392 lines
16 KiB
C++
392 lines
16 KiB
C++
// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/hierarchy_simplify_point_set.h $
|
|
// $Id: hierarchy_simplify_point_set.h 93f1cd9 2020-07-16T09:53:31+02:00 Mael Rouxel-Labbé
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Simon Giraudot, Pierre Alliez
|
|
|
|
|
|
#ifndef HIERARCHY_SIMPLIFY_POINT_SET_H
|
|
#define HIERARCHY_SIMPLIFY_POINT_SET_H
|
|
|
|
#include <CGAL/license/Point_set_processing_3.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
#include <cmath>
|
|
#include <stack>
|
|
|
|
#include <CGAL/property_map.h>
|
|
#include <CGAL/basic.h>
|
|
#include <CGAL/Dimension.h>
|
|
#include <CGAL/Object.h>
|
|
#include <CGAL/centroid.h>
|
|
#include <CGAL/point_set_processing_assertions.h>
|
|
#include <CGAL/Default_diagonalize_traits.h>
|
|
#include <CGAL/PCA_util.h>
|
|
#include <CGAL/squared_distance_3.h>
|
|
#include <CGAL/Iterator_range.h>
|
|
#include <functional>
|
|
|
|
#include <CGAL/boost/graph/Named_function_parameters.h>
|
|
#include <CGAL/boost/graph/named_params_helper.h>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
namespace internal {
|
|
|
|
template < typename InputIterator,
|
|
typename PointMap,
|
|
typename K >
|
|
typename K::Point_3
|
|
hsps_centroid(InputIterator begin,
|
|
InputIterator end,
|
|
PointMap& point_map,
|
|
const K&)
|
|
{
|
|
typedef typename K::Point_3 Point;
|
|
typedef typename K::FT FT;
|
|
|
|
CGAL_precondition(begin != end);
|
|
|
|
FT x = (FT)0., y = (FT)0., z = (FT)0.;
|
|
unsigned int nb_pts = 0;
|
|
while(begin != end)
|
|
{
|
|
typename boost::property_traits<PointMap>::reference point =
|
|
get(point_map, *begin);
|
|
x += point.x (); y += point.y (); z += point.z ();
|
|
++ nb_pts;
|
|
++ begin;
|
|
}
|
|
return Point (x/nb_pts, y/nb_pts, z/nb_pts);
|
|
}
|
|
|
|
template < typename Input_type,
|
|
typename PointMap,
|
|
typename K >
|
|
void
|
|
hsc_terminate_cluster (std::list<Input_type>& cluster,
|
|
std::list<Input_type>& points_to_keep,
|
|
std::list<Input_type>& points_to_remove,
|
|
PointMap& point_map,
|
|
const typename K::Point_3& centroid,
|
|
const K&)
|
|
{
|
|
typedef typename std::list<Input_type>::iterator Iterator;
|
|
typedef typename K::FT FT;
|
|
|
|
FT dist_min = (std::numeric_limits<FT>::max)();
|
|
|
|
typename std::list<Input_type>::iterator point_min;
|
|
for (Iterator it = cluster.begin (); it != cluster.end (); ++ it)
|
|
{
|
|
FT dist = CGAL::squared_distance (get(point_map, *it), centroid);
|
|
if (dist < dist_min)
|
|
{
|
|
dist_min = dist;
|
|
point_min = it;
|
|
}
|
|
}
|
|
|
|
points_to_keep.splice (points_to_keep.end (), cluster, point_min);
|
|
points_to_remove.splice (points_to_remove.end (), cluster, cluster.begin (), cluster.end ());
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace internal
|
|
/// \endcond
|
|
|
|
/**
|
|
\ingroup PkgPointSetProcessing3Algorithms
|
|
|
|
Recursively split the point set in smaller clusters until the
|
|
clusters have less than `size` elements and until their variation
|
|
factor is below `var_max`.
