2109 lines
66 KiB
C++
Executable File
2109 lines
66 KiB
C++
Executable File
// Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0+
|
|
//
|
|
//
|
|
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
|
|
// Sylvain Pion
|
|
// Andreas Fabri <Andreas.Fabri@sophia.inria.fr>
|
|
// Clement Jamin
|
|
|
|
#ifndef CGAL_DELAUNAY_TRIANGULATION_3_H
|
|
#define CGAL_DELAUNAY_TRIANGULATION_3_H
|
|
|
|
#include <CGAL/license/Triangulation_3.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
#include <CGAL/basic.h>
|
|
|
|
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
|
|
#include <CGAL/Triangulation_3.h>
|
|
|
|
#include <CGAL/iterator.h>
|
|
#include <CGAL/Location_policy.h>
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
# define CGAL_PROFILE
|
|
# include <CGAL/Profile_counter.h>
|
|
#endif
|
|
#ifdef CGAL_TRIANGULATION_3_PROFILING
|
|
# include <CGAL/Mesh_3/Profiling_tools.h>
|
|
#endif
|
|
|
|
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
|
|
#include <CGAL/Spatial_sort_traits_adapter_3.h>
|
|
#include <CGAL/internal/info_check.h>
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/iterator/zip_iterator.hpp>
|
|
#include <boost/mpl/and.hpp>
|
|
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
# include <CGAL/point_generators_3.h>
|
|
# include <tbb/parallel_for.h>
|
|
# include <tbb/enumerable_thread_specific.h>
|
|
# include <tbb/concurrent_vector.h>
|
|
#endif
|
|
|
|
#ifdef CGAL_DELAUNAY_3_OLD_REMOVE
|
|
# error "The old remove() code has been removed. Please report any issue you may have with the current one."
|
|
#endif
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
#include <CGAL/point_generators_3.h>
|
|
#endif
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace CGAL {
|
|
|
|
// Here is the declaration of a class template with three arguments, one
|
|
// having a default value. There is no definition of that class template.
|
|
template < class Gt,
|
|
class Tds_ = Default,
|
|
class Location_policy = Default,
|
|
class Lock_data_structure_ = Default >
|
|
class Delaunay_triangulation_3;
|
|
|
|
// There is a specialization Delaunay_triangulation_3<Gt, Tds, Fast_location>
|
|
// defined in <CGAL/internal/Delaunay_triangulation_hierarchy_3.h>.
|
|
|
|
// Here is the specialization Delaunay_triangulation_3<Gt, Tds>, with three
|
|
// arguments, that is if Location_policy being the default value 'Default'.
|
|
template < class Gt, class Tds_, class Lock_data_structure_ >
|
|
class Delaunay_triangulation_3<Gt, Tds_, Default, Lock_data_structure_>
|
|
: public Triangulation_3<Gt,
|
|
typename Default::Get<Tds_,
|
|
Triangulation_data_structure_3<
|
|
Triangulation_vertex_base_3<Gt>,
|
|
Delaunay_triangulation_cell_base_3<Gt> > >::type,
|
|
Lock_data_structure_>
|
|
{
|
|
typedef typename Default::Get<Tds_,
|
|
Triangulation_data_structure_3 <
|
|
Triangulation_vertex_base_3<Gt>,
|
|
Delaunay_triangulation_cell_base_3<Gt> > >::type Tds;
|
|
|
|
typedef Delaunay_triangulation_3<Gt, Tds_, Default, Lock_data_structure_> Self;
|
|
|
|
public:
|
|
typedef Triangulation_3<Gt, Tds, Lock_data_structure_> Tr_Base;
|
|
|
|
typedef Tds Triangulation_data_structure;
|
|
typedef Gt Geom_traits;
|
|
typedef Compact_location Location_policy;
|
|
|
|
