type;
result_type
operator()(const Segment_2& s) const
{ return s.rep().source(); }
result_type
operator()(const Ray_2& r) const
{ return r.rep().source(); }
};
template <typename K>
class Construct_source_3
{
typedef typename K::Segment_3 Segment_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Point_3 Point_3;
public:
typedef const Point_3& result_type;
result_type
operator()(const Segment_3& s) const
{ return s.rep().source(); }
result_type
operator()(const Ray_3& r) const
{ return r.rep().source(); }
};
template <typename K>
class Construct_target_2
{
typedef typename K::Segment_2 Segment_2;
typedef typename K::Point_2 Point_2;
public:
typedef const Point_2& result_type;
result_type
operator()(const Segment_2& s) const
{ return s.rep().target(); }
};
template <typename K>
class Construct_target_3
{
typedef typename K::Segment_3 Segment_3;
typedef typename K::Point_3 Point_3;
public:
typedef const Point_3& result_type;
result_type
operator()(const Segment_3& s) const
{ return s.rep().target(); }
};
template <typename K>
class Construct_second_point_2
{
typedef typename K::Ray_2 Ray_2;
typedef typename K::Point_2 Point_2;
public:
typedef const Point_2& result_type;
result_type
operator()(const Ray_2& r) const
{ return r.rep().second_point(); }
};
template <typename K>
class Construct_second_point_3
{
typedef typename K::Ray_3 Ray_3;
typedef typename K::Point_3 Point_3;
public:
typedef Point_3 result_type;
result_type // const result_type& // Homogeneous...
operator()(const Ray_3& r) const
{ return r.rep().second_point(); }
};
template <typename K>
class Construct_sphere_3
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Circle_3 Circle_3;
typedef typename Sphere_3::Rep Rep;
public:
typedef Sphere_3 result_type;
Rep // Sphere_3
operator()(Return_base_tag, const Point_3& center, const FT& squared_radius,
Orientation orientation = COUNTERCLOCKWISE) const
{ return Rep(center, squared_radius, orientation); }
Rep // Sphere_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{ return Rep(p, q, r, s); }
Rep // Sphere_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q, const Point_3& r,
Orientation orientation = COUNTERCLOCKWISE) const
{ return Rep(p, q, r, orientation); }
Rep // Sphere_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q,
Orientation orientation = COUNTERCLOCKWISE) const
{ return Rep(p, q, orientation); }
Rep // Sphere_3
operator()(Return_base_tag, const Point_3& center,
Orientation orientation = COUNTERCLOCKWISE) const
{ return Rep(center, orientation); }
Rep
operator() (Return_base_tag, const Circle_3 & c) const
{ return c.rep().diametral_sphere(); }
Sphere_3
operator()( const Point_3& center, const FT& squared_radius,
Orientation orientation = COUNTERCLOCKWISE) const
{ return this->operator()(Return_base_tag(), center, squared_radius, orientation); }
Sphere_3
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{ return this->operator()(Return_base_tag(), p, q, r, s); }
Sphere_3
operator()( const Point_3& p, const Point_3& q, const Point_3& r,
Orientation orientation = COUNTERCLOCKWISE) const
{ return this->operator()(Return_base_tag(), p, q, r, orientation); }
Sphere_3
operator()( const Point_3& p, const Point_3& q,
Orientation orientation = COUNTERCLOCKWISE) const
{ return this->operator()(Return_base_tag(), p, q, orientation); }
Sphere_3
operator()( const Point_3& center,
Orientation orientation = COUNTERCLOCKWISE) const
{ return this->operator()(Return_base_tag(), center, orientation); }
Sphere_3
operator() (const Circle_3 & c) const
{ return this->operator()(Return_base_tag(), c); }
};
template <typename K>
