dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Polygon_mesh_slicer.h

657 lines
24 KiB
C++

// Copyright (c) 2013,2014,2015 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_slicer.h $
// $Id: Polygon_mesh_slicer.h 254d60f 2019-10-19T15:23:19+02:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Ilker O. Yaz and Sebastien Loriot
#ifndef CGAL_POLYGON_MESH_SLICER_H
#define CGAL_POLYGON_MESH_SLICER_H
#include <CGAL/license/Polygon_mesh_processing/miscellaneous.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_halfedge_graph_segment_primitive.h>
#include <CGAL/tuple.h>
#include <vector>
#include <set>
#include <boost/graph/adjacency_list.hpp>
#include <CGAL/Polygon_mesh_processing/internal/Polygon_mesh_slicer/Traversal_traits.h>
#include <CGAL/Polygon_mesh_processing/internal/Polygon_mesh_slicer/Axis_parallel_plane_traits.h>
#include <boost/variant.hpp>
#include <boost/mpl/if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <CGAL/boost/graph/split_graph_into_polylines.h>
#include <CGAL/boost/graph/helpers.h>
namespace CGAL {
/// \ingroup PkgPolygonMeshProcessingRef
/// Function object that computes the intersection of a plane with
/// a triangulated surface mesh.
///
/// \tparam TriangleMesh a triangulated surface mesh, model of `FaceGraph` and `HalfedgeListGraph`
/// \tparam Traits a model of `AABBGeomTraits`
/// \tparam VertexPointMap a model of `ReadablePropertyMap` with
/// `boost::graph_traits<TriangleMesh>::%vertex_descriptor` as key and
/// `Traits::Point_3` as value type.
/// The default is `typename boost::property_map< TriangleMesh, vertex_point_t>::%type`.
/// \tparam AABBTree must be an instantiation of `CGAL::AABB_tree` able to handle
/// the edges of `TriangleMesh`, having its `edge_descriptor` as primitive id.
/// The default is `CGAL::AABB_tree<CGAL::AABB_traits<
/// Traits, CGAL::AABB_halfedge_graph_segment_primitive<TriangleMesh> > >`
/// \tparam UseParallelPlaneOptimization if `true`, the code will use specific
/// predicates and constructions in case the functor is called with a plane
/// orthogonal to a frame axis, the non-null coefficient being 1 or -1.
/// The default is `true`.
///
/// The implemenation of this class depends on the package \ref PkgAABBTree.
/// \todo Shall we document more in details what is required?
/// `Traits` must provide:
/// - `Plane_3`
/// - `Point_3`
/// - `Segment_3`
/// - `Oriented_side_3` with `Oriented_side operator()(Plane_3, Point_3)`
/// - `Do_intersect_3` with `boost::optional<variant<Point_3,Segment_3> operator()(Plane_3,Segment_3)`
/// - `Do_intersect_3` with `bool operator()(Plane_3, Bbox_3)`
///
/// \todo If we keep the traits for plane orthogonal to a frame axis, `Traits` must also provide:
/// - `FT`
/// - `Construct_cartesian_const_iterator_3` with `Iterator operator()(Point_3)` `Iterator` being a random access iterator with `FT` as value type
/// - `Construct_point_3` with `Point_3 operator()(FT,FT,FT)`; `Construct_source_3` with `const Point_3& operator()(Segment_3)`
/// - `Construct_target_3` with `const Point_3& operator()(Segment_3)`
///
/// \todo `_object()` functions must also be provided
template<class TriangleMesh,
class Traits,
class VertexPointMap = typename boost::property_map< TriangleMesh, vertex_point_t>::type,
class AABBTree = AABB_tree<
AABB_traits<Traits,
AABB_halfedge_graph_segment_primitive<TriangleMesh,
typename boost::mpl::if_<
typename boost::is_same<
VertexPointMap,
typename boost::property_map< TriangleMesh, vertex_point_t>::type >::type,
Default,
VertexPointMap>::type> > >,
bool UseParallelPlaneOptimization=true>
class Polygon_mesh_slicer
{
/// Polygon_mesh typedefs
typedef typename boost::graph_traits<TriangleMesh> graph_traits;
typedef typename graph_traits::vertex_descriptor vertex_descriptor;