typedef typename Tr_Base::Lock_data_structure Lock_data_structure;
|
|
|
|
typedef typename Gt::Point_3 Point;
|
|
typedef typename Gt::Segment_3 Segment;
|
|
typedef typename Gt::Triangle_3 Triangle;
|
|
typedef typename Gt::Tetrahedron_3 Tetrahedron;
|
|
|
|
// types for dual:
|
|
typedef typename Gt::Line_3 Line;
|
|
typedef typename Gt::Ray_3 Ray;
|
|
//typedef typename Gt::Plane_3 Plane;
|
|
typedef typename Gt::Object_3 Object;
|
|
|
|
typedef typename Tr_Base::Cell_handle Cell_handle;
|
|
typedef typename Tr_Base::Vertex_handle Vertex_handle;
|
|
|
|
typedef typename Tr_Base::Cell Cell;
|
|
typedef typename Tr_Base::Vertex Vertex;
|
|
typedef typename Tr_Base::Facet Facet;
|
|
typedef typename Tr_Base::Edge Edge;
|
|
|
|
typedef typename Tr_Base::Cell_circulator Cell_circulator;
|
|
typedef typename Tr_Base::Facet_circulator Facet_circulator;
|
|
typedef typename Tr_Base::Cell_iterator Cell_iterator;
|
|
typedef typename Tr_Base::Facet_iterator Facet_iterator;
|
|
typedef typename Tr_Base::Edge_iterator Edge_iterator;
|
|
typedef typename Tr_Base::Vertex_iterator Vertex_iterator;
|
|
|
|
typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
|
|
typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator;
|
|
typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator;
|
|
typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator;
|
|
|
|
typedef typename Tr_Base::All_cells_iterator All_cells_iterator;
|
|
|
|
typedef typename Tr_Base::size_type size_type;
|
|
typedef typename Tr_Base::Locate_type Locate_type;
|
|
|
|
//Tag to distinguish Delaunay from regular triangulations
|
|
typedef Tag_false Weighted_tag;
|
|
|
|
// Tag to distinguish periodic triangulations from others
|
|
typedef Tag_false Periodic_tag;
|
|
|
|
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
|
|
using Tr_Base::cw;
|
|
using Tr_Base::ccw;
|
|
using Tr_Base::geom_traits;
|
|
using Tr_Base::number_of_vertices;
|
|
using Tr_Base::dimension;
|
|
using Tr_Base::finite_facets_begin;
|
|
using Tr_Base::finite_facets_end;
|
|
using Tr_Base::finite_vertices_begin;
|
|
using Tr_Base::finite_vertices_end;
|
|
using Tr_Base::finite_cells_begin;
|
|
using Tr_Base::finite_cells_end;
|
|
using Tr_Base::finite_edges_begin;
|
|
using Tr_Base::finite_edges_end;
|
|
using Tr_Base::tds;
|
|
using Tr_Base::infinite_vertex;
|
|
using Tr_Base::next_around_edge;
|
|
using Tr_Base::vertex_triple_index;
|
|
using Tr_Base::mirror_vertex;
|
|
using Tr_Base::coplanar;
|
|
using Tr_Base::coplanar_orientation;
|
|
using Tr_Base::orientation;
|
|
using Tr_Base::adjacent_vertices;
|
|
using Tr_Base::construct_segment;
|
|
using Tr_Base::incident_facets;
|
|
using Tr_Base::insert_in_conflict;
|
|
using Tr_Base::is_infinite;
|
|
using Tr_Base::is_valid_finite;
|
|
using Tr_Base::locate;
|
|
using Tr_Base::side_of_edge;
|
|
using Tr_Base::side_of_segment;
|
|
using Tr_Base::find_conflicts;
|
|
#endif
|
|
|
|
protected:
|
|
|
|
Oriented_side side_of_oriented_sphere(const Point& p0, const Point& p1,
|
|
const Point& p2, const Point& p3,
|
|
const Point& t, bool perturb = false) const;
|
|
|
|
Bounded_side coplanar_side_of_bounded_circle(const Point& p, const Point& q,
|
|
const Point& r, const Point& s, bool perturb = false) const;
|
|
|
|
// for dual:
|
|
Point construct_circumcenter(const Point& p, const Point& q, const Point& r) const
|
|
{
|
|
return geom_traits().construct_circumcenter_3_object()(p, q, r);
|
|
}
|
|
|
|
Line construct_equidistant_line(const Point& p1, const Point& p2, const Point& p3) const
|
|
{
|
|
return geom_traits().construct_equidistant_line_3_object()(p1, p2, p3);
|
|
}
|
|
|
|
Ray construct_ray(const Point& p, const Line& l) const
|
|
{
|
|
return geom_traits().construct_ray_3_object()(p, l);
|
|
}
|
|
|
|
Object construct_object(const Point& p) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(p);
|
|
}
|
|
|
|
Object construct_object(const Segment& s) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(s);
|
|
}
|
|
|
|
Object construct_object(const Ray& r) const
|
|
{
|
|
return geom_traits().construct_object_3_object()(r);
|
|
}
|
|
|
|
bool less_distance(const Point& p, const Point& q, const Point& r) const
|
|
{
|
|
return geom_traits().compare_distance_3_object()(p, q, r) == SMALLER;
|
|
}
|
|
|
|
public:
|
|
Delaunay_triangulation_3(const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL)
|
|
: Tr_Base(gt, lock_ds)
|
|
{}
|
|
|
|
Delaunay_triangulation_3(Lock_data_structure *lock_ds, const Gt& gt = Gt())
|
|
: Tr_Base(lock_ds, gt)
|
|
{}
|
|
|
|
// Create a 3D triangulation from 4 points which must be well-oriented
|
|
// AND non-coplanar
|
|
Delaunay_triangulation_3(const Point& p0, const Point& p1,
|
|
const Point& p2, const Point& p3,
|
|
const Gt& gt = Gt(),
|
|
Lock_data_structure *lock_ds = NULL)
|
|
: Tr_Base(p0, p1, p2, p3, gt, lock_ds)
|
|
{}
|
|
|
|
// copy constructor duplicates vertices and cells
|
|
Delaunay_triangulation_3(const Delaunay_triangulation_3& tr)
|
|
: Tr_Base(tr)
|
|
{
|
|
CGAL_triangulation_postcondition(is_valid());
|
|
}
|
|
|
|
template < typename InputIterator >
|
|
Delaunay_triangulation_3(InputIterator first, InputIterator last,
|
|
const Gt& gt = Gt(), Lock_data_structure *lock_ds = NULL)
|
|
: Tr_Base(gt, lock_ds)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
template < typename InputIterator >
|
|
Delaunay_triangulation_3(InputIterator first, InputIterator last,
|
|
Lock_data_structure *lock_ds,
|
|
const Gt& gt = Gt())
|
|
: Tr_Base(gt, lock_ds)
|
|
{
|
|
insert(first, last);
|
|
}
|
|
|
|
private:
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
std::vector<Vertex_handle>
|
|
add_temporary_points_on_far_sphere(const size_t num_points)
|
|
{
|
|
std::vector<Vertex_handle> far_sphere_vertices;
|
|
|
|
const size_t MIN_NUM_POINTS_FOR_FAR_SPHERE_POINTS = 1000000;
|
|
if(num_points >= MIN_NUM_POINTS_FOR_FAR_SPHERE_POINTS)
|
|
{
|
|
// Add temporary vertices on a "far sphere" to reduce contention on
|
|
// the infinite vertex
|
|
|
|
// Get bbox
|
|
const Bbox_3& bbox = *this->get_bbox();
|
|
|
|
// Compute radius for far sphere
|
|
const double& xdelta = bbox.xmax() - bbox.xmin();
|
|
const double& ydelta = bbox.ymax() - bbox.ymin();
|
|
const double& zdelta = bbox.zmax() - bbox.zmin();
|
|
const double radius = 1.3 * 0.5 * std::sqrt(xdelta*xdelta +
|
|
ydelta*ydelta +
|
|
zdelta*zdelta);
|
|
|
|
// WARNING - TODO: this code has to be fixed because Vector_3 is not
|
|
// required by the traits concept
|
|
const typename Gt::Vector_3 center(bbox.xmin() + 0.5*xdelta,