class Construct_supporting_plane_3
{
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef Plane_3 result_type;
Plane_3
operator()( const Triangle_3& t) const
{ return t.rep().supporting_plane(); }
};
template <typename K>
class Construct_tetrahedron_3
{
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Point_3 Point_3;
typedef typename Tetrahedron_3::Rep Rep;
public:
typedef Tetrahedron_3 result_type;
Rep // Tetrahedron_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{ return Rep(p, q, r, s); }
Tetrahedron_3
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{ return this->operator()(Return_base_tag(), p, q, r, s); }
};
template <typename K>
class Construct_triangle_2
{
typedef typename K::Triangle_2 Triangle_2;
typedef typename Triangle_2::Rep Rep;
typedef typename K::Point_2 Point_2;
public:
typedef Triangle_2 result_type;
Rep // Triangle_2
operator()(Return_base_tag, const Point_2& p, const Point_2& q, const Point_2& r) const
{ return Rep(p, q, r); }
Triangle_2
operator()( const Point_2& p, const Point_2& q, const Point_2& r) const
{ return this->operator()(Return_base_tag(), p, q, r); }
};
template <typename K>
class Construct_triangle_3
{
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Point_3 Point_3;
typedef typename Triangle_3::Rep Rep;
public:
typedef Triangle_3 result_type;
Rep // Triangle_3
operator()(Return_base_tag, const Point_3& p, const Point_3& q, const Point_3& r) const
{ return Rep(p, q, r); }
Triangle_3
operator()( const Point_3& p, const Point_3& q, const Point_3& r) const
{ return this->operator()(Return_base_tag(), p, q, r); }
};
template <typename K>
class Construct_unit_normal_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
public:
typedef Vector_3 result_type;
Vector_3
operator()(const Point_3& p,const Point_3& q, const Point_3& r) const
{
CGAL_kernel_precondition(! K().collinear_3_object()(p,q,r) );
Vector_3 res = CGAL::cross_product(q-p, r-p);
res = res / CGAL::sqrt(res.squared_length());
return res;
}
};
template <typename K>
class Construct_vertex_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
template<typename>
struct result {
typedef const Point_3& type;
};
template<typename T>
struct result<T(Iso_cuboid_3, int)> {
typedef Point_3 type;
};
const Point_3&
operator()( const Segment_3& s, int i) const
{ return s.rep().vertex(i); }
const Point_3&
operator()( const Triangle_3& t, int i) const
{ return t.rep().vertex(i); }
Point_3
operator()( const Iso_cuboid_3& r, int i) const
{ return r.rep().vertex(i); }
const Point_3&
operator()( const Tetrahedron_3& t, int i) const
{ return t.rep().vertex(i); }
};
template <typename K>
class Construct_cartesian_const_iterator_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Cartesian_const_iterator_2
Cartesian_const_iterator_2;
public:
typedef Cartesian_const_iterator_2 result_type;
Cartesian_const_iterator_2
operator()( const Point_2& p) const
{
return p.rep().cartesian_begin();
}
Cartesian_const_iterator_2
operator()( const Point_2& p, int) const
{
return p.rep().cartesian_end();
}
Cartesian_const_iterator_2
operator()( const Vector_2& v) const
{
return v.rep().cartesian_begin();
}
Cartesian_const_iterator_2
operator()( const Vector_2& v, int) const
{
return v.rep().cartesian_end();
}
};
template <typename K>
class Construct_cartesian_const_iterator_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Cartesian_const_iterator_3
Cartesian_const_iterator_3;
public:
typedef Cartesian_const_iterator_3 result_type;
Cartesian_const_iterator_3
operator()( const Point_3& p) const
{
return p.rep().cartesian_begin();
}
Cartesian_const_iterator_3