typedef typename graph_traits::edge_descriptor edge_descriptor;
typedef typename graph_traits::halfedge_descriptor halfedge_descriptor;
typedef typename graph_traits::face_descriptor face_descriptor;
/// Geometric typedefs
typedef typename Traits::Plane_3 Plane_3;
typedef typename Traits::Segment_3 Segment_3;
typedef typename Traits::Point_3 Point_3;
typedef typename Traits::FT FT;
/// typedefs for internal graph to get connectivity of the polylines
typedef boost::variant<vertex_descriptor, edge_descriptor> AL_vertex_info;
typedef boost::adjacency_list <
boost::vecS,
boost::vecS,
boost::undirectedS,
AL_vertex_info > AL_graph;
typedef typename AL_graph::vertex_descriptor AL_vertex_descriptor;
typedef std::pair<AL_vertex_descriptor, AL_vertex_descriptor> AL_vertex_pair;
typedef std::map<vertex_descriptor, AL_vertex_descriptor> Vertices_map;
typedef std::pair<const vertex_descriptor,AL_vertex_descriptor> Vertex_pair;
/// Traversal traits
typedef Polygon_mesh_slicer_::Traversal_traits<
AL_graph,
TriangleMesh,
VertexPointMap,
typename AABBTree::AABB_traits,
Traits > General_traversal_traits;
typedef Polygon_mesh_slicer_::Traversal_traits<
AL_graph,
TriangleMesh,
VertexPointMap,
typename AABBTree::AABB_traits,
Polygon_mesh_slicer_::Axis_parallel_plane_traits<Traits>
> Axis_parallel_traversal_traits;
/// Auxiliary classes
// compare the faces using the halfedge descriptors
struct Compare_face{
TriangleMesh& m_tmesh;
Compare_face(TriangleMesh& tmesh)
:m_tmesh(tmesh)
{}
bool operator()(halfedge_descriptor hd1, halfedge_descriptor hd2) const
{
return face(hd1,m_tmesh) < face(hd2,m_tmesh);
}
};
typedef std::map< halfedge_descriptor, AL_vertex_pair, Compare_face > AL_edge_map;
template <class OutputIterator, class Traits_>
struct Polyline_visitor{
AL_graph& al_graph;
TriangleMesh& m_tmesh;
const Plane_3& m_plane;
VertexPointMap m_vpmap;
typename Traits_::Intersect_3 intersect_3;
OutputIterator out;
std::pair<AL_vertex_descriptor, AL_vertex_descriptor> nodes_for_orient;
Polyline_visitor( TriangleMesh& tmesh,
AL_graph& al_graph,
const Plane_3& plane,
VertexPointMap vpmap,
const Traits_& traits,
OutputIterator out)
: al_graph(al_graph)
, m_tmesh(tmesh)
, m_plane(plane)
, m_vpmap(vpmap)
, intersect_3( traits.intersect_3_object() )
, out(out)
{}
std::vector< Point_3 > current_poly;
// returns true iff the polyline is not correctly oriented
// Using the first edge is oriented such that the normal induced by the face
// containing the edge, the oriented edge and the plane orthogonal vector defines
// a direct orthogonal basis
bool do_reverse_polyline()
{
if (current_poly.size() < 2)
return false;
AL_vertex_info v1 = al_graph[nodes_for_orient.first];
AL_vertex_info v2 = al_graph[nodes_for_orient.second];
if (const vertex_descriptor* vd1_ptr = boost::get<vertex_descriptor>(&v1) )
{
if (const vertex_descriptor* vd2_ptr = boost::get<vertex_descriptor>(&v2) )
{
CGAL_assertion( halfedge(*vd1_ptr, *vd2_ptr, m_tmesh).second );
halfedge_descriptor h_opp = halfedge(*vd1_ptr, *vd2_ptr, m_tmesh).first;
if ( !is_border(h_opp, m_tmesh) )
{
CGAL_assertion(source(h_opp, m_tmesh) == *vd1_ptr);
CGAL::Oriented_side os = m_plane.oriented_side( get(m_vpmap, target(next(h_opp, m_tmesh), m_tmesh) ) );
if (os != CGAL::ON_ORIENTED_BOUNDARY)
return m_plane.oriented_side( get(m_vpmap, target(next(h_opp, m_tmesh), m_tmesh)) ) == CGAL::ON_NEGATIVE_SIDE;
}
h_opp = opposite(h_opp, m_tmesh);
if ( !is_border(h_opp, m_tmesh) )
{
CGAL_assertion(source(h_opp, m_tmesh) == *vd2_ptr);
CGAL::Oriented_side os = m_plane.oriented_side( get(m_vpmap, target(next(h_opp, m_tmesh), m_tmesh) ) );
if (os != CGAL::ON_ORIENTED_BOUNDARY)
return m_plane.oriented_side( get(m_vpmap, target(next(h_opp, m_tmesh), m_tmesh)) ) == CGAL::ON_POSITIVE_SIDE;
}
return false; // since coplanar edges are filtered out, we should never end up here.