|
|
|
|
This method modifies the order of input points so as to pack all remaining points first,
|
|
and returns an iterator over the first point to remove (see erase-remove idiom).
|
|
For this reason it should not be called on sorted containers.
|
|
|
|
\pre `0 < maximum_variation < 1/3`
|
|
\pre `size > 0`
|
|
|
|
\tparam PointRange is a model of `Range`. The value type of
|
|
its iterator is the key type of the named parameter `point_map`.
|
|
|
|
\param points input point range.
|
|
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
|
|
|
\cgalNamedParamsBegin
|
|
\cgalParamNBegin{point_map}
|
|
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
|
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
|
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
|
|
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{callback}
|
|
\cgalParamDescription{a mechanism to get feedback on the advancement of the algorithm
|
|
while it's running and to interrupt it if needed}
|
|
\cgalParamType{an instance of `std::function<bool(double)>`.}
|
|
\cgalParamDefault{unused}
|
|
\cgalParamExtra{It is called regularly when the
|
|
algorithm is running: the current advancement (between 0. and
|
|
1.) is passed as parameter. If it returns `true`, then the
|
|
algorithm continues its execution normally; if it returns
|
|
`false`, the algorithm is stopped and simplification stops with no guarantee on the output.}
|
|
\cgalParamExtra{The callback will be copied and therefore needs to be lightweight.}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{size}
|
|
\cgalParamDescription{a value for cluster size}
|
|
\cgalParamType{unsigned int}
|
|
\cgalParamDefault{`10`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{maximum_variation}
|
|
\cgalParamDescription{a value for maximum cluster variation}
|
|
\cgalParamType{floating scalar value}
|
|
\cgalParamDefault{`1/3`}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{diagonalize_traits}
|
|
\cgalParamDescription{the solver used for diagonalizing covariance matrices}
|
|
\cgalParamType{a model of `DiagonalizeTraits`}
|
|
\cgalParamDefault{If Eigen 3 (or greater) is available and `CGAL_EIGEN3_ENABLED` is defined
|
|
then an overload using `Eigen_diagonalize_traits` is provided.
|
|
Otherwise, the internal implementation `CGAL::Diagonalize_traits` is used.}
|
|
\cgalParamNEnd
|
|
|
|
\cgalParamNBegin{geom_traits}
|
|
\cgalParamDescription{an instance of a geometric traits class}
|
|
\cgalParamType{a model of `Kernel`}
|
|
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
|
\cgalParamNEnd
|
|
\cgalNamedParamsEnd
|
|
|
|
\return iterator over the first point to remove.
|
|
*/
|
|
template <typename PointRange,
|
|
typename NamedParameters>
|
|
typename PointRange::iterator
|
|
hierarchy_simplify_point_set (PointRange& points,
|
|
const NamedParameters& np)
|
|
{
|
|
using parameters::choose_parameter;
|
|
using parameters::get_parameter;
|
|
|
|
// basic geometric types
|
|
typedef typename CGAL::GetPointMap<PointRange, NamedParameters>::type PointMap;
|
|
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
|
|
typedef typename GetDiagonalizeTraits<NamedParameters, double, 3>::type DiagonalizeTraits;
|
|
|
|
typedef typename Kernel::Point_3 Point;
|
|
typedef typename Kernel::Vector_3 Vector;
|
|
typedef typename Kernel::FT FT;
|
|
|
|
PointMap point_map = choose_parameter<PointMap>(get_parameter(np, internal_np::point_map));
|
|
unsigned int size = choose_parameter(get_parameter(np, internal_np::size), 10);