operator()( const Point_3& p, int) const
{
return p.rep().cartesian_end();
}
Cartesian_const_iterator_3
operator()( const Vector_3& v) const
{
return v.rep().cartesian_begin();
}
Cartesian_const_iterator_3
operator()( const Vector_3& v, int) const
{
return v.rep().cartesian_end();
}
};
template <typename K>
class Construct_projected_point_3
{
bool
is_inside_triangle_3_aux(const typename K::Vector_3& w,
const typename K::Point_3& p1,
const typename K::Point_3& p2,
const typename K::Point_3& q,
typename K::Point_3& result,
bool& outside,
const K& k)
{
typedef typename K::Vector_3 Vector_3;
typedef typename K::FT FT;
typename K::Construct_vector_3 vector =
k.construct_vector_3_object();
typename K::Construct_projected_point_3 projection =
k.construct_projected_point_3_object();
typename K::Construct_line_3 line =
k.construct_line_3_object();
typename K::Compute_scalar_product_3 scalar_product =
k.compute_scalar_product_3_object();
typename K::Construct_cross_product_vector_3 cross_product =
k.construct_cross_product_vector_3_object();
const Vector_3 v = cross_product(vector(p1,p2), vector(p1,q));
if ( scalar_product(v,w) < FT(0))
{
if ( scalar_product(vector(p1,q), vector(p1,p2)) >= FT(0)
&& scalar_product(vector(p2,q), vector(p2,p1)) >= FT(0) )
{
result = projection(line(p1, p2), q);
return true;
}
outside = true;
}
return false;
}
/**
* Returns the nearest point of p1,p2,p3 from origin
* @param origin the origin point
* @param p1 the first point
* @param p2 the second point
* @param p3 the third point
* @param k the kernel
* @return the nearest point from origin
*/
typename K::Point_3
nearest_point_3(const typename K::Point_3& origin,
const typename K::Point_3& p1,
const typename K::Point_3& p2,
const typename K::Point_3& p3,
const K& k)
{
typedef typename K::FT FT;
typename K::Compute_squared_distance_3 sq_distance =
k.compute_squared_distance_3_object();
const FT dist_origin_p1 = sq_distance(origin,p1);
const FT dist_origin_p2 = sq_distance(origin,p2);
const FT dist_origin_p3 = sq_distance(origin,p3);
if ( dist_origin_p2 >= dist_origin_p1
&& dist_origin_p3 >= dist_origin_p1 )
{
return p1;
}
if ( dist_origin_p3 >= dist_origin_p2 )
{
return p2;
}
return p3;
}
/**
* @brief returns true if p is inside triangle t. If p is not inside t,
* result is the nearest point of t from p. WARNING: it is assumed that
* t and p are on the same plane.
* @param p the reference point
* @param t the triangle
* @param result if p is not inside t, the nearest point of t from p
* @param k the kernel
* @return true if p is inside t
*/
bool
is_inside_triangle_3(const typename K::Point_3& p,
const typename K::Triangle_3& t,
typename K::Point_3& result,
const K& k)
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typename K::Construct_vector_3 vector =
k.construct_vector_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Construct_cross_product_vector_3 cross_product =
k.construct_cross_product_vector_3_object();
const Point_3& t0 = vertex_on(t,0);
const Point_3& t1 = vertex_on(t,1);
const Point_3& t2 = vertex_on(t,2);
Vector_3 w = cross_product(vector(t0,t1), vector(t1,t2));
bool outside = false;
if ( is_inside_triangle_3_aux(w, t0, t1, p, result, outside, k)
|| is_inside_triangle_3_aux(w, t1, t2, p, result, outside, k)
|| is_inside_triangle_3_aux(w, t2, t0, p, result, outside, k) )
{
return false;
}
if ( outside )
{
result = nearest_point_3(p,t0,t1,t2,k);
return false;
}
else
{
return true;
}
}
/**
* @brief returns true if p is inside segment s. If p is not inside s,
* result is the nearest point of s from p. WARNING: it is assumed that
* t and p are on the same line.