}
else
{
// e2 is intersected in its interior
edge_descriptor e2 = boost::get<edge_descriptor>(v2);
halfedge_descriptor h2 = halfedge(e2, m_tmesh);
if ( target(next(h2, m_tmesh), m_tmesh) != *vd1_ptr )
h2=opposite(h2, m_tmesh);
return m_plane.oriented_side( get(m_vpmap, source(h2, m_tmesh)) ) == CGAL::ON_POSITIVE_SIDE;
}
}
else
{
edge_descriptor e1 = boost::get<edge_descriptor>(v1);
halfedge_descriptor h1 = halfedge(e1, m_tmesh);
if (const vertex_descriptor* vd2_ptr = boost::get<vertex_descriptor>(&v2) )
{
// e1 is intersected in its interior
if ( target(next(h1, m_tmesh), m_tmesh) != *vd2_ptr )
h1=opposite(h1, m_tmesh);
CGAL_assertion( target(next(h1, m_tmesh), m_tmesh) == *vd2_ptr );
}
else
{
// intersection in the interior of both edges
edge_descriptor e2 = boost::get<edge_descriptor>(v2);
halfedge_descriptor h2 = halfedge(e2, m_tmesh);
if ( face(h1, m_tmesh) != face(h2,m_tmesh) )
{
halfedge_descriptor opp_h1 = opposite(h1, m_tmesh),
opp_h2 = opposite(h2, m_tmesh);
if ( face(opp_h1, m_tmesh) == face(opp_h2, m_tmesh) )
{
h1=opp_h1;
h2=opp_h2;
}
else
if ( face(opp_h1, m_tmesh)==face(h2,m_tmesh) )
h1=opp_h1;
else
h2=opp_h2;
}
CGAL_assertion( face(h1, m_tmesh) == face(h2,m_tmesh) );
}
return m_plane.oriented_side( get(m_vpmap, source(h1, m_tmesh)) ) == CGAL::ON_NEGATIVE_SIDE;
}
}
void start_new_polyline()
{
current_poly.clear();
}
void add_node(AL_vertex_descriptor node_id)
{
if (current_poly.empty())
nodes_for_orient.first=node_id;
else
if (current_poly.size()==1)
nodes_for_orient.second=node_id;
AL_vertex_info v = al_graph[node_id];
if (const vertex_descriptor* vd_ptr = boost::get<vertex_descriptor>(&v) )
{
current_poly.push_back( get(m_vpmap, *vd_ptr) );
}
else
{
edge_descriptor ed = boost::get<edge_descriptor>(v);
Segment_3 s(
get(m_vpmap, source(ed, m_tmesh)),
get(m_vpmap,target(ed, m_tmesh))
);
typename cpp11::result_of<typename Traits_::Intersect_3(Plane_3, Segment_3)>::type
inter = intersect_3(m_plane, s);
CGAL_assertion(inter != boost::none);
const Point_3* pt_ptr = boost::get<Point_3>(&(*inter));
current_poly.push_back( *pt_ptr );
}
}
void end_polyline()
{
CGAL_assertion(!current_poly.empty());
if(do_reverse_polyline())
std::reverse(current_poly.begin(), current_poly.end());
*out++=current_poly;
}
};
/// member variables
const AABBTree* m_tree_ptr;
TriangleMesh& m_tmesh;
VertexPointMap m_vpmap;
Traits m_traits;
bool m_own_tree;
/// Convenience graph functions
edge_descriptor next_edge(edge_descriptor ed) const
{
return edge( next( halfedge(ed, m_tmesh), m_tmesh), m_tmesh );
}
edge_descriptor next_of_opposite_edge(edge_descriptor ed) const
{
return edge( next( opposite( halfedge(ed, m_tmesh), m_tmesh), m_tmesh), m_tmesh );
}