|
|
bbox.ymin() + 0.5*ydelta,
|
|
bbox.zmin() + 0.5*zdelta);
|
|
Random_points_on_sphere_3<Point> random_point(radius);
|
|
const int NUM_PSEUDO_INFINITE_VERTICES = static_cast<int>(
|
|
tbb::task_scheduler_init::default_num_threads() * 3.5);
|
|
std::vector<Point> points_on_far_sphere;
|
|
|
|
points_on_far_sphere.reserve(NUM_PSEUDO_INFINITE_VERTICES);
|
|
far_sphere_vertices.reserve(NUM_PSEUDO_INFINITE_VERTICES);
|
|
|
|
for(int i = 0 ; i < NUM_PSEUDO_INFINITE_VERTICES ; ++i, ++random_point)
|
|
points_on_far_sphere.push_back(*random_point + center);
|
|
|
|
spatial_sort(points_on_far_sphere.begin(),
|
|
points_on_far_sphere.end(),
|
|
geom_traits());
|
|
|
|
typename std::vector<Point>::const_iterator it_p = points_on_far_sphere.begin();
|
|
typename std::vector<Point>::const_iterator it_p_end = points_on_far_sphere.end();
|
|
|
|
Vertex_handle hint;
|
|
for(; it_p != it_p_end ; ++it_p)
|
|
{
|
|
hint = insert(*it_p, hint);
|
|
far_sphere_vertices.push_back(hint);
|
|
}
|
|
}
|
|
|
|
return far_sphere_vertices;
|
|
}
|
|
|
|
void remove_temporary_points_on_far_sphere(
|
|
const std::vector<Vertex_handle>& far_sphere_vertices)
|
|
{
|
|
if(!far_sphere_vertices.empty())
|
|
{
|
|
// Remove the temporary vertices on far sphere
|
|
remove(far_sphere_vertices.begin(), far_sphere_vertices.end());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
|
|
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
|
|
template < class InputIterator >
|
|
std::ptrdiff_t insert(InputIterator first, InputIterator last,
|
|
typename boost::enable_if<
|
|
boost::is_convertible<
|
|
typename std::iterator_traits<InputIterator>::value_type,
|
|
Point
|
|
>
|
|
>::type* = NULL)
|
|
#else
|
|
template < class InputIterator >
|
|
std::ptrdiff_t insert(InputIterator first, InputIterator last)
|
|
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
|
|
{
|
|
#ifdef CGAL_TRIANGULATION_3_PROFILING
|
|
WallClockTimer t;
|
|
#endif
|
|
|
|
size_type n = number_of_vertices();
|
|
std::vector<Point> points(first, last);
|
|
spatial_sort(points.begin(), points.end(), geom_traits());
|
|
|
|
// Parallel
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
if(this->is_parallel())
|
|
{
|
|
size_t num_points = points.size();
|
|
|
|
Vertex_handle hint;
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
std::vector<Vertex_handle> far_sphere_vertices =
|
|
add_temporary_points_on_far_sphere(num_points);
|
|
#endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
|
|
size_t i = 0;
|
|
// Insert "num_points_seq" points sequentially
|
|
// (or more if dim < 3 after that)
|
|
size_t num_points_seq = (std::min)(num_points, (size_t) 100);
|
|
while (i < num_points_seq || (dimension() < 3 && i < num_points))
|
|
{
|
|
hint = insert(points[i], hint);
|
|
++i;
|
|
}
|
|
|
|
tbb::enumerable_thread_specific<Vertex_handle> tls_hint(hint);
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(i, num_points),
|
|
Insert_point<Self>(*this, points, tls_hint));
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
remove_temporary_points_on_far_sphere(far_sphere_vertices);
|
|
#endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
}
|
|
// Sequential
|
|
else
|
|
#endif // CGAL_LINKED_WITH_TBB
|
|
{
|
|
Vertex_handle hint;