* @param query the query point
* @param s the segment
* @param closest_point_on_segment if query is not inside s, the nearest point of s from p
* @param k the kernel
* @return true if p is inside s
*/
bool
is_inside_segment_3(const typename K::Point_3& query,
const typename K::Segment_3 & s,
typename K::Point_3& closest_point_on_segment,
const K& k)
{
typename K::Construct_vector_3 vector =
k.construct_vector_3_object();
typename K::Construct_vertex_3 vertex_on =
k.construct_vertex_3_object();
typename K::Compute_scalar_product_3 scalar_product =
k.compute_scalar_product_3_object();
typedef typename K::FT FT;
typedef typename K::Point_3 Point;
const Point& a = vertex_on(s, 0);
const Point& b = vertex_on(s, 1);
if( scalar_product(vector(a,b), vector(a, query)) < FT(0) )
{
closest_point_on_segment = a;
return false;
}
if( scalar_product(vector(b,a), vector(b, query)) < FT(0) )
{
closest_point_on_segment = b;
return false;
}
// query is on segment
return true;
}
public:
typename K::Point_3
operator()(const typename K::Point_3& origin,
const typename K::Triangle_3& triangle,
const K& k)
{
typedef typename K::Point_3 Point_3;
typename K::Construct_supporting_plane_3 supporting_plane =
k.construct_supporting_plane_3_object();
typename K::Construct_projected_point_3 projection =
k.construct_projected_point_3_object();
typename K::Is_degenerate_3 is_degenerate = k.is_degenerate_3_object();
const typename K::Plane_3 plane = supporting_plane(triangle);
if(is_degenerate(plane)) {
// If the plane is degenerate, then the triangle is degenerate, and
// one tries to find to which segment it is equivalent.
typename K::Construct_vertex_3 vertex = k.construct_vertex_3_object();
typename K::Construct_vector_3 vector = k.construct_vector_3_object();
typename K::Compute_x_3 x = k.compute_x_3_object();
typename K::Compute_y_3 y = k.compute_y_3_object();
typename K::Compute_z_3 z = k.compute_z_3_object();
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector_3;
const Point_3& a = vertex(triangle, 0);
const Point_3& b = vertex(triangle, 1);
const Point_3& c = vertex(triangle, 2);
const Vector_3 ab = vector(a, b);
const Vector_3 ac = vector(a, c);
const Vector_3 bc = vector(b, c);
const FT linf_ab = (std::max)((std::max)(x(ab), y(ab)), z(ab));
const FT linf_ac = (std::max)((std::max)(x(ac), y(ac)), z(ac));
const FT linf_bc = (std::max)((std::max)(x(bc), y(bc)), z(bc));
typename K::Construct_segment_3 seg = k.construct_segment_3_object();
if(linf_ab > linf_ac) {
if(linf_ab > linf_bc) {
// ab is the maximal segment
return this->operator()(origin, seg(a, b), k);
} else {
// ab > ac, bc >= ab, use bc
return this->operator()(origin, seg(b, c), k);
}
} else { // ab <= ac
if(linf_ac > linf_bc) {
// ac is the maximal segment
return this->operator()(origin, seg(a, c), k);
} else {
// ab <= ac, ac <= bc, use bc
return this->operator()(origin, seg(b, c), k);
}
}
} // degenerate plane
// Project origin on triangle supporting plane
const Point_3 proj = projection(plane, origin);
Point_3 moved_point;
bool inside = is_inside_triangle_3(proj,triangle,moved_point,k);
// If proj is inside triangle, return it
if ( inside )
{
return proj;
}
// Else return the constructed point
return moved_point;
}
typename K::Point_3
operator()(const typename K::Point_3& query,
const typename K::Segment_3& segment,
const K& k)
{
typename K::Is_degenerate_3 is_degenerate =
k.is_degenerate_3_object();
typename K::Construct_vertex_3 vertex =
k.construct_vertex_3_object();
if(is_degenerate(segment))
return vertex(segment, 0);
if(segment.to_vector() * (query-segment.source()) <= 0)
return segment.source();
if(segment.to_vector() * (query-segment.target()) >= 0)
return segment.target();
// If proj is inside segment, returns it
return k.construct_projected_point_3_object()(segment.supporting_line(), query);
}
typename K::Point_3
operator()(const typename K::Point_3& query,
const typename K::Ray_3& ray,
const K& k)
{
if ( ray.to_vector() * (query-ray.source()) <= 0)
return ray.source();
else
{
return k.construct_projected_point_3_object()(ray.supporting_line(), query);
}
}
// code for operator for plane and point is defined in
// CGAL/Cartesian/function_objects.h and CGAL/Homogeneous/function_objects.h
};
template <typename K>
class Coplanar_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Orientation_3 Orientation_3;
Orientation_3 o;
public:
typedef typename K::Boolean result_type;
Coplanar_3() {}
Coplanar_3(const Orientation_3& o_) : o(o_) {}
result_type
operator()( const Point_3& p, const Point_3& q,
const Point_3& r, const Point_3& s) const
{
return o(p, q, r, s) == COPLANAR;
}
};
template <typename K>
class Counterclockwise_in_between_2
{
typedef typename K::Direction_2 Direction_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Direction_2& p, const Direction_2& q,
const Direction_2& r) const
{
if ( q < p)
return ( p < r )||( r <= q );
else
return ( p < r )&&( r <= q );
}
};
template <typename K>
class Do_intersect_2
{
public:
typedef typename K::Boolean result_type;
// There are 36 combinaisons, so I use a template.