face_descriptor opposite_face(edge_descriptor ed) const
{
return face( opposite( halfedge(ed, m_tmesh), m_tmesh), m_tmesh);
}
/// Other private functions
/// handle edge insertion in the adjacency_list graph
/// we add an edge betweem two edge_descriptor if they
/// share a common facet
void update_al_graph_connectivity(
edge_descriptor ed,
AL_vertex_descriptor vd,
AL_edge_map& al_edge_map,
AL_graph& al_graph) const
{
typename AL_edge_map::iterator itm;
bool new_insertion;
halfedge_descriptor hd=halfedge(ed, m_tmesh);
if (face(hd, m_tmesh)!=graph_traits::null_face())
{
std::tie(itm, new_insertion) =
al_edge_map.insert( std::pair< halfedge_descriptor, AL_vertex_pair >
(hd, AL_vertex_pair(vd, AL_graph::null_vertex())) );
if (!new_insertion)
{
CGAL_assertion(itm->second.second==AL_graph::null_vertex());
itm->second.second=vd;
add_edge( itm->second.first,
itm->second.second,
al_graph);
}
}
hd=opposite(hd, m_tmesh);
if (face(hd, m_tmesh)!=graph_traits::null_face())
{
std::tie(itm, new_insertion) =
al_edge_map.insert( std::pair< halfedge_descriptor, AL_vertex_pair >
(hd, AL_vertex_pair(vd, AL_graph::null_vertex())) );
if (!new_insertion)
{
CGAL_assertion(itm->second.second==AL_graph::null_vertex());
itm->second.second=vd;
add_edge( itm->second.first,
itm->second.second,
al_graph);
}
}
}
std::pair<int, FT>
axis_parallel_plane_info(const Plane_3& plane) const
{
FT a = m_traits.compute_a_3_object()(plane);
FT b = m_traits.compute_b_3_object()(plane);
FT c = m_traits.compute_c_3_object()(plane);
FT d = m_traits.compute_d_3_object()(plane);
if (a==0)
{
if (b==0)
{
if (c==1 || c==-1)
return std::pair<int,FT>(2, -d*c); /// z=-d
}
else
{
if (c==0 && (b==1 || b==-1))
return std::pair<int,FT>(1, -d*b); /// y=-d
}
}
else
if (b==0 && c==0 && ( a==1 || a==-1))
return std::pair<int,FT>(0, -d*a); /// x=-d
return std::pair<int,FT>(-1, 0);
}
public:
/// the AABB-tree type used internally
typedef AABBTree AABB_tree;
/**
* Constructor using `edges(tmesh)` to initialize the
* internal `AABB_tree`.
* @param tmesh the triangulated surface mesh to be sliced.
* It must be valid and non modified as long
* as the functor is used.
* @param vpmap an instance of the vertex point property map associated to `tmesh`
* @param traits a traits class instance, can be omitted
*/
Polygon_mesh_slicer(const TriangleMesh& tmesh,
VertexPointMap vpmap,
const Traits& traits = Traits())
: m_tmesh(const_cast<TriangleMesh&>(tmesh))
, m_vpmap(vpmap)
, m_traits(traits)
, m_own_tree(true)
{
m_tree_ptr = new AABBTree(edges(m_tmesh).first,
edges(m_tmesh).second,
m_tmesh,
m_vpmap);
}
/**
* Constructor using a pre-built `AABB_tree` of edges provided by the user.
* @param tmesh the triangulated surface mesh to be sliced.
