dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Compute_cone_boundaries_2.h

225 lines
8.1 KiB
C++
Executable File

// Copyright (c) 2013-2015 The University of Western Sydney, Australia.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Authors: Weisheng Si, Quincy Tse
/*! \file Compute_cone_boundaries_2.h
*
* This header implements the functor for computing the directions of cone boundaries with a given
* cone number and a given initial direction either exactly or inexactly.
*/
#ifndef CGAL_COMPUTE_CONE_BOUNDARIES_2_H
#define CGAL_COMPUTE_CONE_BOUNDARIES_2_H
#include <CGAL/license/Cone_spanners_2.h>
#include <iostream>
#include <cstdlib>
#include <vector>
#include <utility>
#include <CGAL/config.h> // included compiler_config.h, defining CGAL_USE_CORE, etc.
#include <CGAL/Polynomial.h>
#include <CGAL/number_type_config.h> // CGAL_PI is defined there
#include <CGAL/enum.h>
#include <CGAL/Exact_predicates_exact_constructions_kernel_with_root_of.h>
#include <CGAL/Aff_transformation_2.h>
namespace CGAL {
/*! \ingroup PkgConeBasedSpanners
*
* \brief The functor for computing the directions of cone boundaries with a given
* cone number and a given initial direction.
*
* This computation can be either inexact by simply dividing an approximate \f$ \pi \f$ by the cone number
* (which is quick), or exact by using roots of polynomials (requiring number types such as `CORE::Expr` or `leda_real`,
* which are slow). The inexact computation is done by the general functor definition,
* while the exact computation is done by a specialization of this functor.
*
* In the construction of cone-based spanners such as Yao graph and Theta graph implemented by this package,
* this functor is called first to compute the cone boundaries.
* Of course, this functor can also be used in other applications where the plane needs to be divided
* into equally-angled cones.
*
* \tparam Traits_ Must be either `CGAL::Exact_predicates_exact_constructions_kernel_with_root_of`
* or `CGAL::Exact_predicates_inexact_constructions_kernel`.
*
*/
template <typename Traits_>
class Compute_cone_boundaries_2 {
public:
/*! the geometric traits class. */
typedef Traits_ Traits;
/*! the direction type. */
typedef typename Traits::Direction_2 Direction_2;
private:
typedef typename Traits::Aff_transformation_2 Transformation;
public:
/* Note: No member variables in this class, so a custom constructor is not needed. */
/*! \brief The operator().
*
* \details The direction of the first ray can be specified by the parameter `initial_direction`,
* which allows the first ray to start at any direction.
* This operator first places the `initial_direction` at the
* position pointed by `result`. Then, it calculates the remaining directions (cone boundaries)
* and output them to `result` in the counterclockwise order.
* Finally, the past-the-end iterator for the resulting directions is returned.
*
* \tparam DirectionOutputIterator an `OutputIterator` with value type `Direction_2`.
* \param cone_number The number of cones
* \param initial_direction The direction of the first ray
* \param result The output iterator
*/
template<class DirectionOutputIterator>
DirectionOutputIterator operator()(const unsigned int cone_number,
const Direction_2& initial_direction,
DirectionOutputIterator result) {
if (cone_number<2) {
std::cout << "The number of cones must be larger than 1!" << std::endl;
CGAL_assertion(false);
}
*result++ = initial_direction;
const double cone_angle = 2*CGAL_PI/cone_number;
double sin_value, cos_value;
Direction_2 ray;
for (unsigned int i = 1; i < cone_number; i++) {
sin_value = std::sin(i*cone_angle);
cos_value = std::cos(i*cone_angle);
ray = Transformation(cos_value, -sin_value, sin_value, cos_value)(initial_direction);
*result++ = ray;
}
return result;
} // end of operator
};
/*
The specialised functor for computing the directions of cone boundaries exactly
with a given cone number and a given initial direction.
*/
template <>
class Compute_cone_boundaries_2<Exact_predicates_exact_constructions_kernel_with_root_of> {
public:
/* Indicate the type of the cgal kernel. */
typedef Exact_predicates_exact_constructions_kernel_with_root_of Kernel_type;
private:
typedef Kernel_type::FT FT;
typedef Kernel_type::Direction_2 Direction_2;
typedef Kernel_type::Aff_transformation_2 Transformation;
public:
/* Note: No member variables in this class, so a Constructor is not needed. */
/* The operator().
The direction of the first ray can be specified by the parameter
initial_direction, which allows the first ray to start at any direction.
The remaining directions are calculated in counter-clockwise order.
\param cone_number The number of cones
\param initial_direction The direction of the first ray
\param result The output iterator
*/
template<typename DirectionOutputIterator>
DirectionOutputIterator operator()(const unsigned int cone_number,
const Direction_2& initial_direction,
DirectionOutputIterator result) {
if (cone_number<2) {
std::cout << "The number of cones must be larger than 1!" << std::endl;
std::exit(1);
}
// Since CGAL::root_of() gives the k-th smallest root,
// here -x is actually used instead of x.
// But we want the second largest one with no need to count.
Polynomial<FT> x(CGAL::shift(Polynomial<FT>(-1), 1));
Polynomial<FT> double_x(2*x);
Polynomial<FT> a(1), b(x);
for (unsigned int i = 2; i <= cone_number; ++i) {
Polynomial<FT> c = double_x*b - a;
a = b;
b = c;
}
a = b - 1;
unsigned int m, i;
bool is_even;
if (cone_number % 2 == 0) {
is_even = true;
m = cone_number/2; // for even number of cones
}
else {
m= cone_number/2 + 1; // for odd number of cones
is_even = false;
}
FT cos_value, sin_value;
// for storing the intermediate result
Direction_2 ray;
// For saving the first half number of rays when cone_number is even
std::vector<Direction_2> ray_store;
// add the first half number of rays in counter clockwise order
for (i = 1; i <= m; i++) {
cos_value = - root_of(i, a.begin(), a.end());
sin_value = sqrt(FT(1) - cos_value*cos_value);
ray = Transformation(cos_value, -sin_value, sin_value, cos_value)(initial_direction);
*result++ = ray;
if (is_even)
ray_store.push_back(ray);
}
// add the remaining half number of rays in ccw order
if (is_even) {
for (i = 0; i < m; i++) {
*result++ = -ray_store[i];
}
} else {
for (i = 0; i < m-1; i++) {
cos_value = - root_of(m-i, a.begin(), a.end());
sin_value = - sqrt(FT(1) - cos_value*cos_value);
ray = Transformation(cos_value, -sin_value, sin_value, cos_value)(initial_direction);
*result++ = ray;
}
}
return result;
}; // end of operator()
}; // end of functor specialization: Compute_cone_..._2
} // namespace CGAL
#endif