template <class T1, class T2>
result_type
operator()(const T1& t1, const T2& t2) const
{ return Intersections::internal::do_intersect(t1, t2, K()); }
};
template <typename K>
class Do_intersect_3
{
public:
typedef typename K::Boolean result_type;
// There are x combinaisons, so I use a template.
template <class T1, class T2>
result_type
operator()(const T1& t1, const T2& t2) const
{ return Intersections::internal::do_intersect(t1, t2, K()); }
result_type
operator()(const typename K::Plane_3& pl1, const typename K::Plane_3& pl2, const typename K::Plane_3& pl3) const
{ return Intersections::internal::do_intersect(pl1, pl2, pl3, K() ); }
};
template <typename K>
class Equal_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Direction_2 Direction_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Triangle_2 Triangle_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Circle_2 Circle_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2 &p, const Point_2 &q) const
{
return p.rep() == q.rep();
}
result_type
operator()(const Vector_2 &v1, const Vector_2 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Vector_2 &v, const Null_vector &n) const
{
return v.rep() == n;
}
result_type
operator()(const Direction_2 &d1, const Direction_2 &d2) const
{
return d1.rep() == d2.rep();
}
result_type
operator()(const Segment_2 &s1, const Segment_2 &s2) const
{
return s1.source() == s2.source() && s1.target() == s2.target();
}
result_type
operator()(const Line_2 &l1, const Line_2 &l2) const
{
return l1.rep() == l2.rep();
}
result_type
operator()(const Ray_2& r1, const Ray_2& r2) const
{
return r1.source() == r2.source() && r1.direction() == r2.direction();
}
result_type
operator()(const Circle_2& c1, const Circle_2& c2) const
{
return c1.center() == c2.center() &&
c1.squared_radius() == c2.squared_radius() &&
c1.orientation() == c2.orientation();
}
result_type
operator()(const Triangle_2& t1, const Triangle_2& t2) const
{
int i;
for(i=0; i<3; i++)
if ( t1.vertex(0) == t2.vertex(i) )
break;
return (i<3) && t1.vertex(1) == t2.vertex(i+1)
&& t1.vertex(2) == t2.vertex(i+2);
}
result_type
operator()(const Iso_rectangle_2& i1, const Iso_rectangle_2& i2) const
{
return ((i1.min)() == (i2.min)()) && ((i1.max)() == (i2.max)());
}
};
template <typename K>
class Equal_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typedef typename K::Direction_3 Direction_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Circle_3 Circle_3;
public:
typedef typename K::Boolean result_type;
// Point_3 is special case since the global operator== would recurse.