* It must be valid and non modified as long
* as the functor is used.
* @param tree must be initialized with all the edges of `tmesh`
* @param vpmap an instance of the vertex point property map associated to `tmesh`
* @param traits a traits class instance, can be omitted
*/
Polygon_mesh_slicer(const TriangleMesh& tmesh,
const AABBTree& tree,
VertexPointMap vpmap,
const Traits& traits = Traits())
: m_tree_ptr(&tree)
, m_tmesh(const_cast<TriangleMesh&>(tmesh))
, m_vpmap(vpmap)
, m_traits(traits)
, m_own_tree(false)
{ }
/**
* Constructor using `edges(tmesh)` to initialize the
* internal `AABB_tree`. The vertex point property map used
* is `get(CGAL::vertex_point, tmesh)`
* @param tmesh the triangulated surface mesh to be sliced.
* It must be valid and non modified as long
* as the functor is used.
* @param traits a traits class instance, can be omitted
*/
Polygon_mesh_slicer(const TriangleMesh& tmesh,
const Traits& traits = Traits())
: m_tmesh(const_cast<TriangleMesh&>(tmesh))
, m_vpmap(get(boost::vertex_point, m_tmesh))
, m_traits(traits)
, m_own_tree(true)
{
m_tree_ptr = new AABBTree(edges(m_tmesh).first,
edges(m_tmesh).second,
m_tmesh,
m_vpmap);
}
/**
* Constructor using a `AABB_tree` provided by the user.
* The vertex point property map used is `get(CGAL::vertex_point, tmesh)`
* @param tmesh the triangulated surface mesh to be sliced.
* It must be valid and non modified as long
* as the functor is used.
* @param tree must be initialized with all the edges of `tmesh`
* @param traits a traits class instance, can be omitted
*/
Polygon_mesh_slicer(const TriangleMesh& tmesh,
const AABBTree& tree,
const Traits& traits = Traits())
: m_tree_ptr(&tree)
, m_tmesh(const_cast<TriangleMesh&>(tmesh))
, m_vpmap(get(boost::vertex_point, m_tmesh))
, m_traits(traits)
, m_own_tree(false)
{ }
/**
* Constructs the intersecting polylines of `plane` with the input triangulated surface mesh.
*
* If a polyline is closed, the first and last point of that polyline will be identical.
*
* Each resulting polyline `P` is oriented such that for two consecutive points `p` and `q` in `P`,
* the normal vector of the face(s) containing the segment `pq`, the vector `pq`, and the orthogonal vertor of `plane`
* is a direct orthogonal basis.
* The normal vector of each face is chosen to point on the side of the face
* where its sequence of vertices is seen counterclockwise.
*
* Note that an edge shared by two faces included in `plane` will not be reported. For example,
* if `plane` passes though one face of a cube, only one closed polyline will be reported (the boundary of the face)
*
* @tparam OutputIterator an output iterator accepting polylines.
* A polyline is provided as `std::vector<Traits::Point_3>`.
* A polyline is closed if its first and last point are identical.