|
|
double var_max = choose_parameter(get_parameter(np, internal_np::maximum_variation), 1./3.);
|
|
const std::function<bool(double)>& callback = choose_parameter(get_parameter(np, internal_np::callback),
|
|
std::function<bool(double)>());
|
|
|
|
typedef typename std::iterator_traits<typename PointRange::iterator>::value_type Input_type;
|
|
|
|
// We define a cluster as a point set + its centroid (useful for
|
|
// faster computations of centroids - to be implemented)
|
|
typedef std::pair< std::list<Input_type>, Point > cluster;
|
|
|
|
std::list<cluster> clusters_stack;
|
|
typedef typename std::list<cluster>::iterator cluster_iterator;
|
|
|
|
CGAL_precondition (points.begin() != points.end());
|
|
CGAL_point_set_processing_precondition (size > 0);
|
|
CGAL_point_set_processing_precondition (var_max > 0.0);
|
|
|
|
// The first cluster is the whole input point set
|
|
clusters_stack.push_front (cluster (std::list<Input_type>(), Point (0., 0., 0.)));
|
|
std::copy (points.begin(), points.end(), std::back_inserter (clusters_stack.front ().first));
|
|
|
|
clusters_stack.front ().second = internal::hsps_centroid (clusters_stack.front ().first.begin (),
|
|
clusters_stack.front ().first.end (),
|
|
point_map, Kernel());
|
|
|
|
std::list<Input_type> points_to_keep;
|
|
std::list<Input_type> points_to_remove;
|
|
|
|
std::size_t nb_done = 0;
|
|
|
|
while (!(clusters_stack.empty ()))
|
|
{
|
|
cluster_iterator current_cluster = clusters_stack.begin ();
|
|
|
|
// If the cluster only has 1 element, we add it to the list of
|
|
// output points
|
|
if (current_cluster->first.size () == 1)
|
|
{
|
|
points_to_keep.splice (points_to_keep.end (), current_cluster->first,
|
|
current_cluster->first.begin ());
|
|
clusters_stack.pop_front ();
|
|
++ nb_done;
|
|
continue;
|
|
}
|
|
|
|
// Compute the covariance matrix of the set
|
|
std::array<FT, 6> covariance = {{ 0., 0., 0., 0., 0., 0. }};
|
|
|
|
for (typename std::list<Input_type>::iterator it = current_cluster->first.begin ();
|
|
it != current_cluster->first.end (); ++ it)
|
|
{
|
|
const Point& point = get(point_map, *it);
|
|
Vector d = point - current_cluster->second;
|
|
covariance[0] += d.x () * d.x ();
|
|
covariance[1] += d.x () * d.y ();
|
|
covariance[2] += d.x () * d.z ();
|
|
covariance[3] += d.y () * d.y ();
|
|
covariance[4] += d.y () * d.z ();
|
|
covariance[5] += d.z () * d.z ();
|
|
}
|
|
|
|
std::array<FT, 3> eigenvalues = {{ 0., 0., 0. }};
|
|
std::array<FT, 9> eigenvectors = {{ 0., 0., 0.,
|
|
0., 0., 0.,
|
|
0., 0., 0. }};
|
|
// Linear algebra = get eigenvalues and eigenvectors for
|
|
// PCA-like analysis
|
|
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
|
|
(covariance, eigenvalues, eigenvectors);
|
|
|
|
// Variation of the set defined as lambda_min / (lambda_0 + lambda_1 + lambda_2)
|
|
double var = eigenvalues[0] / (eigenvalues[0] + eigenvalues[1] + eigenvalues[2]);
|
|
|
|
// Split the set if size OR variance of the cluster is too large
|
|
if (current_cluster->first.size () > size || var > var_max)
|
|
{
|
|
clusters_stack.push_front (cluster (std::list<Input_type>(), Point (0., 0., 0.)));
|
|
cluster_iterator negative_side = clusters_stack.begin ();
|
|
// positive_side is built directly from current_cluster
|
|
|
|
// The plane which splits the point set into 2 point sets:
|
|
// * Normal to the eigenvector with highest eigenvalue
|
|
// * Passes through the centroid of the set
|
|
Vector v (eigenvectors[6], eigenvectors[7], eigenvectors[8]);
|