result_type
operator()(const Point_3 &p, const Point_3 &q) const
{
return p.x() == q.x() && p.y() == q.y() && p.z() == q.z();
}
result_type
operator()(const Plane_3 &v1, const Plane_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Iso_cuboid_3 &v1, const Iso_cuboid_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Sphere_3 &v1, const Sphere_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Tetrahedron_3 &v1, const Tetrahedron_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Triangle_3 &v1, const Triangle_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Ray_3 &v1, const Ray_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Line_3 &v1, const Line_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Direction_3 &v1, const Direction_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Segment_3 &v1, const Segment_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Vector_3 &v1, const Vector_3 &v2) const
{
return v1.rep() == v2.rep();
}
result_type
operator()(const Vector_3 &v, const Null_vector &n) const
{
return v.rep() == n;
}
result_type
operator()(const Circle_3 &v1, const Circle_3 &v2) const
{
return v1.rep() == v2.rep();
}
};
template <typename K>
class Has_on_boundary_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{ return c.has_on_boundary(p); }
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{ return t.has_on_boundary(p); }
result_type
operator()( const Iso_rectangle_2& r, const Point_2& p) const
{ return K().bounded_side_2_object()(r,p) == ON_BOUNDARY; }
};
template <typename K>
class Has_on_boundary_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.rep().has_on_boundary(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{ return t.rep().has_on_boundary(p); }
result_type
operator()( const Iso_cuboid_3& c, const Point_3& p) const
{ return c.rep().has_on_boundary(p); }
};
template <typename K>
class Has_on_bounded_side_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{ return c.has_on_bounded_side(p); }
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{ return t.has_on_bounded_side(p); }
result_type
operator()( const Iso_rectangle_2& r, const Point_2& p) const
{ return K().bounded_side_2_object()(r,p) == ON_BOUNDED_SIDE; }
};
template <typename K>
class Has_on_bounded_side_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Circle_3 Circle_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.has_on_bounded_side(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{ return t.rep().has_on_bounded_side(p); }
result_type
operator()( const Iso_cuboid_3& c, const Point_3& p) const
{ return c.rep().has_on_bounded_side(p); }
result_type
operator()(const Circle_3& c, const Point_3& p) const
{
CGAL_kernel_precondition(
K().has_on_3_object()(c.supporting_plane(),p)
);
return c.rep().has_on_bounded_side(p);
}
bool operator()(const Sphere_3& s1, const Sphere_3& s2,
const Point_3& a, const Point_3& b) const
{
typedef typename K::Circle_3 Circle_3;
typedef typename K::Point_3 Point_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Intersect_3 Intersect_3;
const Has_on_bounded_side_3& has_on_bounded_side = *this;
const bool a_in_s1 = has_on_bounded_side(s1, a);
const bool a_in_s2 = has_on_bounded_side(s2, a);
if(!(a_in_s1 || a_in_s2)) return false;
const bool b_in_s1 = has_on_bounded_side(s1, b);
const bool b_in_s2 = has_on_bounded_side(s2, b);
if(!(b_in_s1 || b_in_s2)) return false;
if(a_in_s1 && b_in_s1) return true;
if(a_in_s2 && b_in_s2) return true;
if(!K().do_intersect_3_object()(s1, s2)) return false;
const Circle_3 circ(s1, s2);
const Plane_3& plane = circ.supporting_plane();
typename CGAL::cpp11::result_of<Intersect_3(Plane_3, Segment_3)>::type
optional = K().intersect_3_object()(plane, Segment_3(a, b));
CGAL_kernel_assertion_msg(bool(optional) == true,
"the segment does not intersect the supporting"
" plane");
const Point_3* p = boost::get<Point_3>(&*optional);
CGAL_kernel_assertion_msg(p != 0,
"the segment intersection with the plane is "
"not a point");
return squared_distance(circ.center(), *p) < circ.squared_radius();
}
};
template <typename K>
class Has_on_negative_side_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{ return c.has_on_negative_side(p); }
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{ return t.has_on_negative_side(p); }
result_type
operator()( const Line_2& l, const Point_2& p) const
{ return l.has_on_negative_side(p); }
};
template <typename K>