* @param plane the plane to intersect the triangulated surface mesh with
* @param out output iterator of polylines
*/
template <class OutputIterator>
OutputIterator operator() (const Plane_3& plane,
OutputIterator out) const
{
CGAL_precondition(!plane.is_degenerate());
// containers for storing edges wrt their position with the plane
std::set<edge_descriptor> all_coplanar_edges;
std::vector<edge_descriptor> iedges;
Vertices_map vertices;
// get all edges intersected by the plane and classify them
std::pair<int, FT> app_info = axis_parallel_plane_info(plane);
if (!UseParallelPlaneOptimization || app_info.first==-1)
{
General_traversal_traits ttraits(
all_coplanar_edges,
iedges,
vertices,
m_tmesh,
m_vpmap,
m_tree_ptr->traits(),
m_traits);
m_tree_ptr->traversal(plane, ttraits);
}
else
{
Polygon_mesh_slicer_::Axis_parallel_plane_traits<Traits>
traits(app_info.first, app_info.second, m_traits);
Axis_parallel_traversal_traits ttraits(
all_coplanar_edges,
iedges,
vertices,
m_tmesh,
m_vpmap,
m_tree_ptr->traits(),
traits);
m_tree_ptr->traversal(plane, ttraits);
}
// init output graph
AL_graph al_graph;
// add nodes for each vertex in the plane
for(Vertex_pair& vdp : vertices)
{
vdp.second=add_vertex(al_graph);
al_graph[vdp.second]=vdp.first;
}
Compare_face less_face(m_tmesh);
AL_edge_map al_edge_map( less_face );
// Filter coplanar edges: we consider only coplanar edges incident to one non-coplanar facet
// for each such edge, add the corresponding nodes in the adjacency-list graph as well as
// the edge
for(const edge_descriptor ed : all_coplanar_edges)
{
if ( face(halfedge(ed, m_tmesh), m_tmesh)==graph_traits::null_face() ||
opposite_face(ed)==graph_traits::null_face() ||
!all_coplanar_edges.count( next_edge(ed) ) ||
!all_coplanar_edges.count( next_of_opposite_edge(ed) ) )
{
typename Vertices_map::iterator it_insert1, it_insert2;
bool is_new;
// Each coplanar edge is connecting two nodes
// handle source
std::tie(it_insert1, is_new) =
vertices.insert(
Vertex_pair(
source(ed,m_tmesh), AL_graph::null_vertex()
)
);
if (is_new)
{
it_insert1->second=add_vertex(al_graph);
al_graph[it_insert1->second]=it_insert1->first;
}
// handle target
std::tie(it_insert2, is_new) =
vertices.insert(
Vertex_pair(
target(ed,m_tmesh), AL_graph::null_vertex()
)
);
if (is_new)
{
it_insert2->second=add_vertex(al_graph);
al_graph[it_insert2->second]=it_insert2->first;
}
// add the edge into the adjacency-list graph
CGAL_assertion( it_insert1->second!=AL_graph::null_vertex() );
CGAL_assertion( it_insert2->second!=AL_graph::null_vertex() );
add_edge(it_insert1->second, it_insert2->second, al_graph);
}
}
// for each edge intersected in its interior, creates a node in
// an adjacency-list graph and put an edge between two such nodes
// when the corresponding edges shares a common face
for(edge_descriptor ed : iedges)
{
AL_vertex_descriptor vd=add_vertex(al_graph);
al_graph[vd]=ed;
update_al_graph_connectivity(ed, vd, al_edge_map, al_graph);
}
// If one of the node above is not connected in its two incident faces
// then it must be connected to a vertex (including those in the set
// of coplanar edges)
typedef std::pair<halfedge_descriptor, AL_vertex_pair> Halfedge_and_vertices;
for(Halfedge_and_vertices hnv :al_edge_map)
{
if (hnv.second.second==AL_graph::null_vertex())
{
//get the edge and test opposite vertices (if the edge is not on the boundary)
vertex_descriptor vd = target( next(hnv.first, m_tmesh), m_tmesh);
typename Vertices_map::iterator itv=vertices.find(vd);
CGAL_assertion( itv!=vertices.end() );
add_edge(itv->second, hnv.second.first, al_graph);
}
}
CGAL_assertion(num_vertices(al_graph)==iedges.size()+vertices.size());
// now assemble the edges of al_graph to define polylines,
// putting them in the output iterator
if (!UseParallelPlaneOptimization || app_info.first==-1)
{
Polyline_visitor<OutputIterator, Traits> visitor(m_tmesh, al_graph, plane, m_vpmap, m_traits, out);
split_graph_into_polylines(al_graph, visitor);
return visitor.out;
}
else
{
typedef Polygon_mesh_slicer_::Axis_parallel_plane_traits<Traits> App_traits;
App_traits app_traits(app_info.first, app_info.second, m_traits);
Polyline_visitor<OutputIterator, App_traits> visitor
(m_tmesh, al_graph, plane, m_vpmap, app_traits, out);
split_graph_into_polylines(al_graph, visitor);
return visitor.out;
}
}
~Polygon_mesh_slicer()
{
if (m_own_tree) delete m_tree_ptr;
}
};
}// end of namespace CGAL
#endif //CGAL_POLYGON_MESH_SLICER_H