|
|
for(typename std::vector<Point>::const_iterator p = points.begin(),
|
|
end = points.end(); p != end; ++p)
|
|
{
|
|
hint = insert(*p, hint);
|
|
}
|
|
}
|
|
|
|
#ifdef CGAL_TRIANGULATION_3_PROFILING
|
|
std::cerr << "Triangulation computed in " << t.elapsed() << " seconds." << std::endl;
|
|
#endif
|
|
|
|
return number_of_vertices() - n;
|
|
}
|
|
|
|
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
|
|
private:
|
|
//top stands for tuple-or-pair
|
|
template <class Info>
|
|
const Point& top_get_first(const std::pair<Point,Info>& pair) const { return pair.first; }
|
|
|
|
template <class Info>
|
|
const Info& top_get_second(const std::pair<Point,Info>& pair) const { return pair.second; }
|
|
|
|
template <class Info>
|
|
const Point& top_get_first(const boost::tuple<Point,Info>& tuple) const { return boost::get<0>(tuple); }
|
|
|
|
template <class Info>
|
|
const Info& top_get_second(const boost::tuple<Point,Info>& tuple) const { return boost::get<1>(tuple); }
|
|
|
|
template <class Tuple_or_pair,class InputIterator>
|
|
std::ptrdiff_t insert_with_info(InputIterator first, InputIterator last)
|
|
{
|
|
size_type n = number_of_vertices();
|
|
std::vector<std::size_t> indices;
|
|
std::vector<Point> points;
|
|
std::vector<typename Triangulation_data_structure::Vertex::Info> infos;
|
|
std::size_t index=0;
|
|
for(InputIterator it=first;it!=last;++it)
|
|
{
|
|
Tuple_or_pair value=*it;
|
|
points.push_back(top_get_first(value));
|
|
infos.push_back(top_get_second(value));
|
|
indices.push_back(index++);
|
|
}
|
|
|
|
typedef typename Pointer_property_map<Point>::type Pmap;
|
|
typedef Spatial_sort_traits_adapter_3<Geom_traits,Pmap> Search_traits;
|
|
|
|
spatial_sort(indices.begin(), indices.end(),
|
|
Search_traits(make_property_map(points),geom_traits()));
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
if(this->is_parallel())
|
|
{
|
|
size_t num_points = points.size();
|
|
Vertex_handle hint;
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
std::vector<Vertex_handle> far_sphere_vertices =
|
|
add_temporary_points_on_far_sphere(num_points);
|
|
#endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
|
|
size_t i = 0;
|
|
// Insert "num_points_seq" points sequentially
|
|
// (or more if dim < 3 after that)
|
|
size_t num_points_seq = (std::min)(num_points, (size_t)100);
|
|
while (i < num_points_seq || (dimension() < 3 && i < num_points))
|
|
{
|
|
hint = insert(points[indices[i]], hint);
|
|
if(hint != Vertex_handle()) hint->info() = infos[indices[i]];
|
|
++i;
|
|
}
|
|
|
|
tbb::enumerable_thread_specific<Vertex_handle> tls_hint(hint);
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(i, num_points),
|
|
Insert_point_with_info<Self>(*this, points, infos, indices, tls_hint));
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
remove_temporary_points_on_far_sphere(far_sphere_vertices);
|
|
#endif // CGAL_CONCURRENT_TRIANGULATION_3_ADD_TEMPORARY_POINTS_ON_FAR_SPHERE
|
|
}
|
|
// Sequential
|
|
else
|
|
#endif
|
|
{
|
|
Vertex_handle hint;
|
|
for(typename std::vector<std::size_t>::const_iterator
|
|
it = indices.begin(), end = indices.end(); it != end; ++it)
|
|
{
|
|
hint = insert(points[*it], hint);
|
|
if(hint != Vertex_handle())
|
|
hint->info() = infos[*it];
