86 lines
2.9 KiB
C++
86 lines
2.9 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2017 Daniele Panozzo <daniele.panozzo@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#ifndef IGL_SPARSE_CACHED_H
|
|
#define IGL_SPARSE_CACHED_H
|
|
#include "igl_inline.h"
|
|
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
|
|
#include <Eigen/Dense>
|
|
#include <Eigen/Sparse>
|
|
namespace igl
|
|
{
|
|
// Build a sparse matrix from list of indices and values (I,J,V), similarly to
|
|
// the sparse function in matlab. Divides the construction in two phases, one
|
|
// for fixing the sparsity pattern, and one to populate it with values. Compared to
|
|
// igl::sparse, this version is slower for the first time (since it requires a
|
|
// precomputation), but faster to the subsequent evaluations.
|
|
//
|
|
// Templates:
|
|
// IndexVector list of indices, value should be non-negative and should
|
|
// expect to be cast to an index. Must implement operator(i) to retrieve
|
|
// ith element
|
|
// ValueVector list of values, value should be expect to be cast to type
|
|
// T. Must implement operator(i) to retrieve ith element
|
|
// T should be a eigen sparse matrix primitive type like int or double
|
|
// Input:
|
|
// I nnz vector of row indices of non zeros entries in X
|
|
// J nnz vector of column indices of non zeros entries in X
|
|
// V nnz vector of non-zeros entries in X
|
|
// Optional:
|
|
// m number of rows
|
|
// n number of cols
|
|
// Outputs:
|
|
// X m by n matrix of type T whose entries are to be found
|
|
//
|
|
// Example:
|
|
// Eigen::SparseMatrix<double> A;
|
|
// std::vector<Eigen::Triplet<double> > IJV;
|
|
// slim_buildA(IJV);
|
|
// if (A.rows() == 0)
|
|
// {
|
|
// A = Eigen::SparseMatrix<double>(rows,cols);
|
|
// igl::sparse_cached_precompute(IJV,A,A_data);
|
|
// }
|
|
// else
|
|
// igl::sparse_cached(IJV,s.A,s.A_data);
|
|
|
|
template <typename DerivedI, typename Scalar>
|
|
IGL_INLINE void sparse_cached_precompute(
|
|
const Eigen::MatrixBase<DerivedI> & I,
|
|
const Eigen::MatrixBase<DerivedI> & J,
|
|
Eigen::VectorXi& data,
|
|
Eigen::SparseMatrix<Scalar>& X
|
|
);
|
|
|
|
template <typename Scalar>
|
|
IGL_INLINE void sparse_cached_precompute(
|
|
const std::vector<Eigen::Triplet<Scalar> >& triplets,
|
|
Eigen::VectorXi& data,
|
|
Eigen::SparseMatrix<Scalar>& X
|
|
);
|
|
|
|
template <typename Scalar>
|
|
IGL_INLINE void sparse_cached(
|
|
const std::vector<Eigen::Triplet<Scalar> >& triplets,
|
|
const Eigen::VectorXi& data,
|
|
Eigen::SparseMatrix<Scalar>& X);
|
|
|
|
template <typename DerivedV, typename Scalar>
|
|
IGL_INLINE void sparse_cached(
|
|
const Eigen::MatrixBase<DerivedV>& V,
|
|
const Eigen::VectorXi& data,
|
|
Eigen::SparseMatrix<Scalar>& X
|
|
);
|
|
|
|
}
|
|
|
|
#ifndef IGL_STATIC_LIBRARY
|
|
# include "sparse_cached.cpp"
|
|
#endif
|
|
|
|
#endif
|