dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/extended_euclidean_algorithm.h

70 lines
2.0 KiB
C++

// Copyright (c) 2006-2007 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Algebraic_foundations/include/CGAL/extended_euclidean_algorithm.h $
// $Id: extended_euclidean_algorithm.h 52164b1 2019-10-19T15:34:59+02:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Michael Hemmer, Dominik Huelse
//
// ============================================================================
#ifndef CGAL_EXTENDED_EUCLIDEAN_ALGORITHM_H
#define CGAL_EXTENDED_EUCLIDEAN_ALGORITHM_H 1
#include <CGAL/basic.h>
#include <vector>
namespace CGAL {
// EEA computing the normalized gcd
// Modern Computer Algebra (Hardcover)
// by Joachim von zur Gathen (Author), Juergen Gerhard (Author)
// Publisher: Cambridge University Press; 2 edition (September 1, 2003)
// Language: English
// ISBN-10: 0521826462
// ISBN-13: 978-0521826464
// pp.: 55
template< class AS >
AS extended_euclidean_algorithm(const AS& f, const AS& g, AS& s_, AS& t_){
typename Algebraic_structure_traits<AS>::Integral_division idiv;
typename Algebraic_structure_traits<AS>::Div div;
typename Algebraic_structure_traits<AS>::Unit_part unit_part;
std::vector<AS> p,r,s,t,q;
p.push_back(unit_part(f));
r.push_back(idiv(f,p[0]));
s.push_back(idiv(AS(1),p[0]));
t.push_back(AS(0));
q.push_back(AS(0));
p.push_back(unit_part(g));
r.push_back(idiv(g,p[1]));
s.push_back(AS(0));
t.push_back(idiv(AS(1),p[1]));
int i = 1;
while(!is_zero(r[i])){
q.push_back(div(r[i-1],r[i]));
r.push_back(r[i-1]-q[i]*r[i]);
p.push_back(unit_part(r[i+1]));
r[i+1] = idiv(r[i+1],p[i+1]);
s.push_back(idiv(s[i-1]-q[i]*s[i],p[i+1]));
t.push_back(idiv(t[i-1]-q[i]*t[i],p[i+1]));
i++;
}
s_=s[i-1];
t_=t[i-1];
AS h = r[i-1];
CGAL_precondition( h == f*s_ + g*t_);
return h;
}
} //namespace CGAL
#endif // NiX_EXTENDED_EUCLIDEAN_ALGORITHM_H //