|
|
}
|
|
}
|
|
|
|
return number_of_vertices() - n;
|
|
}
|
|
|
|
public:
|
|
template < class InputIterator >
|
|
std::ptrdiff_t insert(InputIterator first, InputIterator last,
|
|
typename boost::enable_if<
|
|
boost::is_convertible<
|
|
typename std::iterator_traits<InputIterator>::value_type,
|
|
std::pair<Point, typename internal::Info_check<
|
|
typename Triangulation_data_structure::Vertex>::type>
|
|
> >::type* =NULL)
|
|
{
|
|
return insert_with_info< std::pair<Point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);
|
|
}
|
|
|
|
template <class InputIterator_1,class InputIterator_2>
|
|
std::ptrdiff_t
|
|
insert(boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
|
|
boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
|
|
typename boost::enable_if<
|
|
boost::mpl::and_<
|
|
boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Point >,
|
|
boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type >
|
|
>
|
|
>::type* =NULL)
|
|
{
|
|
return insert_with_info< boost::tuple<Point, typename internal::Info_check<
|
|
typename Triangulation_data_structure::Vertex>::type> >(first,last);
|
|
}
|
|
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
|
|
|
|
Vertex_handle insert(const Point& p, Vertex_handle hint, bool *could_lock_zone = NULL)
|
|
{
|
|
return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell(),
|
|
could_lock_zone);
|
|
}
|
|
|
|
Vertex_handle insert(const Point& p, Cell_handle start = Cell_handle(),
|
|
bool *could_lock_zone = NULL);
|
|
|
|
Vertex_handle insert(const Point& p, Locate_type lt,
|
|
Cell_handle c, int li, int,
|
|
bool *could_lock_zone = NULL);
|
|
|
|
public: // internal methods
|
|
template <class OutputItCells>
|
|
Vertex_handle insert_and_give_new_cells(const Point& p,
|
|
OutputItCells fit,
|
|
Cell_handle start = Cell_handle());
|
|
|
|
template <class OutputItCells>
|
|
Vertex_handle insert_and_give_new_cells(const Point& p,
|
|
OutputItCells fit,
|
|
Vertex_handle hint);
|
|
|
|
template <class OutputItCells>
|
|
Vertex_handle insert_and_give_new_cells(const Point& p,
|
|
Locate_type lt,
|
|
Cell_handle c, int li, int lj,
|
|
OutputItCells fit);
|
|
|
|
public:
|
|
template <class OutputIteratorBoundaryFacets,
|
|
class OutputIteratorCells,
|
|
class OutputIteratorInternalFacets>
|
|
Triple<OutputIteratorBoundaryFacets,
|
|
OutputIteratorCells,
|
|
OutputIteratorInternalFacets>
|
|
find_conflicts(const Point& p, Cell_handle c,
|
|
OutputIteratorBoundaryFacets bfit,
|
|
OutputIteratorCells cit,
|
|
OutputIteratorInternalFacets ifit,
|
|
bool *could_lock_zone = NULL) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
|
|
std::vector<Cell_handle> cells;
|
|
cells.reserve(32);
|
|
std::vector<Facet> facets;
|
|
facets.reserve(64);
|
|
|
|
if(dimension() == 2)
|
|
{
|
|
Conflict_tester_2 tester(p, this);
|
|
ifit = Tr_Base::find_conflicts(c, tester,
|
|
make_triple(std::back_inserter(facets),
|
|
std::back_inserter(cells),
|
|
ifit), could_lock_zone).third;
|
|
}
|
|
else
|
|
{
|
|
Conflict_tester_3 tester(p, this);
|
|
ifit = Tr_Base::find_conflicts(c, tester,
|
|
make_triple(std::back_inserter(facets),
|
|
std::back_inserter(cells),
|
|
ifit), could_lock_zone).third;
|
|
}
|
|
|
|
// Reset the conflict flag on the boundary.