|
|
|
std::size_t current_cluster_size = 0;
|
|
typename std::list<Input_type>::iterator it = current_cluster->first.begin ();
|
|
while (it != current_cluster->first.end ())
|
|
{
|
|
typename std::list<Input_type>::iterator current = it ++;
|
|
const Point& point = get(point_map, *current);
|
|
|
|
// Test if point is on negative side of plane and
|
|
// transfer it to the negative_side cluster if it is
|
|
if (Vector (current_cluster->second, point) * v < 0)
|
|
negative_side->first.splice (negative_side->first.end (),
|
|
current_cluster->first, current);
|
|
++ current_cluster_size;
|
|
}
|
|
|
|
// If one of the clusters is empty, stop to avoid infinite
|
|
// loop and keep the non-empty one
|
|
if (current_cluster->first.empty () || negative_side->first.empty ())
|
|
{
|
|
cluster_iterator nonempty = (current_cluster->first.empty ()
|
|
? negative_side : current_cluster);
|
|
|
|
nb_done += nonempty->first.size();
|
|
// Compute the centroid
|
|
nonempty->second = internal::hsps_centroid (nonempty->first.begin (),
|
|
nonempty->first.end (),
|
|
point_map, Kernel());
|
|
|
|
internal::hsc_terminate_cluster (nonempty->first,
|
|
points_to_keep,
|
|
points_to_remove,
|
|
point_map,
|
|
nonempty->second,
|
|
Kernel ());
|
|
|
|
clusters_stack.pop_front ();
|
|
clusters_stack.pop_front ();
|
|
}
|
|
else
|
|
{
|
|
// Save old centroid for faster computation
|
|
Point old_centroid = current_cluster->second;
|
|
|
|
// Compute the first centroid
|
|
current_cluster->second = internal::hsps_centroid (current_cluster->first.begin (),
|
|
current_cluster->first.end (),
|
|
point_map, Kernel());
|
|
|
|
// The second centroid can be computed with the first and
|
|
// the old ones :
|
|
// centroid_neg = (n_total * old_centroid - n_pos * first_centroid)
|
|
// / n_neg;
|
|
negative_side->second = Point ((current_cluster_size * old_centroid.x ()
|
|
- current_cluster->first.size () * current_cluster->second.x ())
|
|
/ negative_side->first.size (),
|
|
(current_cluster_size * old_centroid.y ()
|
|
- current_cluster->first.size () * current_cluster->second.y ())
|
|
/ negative_side->first.size (),
|
|
(current_cluster_size * old_centroid.z ()
|
|
- current_cluster->first.size () * current_cluster->second.z ())
|
|
/ negative_side->first.size ());
|
|
}
|
|
}
|
|
// If the size/variance are small enough, add the centroid as
|
|
// and output point
|
|
else
|
|
{
|
|
nb_done += current_cluster->first.size();
|
|
internal::hsc_terminate_cluster (current_cluster->first,
|
|
points_to_keep,
|
|
points_to_remove,
|
|
point_map,
|
|
current_cluster->second,
|
|
Kernel ());
|
|
clusters_stack.pop_front ();
|
|
}
|
|
|
|
if (callback && !callback (nb_done / double (points.size())))
|
|
break;
|
|
}
|
|
|
|
if (callback)
|
|
callback (1.);
|
|
|
|
typename PointRange::iterator first_point_to_remove =
|
|
std::copy (points_to_keep.begin(), points_to_keep.end(), points.begin());
|
|
std::copy (points_to_remove.begin(), points_to_remove.end(), first_point_to_remove);
|
|
|
|
return first_point_to_remove;
|
|
|
|
}
|
|
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
// variant with default NP
|
|
template <typename PointRange>
|
|
typename PointRange::iterator
|
|
hierarchy_simplify_point_set (PointRange& points)
|
|
{
|
|
return hierarchy_simplify_point_set
|
|
(points, CGAL::Point_set_processing_3::parameters::all_default(points));
|
|
}
|
|
/// \endcond
|
|
|
|
} // namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // HIERARCHY_SIMPLIFY_POINT_SET_H
|