class Has_on_negative_side_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.has_on_negative_side(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{ return t.rep().has_on_negative_side(p); }
result_type
operator()( const Plane_3& pl, const Point_3& p) const
{ return pl.rep().has_on_negative_side(p); }
};
template <typename K>
class Has_on_positive_side_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{ return c.has_on_positive_side(p); }
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{ return t.has_on_positive_side(p); }
result_type
operator()( const Line_2& l, const Point_2& p) const
{ return l.has_on_positive_side(p); }
};
template <typename K>
class Has_on_positive_side_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.has_on_positive_side(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{ return t.rep().has_on_positive_side(p); }
result_type
operator()( const Plane_3& pl, const Point_3& p) const
{ return pl.rep().has_on_positive_side(p); }
};
template <typename K>
class Has_on_unbounded_side_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
{ return c.has_on_unbounded_side(p); }
result_type
operator()( const Triangle_2& t, const Point_2& p) const
{ return t.has_on_unbounded_side(p); }
result_type
operator()( const Iso_rectangle_2& r, const Point_2& p) const
{
return K().bounded_side_2_object()(r,p)== ON_UNBOUNDED_SIDE;
}
};
template <typename K>
class Has_on_unbounded_side_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Circle_3 Circle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.has_on_unbounded_side(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{ return t.rep().has_on_unbounded_side(p); }
result_type
operator()( const Iso_cuboid_3& c, const Point_3& p) const
{ return c.rep().has_on_unbounded_side(p); }
result_type
operator()(const Circle_3& c, const Point_3& p) const
{
CGAL_kernel_precondition(
K().has_on_3_object()(c.supporting_plane(),p)
);
return c.rep().has_on_unbounded_side(p);
}
};
template <typename K>
class Has_on_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Segment_2 Segment_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Line_2& l, const Point_2& p) const
{ return l.has_on(p); }
result_type
operator()( const Ray_2& r, const Point_2& p) const
{ return r.has_on(p); }
result_type
operator()( const Segment_2& s, const Point_2& p) const
{ return s.has_on(p); }
};
template <typename K>
class Intersect_2
{
public:
template<typename>
struct result;
template<typename F, typename A, typename B>
struct result<F(A,B)> {
typedef typename Intersection_traits<K, A, B>::result_type type;
};
// 25 possibilities, so I keep the template.
template <class T1, class T2>
typename Intersection_traits<K, T1, T2>::result_type
operator()(const T1& t1, const T2& t2) const
{ return Intersections::internal::intersection(t1, t2, K()); }
};
template <typename K>
class Intersect_3
{
typedef typename K::Plane_3 Plane_3;
public:
template<typename>
struct result;
template<typename F, typename A, typename B>
struct result<F(A, B)> {
typedef typename Intersection_traits<K, A, B>::result_type type;
};
template<typename F>
struct result<F(Plane_3, Plane_3, Plane_3)> {
typedef boost::optional<
boost::variant< typename K::Point_3,
typename K::Line_3,
typename K::Plane_3 > > type;
};
// n possibilities, so I keep the template.
template <class T1, class T2>
typename cpp11::result_of< Intersect_3(T1, T2) >::type
operator()(const T1& t1, const T2& t2) const
{ return Intersections::internal::intersection(t1, t2, K() ); }
typename boost::optional< boost::variant< typename K::Point_3, typename K::Line_3, typename K::Plane_3 > >
operator()(const Plane_3& pl1, const Plane_3& pl2, const Plane_3& pl3)const
{ return Intersections::internal::intersection(pl1, pl2, pl3, K() ); }
};
template <typename K>
class Is_degenerate_2
{
typedef typename K::Circle_2 Circle_2;
typedef typename K::Iso_rectangle_2 Iso_rectangle_2;
typedef typename K::Line_2 Line_2;
typedef typename K::Ray_2 Ray_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Triangle_2 Triangle_2;
typedef typename K::Circle_3 Circle_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c) const
{ return c.is_degenerate(); }
result_type
operator()( const Iso_rectangle_2& r) const
{ return (r.xmin() == r.xmax()) || (r.ymin() == r.ymax()); }
result_type
operator()( const Line_2& l) const
{ return CGAL_NTS is_zero(l.a()) && CGAL_NTS is_zero(l.b()); }
result_type
operator()( const Ray_2& r) const