|
|
for(typename std::vector<Facet>::iterator fit=facets.begin();
|
|
fit != facets.end(); ++fit)
|
|
{
|
|
fit->first->neighbor(fit->second)->tds_data().clear();
|
|
*bfit++ = *fit;
|
|
}
|
|
|
|
// Reset the conflict flag in the conflict cells.
|
|
for(typename std::vector<Cell_handle>::iterator ccit=cells.begin();
|
|
ccit != cells.end(); ++ccit)
|
|
{
|
|
(*ccit)->tds_data().clear();
|
|
*cit++ = *ccit;
|
|
}
|
|
return make_triple(bfit, cit, ifit);
|
|
}
|
|
|
|
template <class OutputIteratorBoundaryFacets, class OutputIteratorCells>
|
|
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
|
|
find_conflicts(const Point& p, Cell_handle c,
|
|
OutputIteratorBoundaryFacets bfit,
|
|
OutputIteratorCells cit,
|
|
bool *could_lock_zone = NULL) const
|
|
{
|
|
Triple<OutputIteratorBoundaryFacets,
|
|
OutputIteratorCells,
|
|
Emptyset_iterator> t = find_conflicts(p, c, bfit, cit,
|
|
Emptyset_iterator(),
|
|
could_lock_zone);
|
|
return std::make_pair(t.first, t.second);
|
|
}
|
|
|
|
#ifndef CGAL_NO_DEPRECATED_CODE
|
|
// Returns the vertices on the boundary of the conflict hole.
|
|
template <class OutputIterator>
|
|
OutputIterator
|
|
vertices_in_conflict(const Point&p, Cell_handle c, OutputIterator res) const
|
|
{
|
|
return vertices_on_conflict_zone_boundary(p, c, res);
|
|
}
|
|
#endif // CGAL_NO_DEPRECATED_CODE
|
|
|
|
// Returns the vertices on the boundary of the conflict hole.
|
|
template <class OutputIterator>
|
|
OutputIterator
|
|
vertices_on_conflict_zone_boundary(const Point&p, Cell_handle c,
|
|
OutputIterator res) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
|
|
// Get the facets on the boundary of the hole.
|
|
std::vector<Facet> facets;
|
|
find_conflicts(p, c, std::back_inserter(facets),
|
|
Emptyset_iterator(), Emptyset_iterator());
|
|
|
|
// Then extract uniquely the vertices.
|
|
std::set<Vertex_handle> vertices;
|
|
if(dimension() == 3)
|
|
{
|
|
for(typename std::vector<Facet>::const_iterator i = facets.begin();
|
|
i != facets.end(); ++i)
|
|
{
|
|
vertices.insert(i->first->vertex((i->second+1)&3));
|
|
vertices.insert(i->first->vertex((i->second+2)&3));
|
|
vertices.insert(i->first->vertex((i->second+3)&3));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(typename std::vector<Facet>::const_iterator i = facets.begin();
|
|
i != facets.end(); ++i)
|
|
{
|
|
vertices.insert(i->first->vertex(cw(i->second)));
|
|
vertices.insert(i->first->vertex(ccw(i->second)));
|
|
}
|
|
}
|
|
|
|
return std::copy(vertices.begin(), vertices.end(), res);
|
|
}
|
|
|
|
// REMOVE
|
|
void remove(Vertex_handle v);
|
|
// Concurrency-safe
|
|
// See Triangulation_3::remove for more information
|
|
bool remove(Vertex_handle v, bool *could_lock_zone);
|
|
|
|
// return new cells (internal)
|
|
template <class OutputItCells>
|
|
void remove_and_give_new_cells(Vertex_handle v,
|
|
OutputItCells fit);
|
|
|
|
template < typename InputIterator >
|
|
size_type remove(InputIterator first, InputIterator beyond)
|
|
{
|
|
CGAL_triangulation_precondition(!this->does_repeat_in_range(first, beyond));
|
|
size_type n = number_of_vertices();
|
|
|
|
#ifdef CGAL_TRIANGULATION_3_PROFILING
|
|
WallClockTimer t;
|
|
#endif
|
|
|
|
// Parallel
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
if(this->is_parallel())
|
|
{
|
|
// TODO: avoid that by asking for random-access iterators?
