123 lines
3.5 KiB
C++
123 lines
3.5 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "swept_volume_signed_distance.h"
|
|
#include "LinSpaced.h"
|
|
#include "flood_fill.h"
|
|
#include "signed_distance.h"
|
|
#include "AABB.h"
|
|
#include "pseudonormal_test.h"
|
|
#include "per_face_normals.h"
|
|
#include "per_vertex_normals.h"
|
|
#include "per_edge_normals.h"
|
|
#include <Eigen/Geometry>
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
|
|
IGL_INLINE void igl::swept_volume_signed_distance(
|
|
const Eigen::MatrixXd & V,
|
|
const Eigen::MatrixXi & F,
|
|
const std::function<Eigen::Affine3d(const double t)> & transform,
|
|
const size_t & steps,
|
|
const Eigen::MatrixXd & GV,
|
|
const Eigen::RowVector3i & res,
|
|
const double h,
|
|
const double isolevel,
|
|
const Eigen::VectorXd & S0,
|
|
Eigen::VectorXd & S)
|
|
{
|
|
using namespace std;
|
|
using namespace igl;
|
|
using namespace Eigen;
|
|
S = S0;
|
|
const VectorXd t = igl::LinSpaced<VectorXd >(steps,0,1);
|
|
const bool finite_iso = isfinite(isolevel);
|
|
const double extension = (finite_iso ? isolevel : 0) + sqrt(3.0)*h;
|
|
Eigen::AlignedBox3d box(
|
|
V.colwise().minCoeff().array()-extension,
|
|
V.colwise().maxCoeff().array()+extension);
|
|
// Precomputation
|
|
Eigen::MatrixXd FN,VN,EN;
|
|
Eigen::MatrixXi E;
|
|
Eigen::VectorXi EMAP;
|
|
per_face_normals(V,F,FN);
|
|
per_vertex_normals(V,F,PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE,FN,VN);
|
|
per_edge_normals(
|
|
V,F,PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM,FN,EN,E,EMAP);
|
|
AABB<MatrixXd,3> tree;
|
|
tree.init(V,F);
|
|
for(int ti = 0;ti<t.size();ti++)
|
|
{
|
|
const Affine3d At = transform(t(ti));
|
|
for(int g = 0;g<GV.rows();g++)
|
|
{
|
|
// Don't bother finding out how deep inside points are.
|
|
if(finite_iso && S(g)==S(g) && S(g)<isolevel-sqrt(3.0)*h)
|
|
{
|
|
continue;
|
|
}
|
|
const RowVector3d gv =
|
|
(GV.row(g) - At.translation().transpose())*At.linear();
|
|
// If outside of extended box, then consider it "far away enough"
|
|
if(finite_iso && !box.contains(gv.transpose()))
|
|
{
|
|
continue;
|
|
}
|
|
RowVector3d c,n;
|
|
int i;
|
|
double sqrd,s;
|
|
//signed_distance_pseudonormal(tree,V,F,FN,VN,EN,EMAP,gv,s,sqrd,i,c,n);
|
|
const double min_sqrd =
|
|
finite_iso ?
|
|
pow(sqrt(3.)*h+isolevel,2) :
|
|
numeric_limits<double>::infinity();
|
|
sqrd = tree.squared_distance(V,F,gv,min_sqrd,i,c);
|
|
if(sqrd<min_sqrd)
|
|
{
|
|
pseudonormal_test(V,F,FN,VN,EN,EMAP,gv,i,c,s,n);
|
|
if(S(g) == S(g))
|
|
{
|
|
S(g) = std::min(S(g),s*sqrt(sqrd));
|
|
}else
|
|
{
|
|
S(g) = s*sqrt(sqrd);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(finite_iso)
|
|
{
|
|
flood_fill(res,S);
|
|
}else
|
|
{
|
|
#ifndef NDEBUG
|
|
// Check for nans
|
|
std::for_each(S.data(),S.data()+S.size(),[](const double s){assert(s==s);});
|
|
#endif
|
|
}
|
|
}
|
|
|
|
IGL_INLINE void igl::swept_volume_signed_distance(
|
|
const Eigen::MatrixXd & V,
|
|
const Eigen::MatrixXi & F,
|
|
const std::function<Eigen::Affine3d(const double t)> & transform,
|
|
const size_t & steps,
|
|
const Eigen::MatrixXd & GV,
|
|
const Eigen::RowVector3i & res,
|
|
const double h,
|
|
const double isolevel,
|
|
Eigen::VectorXd & S)
|
|
{
|
|
using namespace std;
|
|
using namespace igl;
|
|
using namespace Eigen;
|
|
S = VectorXd::Constant(GV.rows(),1,numeric_limits<double>::quiet_NaN());
|
|
return
|
|
swept_volume_signed_distance(V,F,transform,steps,GV,res,h,isolevel,S,S);
|
|
}
|