{ return r.rep().is_degenerate(); }
result_type
operator()( const Segment_2& s) const
{ return s.source() == s.target(); }
result_type
operator()( const Triangle_2& t) const
{ return t.is_degenerate(); }
result_type
operator()( const Circle_3& c) const
{ return c.rep().is_degenerate(); }
};
template <typename K>
class Is_degenerate_3
{
typedef typename K::Iso_cuboid_3 Iso_cuboid_3;
typedef typename K::Line_3 Line_3;
typedef typename K::Circle_3 Circle_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Ray_3 Ray_3;
typedef typename K::Segment_3 Segment_3;
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Iso_cuboid_3& c) const
{ return c.rep().is_degenerate(); }
result_type
operator()( const Line_3& l) const
{ return l.rep().is_degenerate(); }
result_type
operator()( const Plane_3& pl) const
{ return pl.rep().is_degenerate(); }
result_type
operator()( const Ray_3& r) const
{ return r.rep().is_degenerate(); }
result_type
operator()( const Segment_3& s) const
{ return s.rep().is_degenerate(); }
result_type
operator()( const Sphere_3& s) const
{ return s.rep().is_degenerate(); }
result_type
operator()( const Triangle_3& t) const
{ return t.rep().is_degenerate(); }
result_type
operator()( const Tetrahedron_3& t) const
{ return t.rep().is_degenerate(); }
result_type
operator()( const Circle_3& t) const
{ return t.rep().is_degenerate(); }
};
template <typename K>
class Is_horizontal_2
{
typedef typename K::Line_2 Line_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Line_2& l) const
{ return CGAL_NTS is_zero(l.a()); }
result_type
operator()( const Segment_2& s) const
{ return s.is_horizontal(); }
result_type
operator()( const Ray_2& r) const
{ return r.is_horizontal(); }
};
template <typename K>
class Is_vertical_2
{
typedef typename K::Line_2 Line_2;
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
public:
typedef typename K::Boolean result_type;
result_type
operator()( const Line_2& l) const
{ return CGAL_NTS is_zero(l.b()); }
result_type
operator()( const Segment_2& s) const
{ return s.is_vertical(); }
result_type
operator()( const Ray_2& r) const
{ return r.is_vertical(); }
};
template <typename K>
class Left_turn_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Orientation_2 Orientation_2;
Orientation_2 o;
public:
typedef typename K::Boolean result_type;
Left_turn_2() {}
Left_turn_2(const Orientation_2& o_) : o(o_) {}
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
{ return o(p, q, r) == LEFT_TURN; }
};
template <typename K>
class Less_rotate_ccw_2
{
typedef typename K::Point_2 Point_2;
typedef typename K::Orientation_2 Orientation_2;
typedef typename K::Collinear_are_ordered_along_line_2
Collinear_are_ordered_along_line_2;
Orientation_2 o;
Collinear_are_ordered_along_line_2 co;
public:
typedef typename K::Boolean result_type;
Less_rotate_ccw_2() {}
Less_rotate_ccw_2(const Orientation_2& o_,
const Collinear_are_ordered_along_line_2& co_)
: o(o_), co(co_)
{}
result_type
operator()(const Point_2& r, const Point_2& p, const Point_2& q) const
{
typename K::Orientation ori = o(r, p, q);
if ( ori == LEFT_TURN )
return true;
else if ( ori == RIGHT_TURN )
return false;
else
{
if (p == r) return false;
if (q == r) return true;
if (p == q) return false;
return co( r, q, p);
}
}
};
template <typename K>
class Oriented_side_3
{
typedef typename K::Point_3 Point_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Plane_3 Plane_3;
typedef typename K::Sphere_3 Sphere_3;
public:
typedef typename K::Oriented_side result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
{ return s.rep().oriented_side(p); }
result_type
operator()( const Plane_3& pl, const Point_3& p) const
{ return pl.rep().oriented_side(p); }
result_type
operator()( const Tetrahedron_3& t, const Point_3& p) const
{ return t.rep().oriented_side(p); }
};
template < typename K >
class Construct_weighted_circumcenter_2
{
public:
typedef typename K::Weighted_point_2 Weighted_point_2;
typedef typename K::Point_2 Point_2;
typedef typename K::FT FT;
typedef Point_2 result_type;
result_type operator() (const Weighted_point_2 & p,
const Weighted_point_2 & q,
const Weighted_point_2 & r) const
{
CGAL_kernel_precondition( ! collinear(p.point(), q.point(), r.point()) );
FT x,y;
weighted_circumcenterC2(p.x(),p.y(),p.weight(),
q.x(),q.y(),q.weight(),
r.x(),r.y(),r.weight(),x,y);
return Point_2(x,y);
}
};
} // namespace CommonKernelFunctors
} //namespace CGAL
#endif // CGAL_KERNEL_FUNCTION_OBJECTS_H