|
|
std::vector<Vertex_handle> vertices(first, beyond);
|
|
tbb::concurrent_vector<Vertex_handle> vertices_to_remove_sequentially;
|
|
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, vertices.size()),
|
|
Remove_point<Self>(*this, vertices, vertices_to_remove_sequentially));
|
|
|
|
// Do the rest sequentially
|
|
for(typename tbb::concurrent_vector<Vertex_handle>::const_iterator
|
|
it = vertices_to_remove_sequentially.begin(),
|
|
it_end = vertices_to_remove_sequentially.end()
|
|
; it != it_end
|
|
; ++it)
|
|
{
|
|
remove(*it);
|
|
}
|
|
}
|
|
// Sequential
|
|
else
|
|
#endif // CGAL_LINKED_WITH_TBB
|
|
{
|
|
while(first != beyond)
|
|
{
|
|
remove(*first);
|
|
++first;
|
|
}
|
|
}
|
|
|
|
#ifdef CGAL_TRIANGULATION_3_PROFILING
|
|
double elapsed = t.elapsed();
|
|
std::cerr << "Points removed in " << elapsed << " seconds." << std::endl;
|
|
#endif
|
|
return n - number_of_vertices();
|
|
}
|
|
|
|
template < typename InputIterator >
|
|
size_type remove_cluster(InputIterator first, InputIterator beyond)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
return Tr_Base::remove(first, beyond, remover);
|
|
}
|
|
|
|
// MOVE
|
|
Vertex_handle move_if_no_collision(Vertex_handle v, const Point& p);
|
|
Vertex_handle move(Vertex_handle v, const Point& p);
|
|
|
|
// return new cells(internal)
|
|
template <class OutputItCells>
|
|
Vertex_handle move_if_no_collision_and_give_new_cells(Vertex_handle v,
|
|
const Point& p,
|
|
OutputItCells fit);
|
|
|
|
private:
|
|
Bounded_side
|
|
side_of_sphere(Vertex_handle v0, Vertex_handle v1,
|
|
Vertex_handle v2, Vertex_handle v3,
|
|
const Point& p, bool perturb) const;
|
|
public:
|
|
// Queries
|
|
Bounded_side side_of_sphere(Cell_handle c, const Point& p, bool perturb = false) const
|
|
{
|
|
return side_of_sphere(c->vertex(0), c->vertex(1),
|
|
c->vertex(2), c->vertex(3), p, perturb);
|
|
}
|
|
|
|
Bounded_side side_of_circle(const Facet& f, const Point& p, bool perturb = false) const
|
|
{
|
|
return side_of_circle(f.first, f.second, p, perturb);
|
|
}
|
|
|
|
Bounded_side side_of_circle(Cell_handle c, int i, const Point& p, bool perturb = false) const;
|
|
|
|
Vertex_handle nearest_vertex_in_cell(const Point& p, Cell_handle c) const;
|
|
Vertex_handle nearest_vertex(const Point& p, Cell_handle c = Cell_handle()) const;
|
|
|
|
bool is_Gabriel(Cell_handle c, int i) const;
|
|
bool is_Gabriel(Cell_handle c, int i, int j) const;
|
|
bool is_Gabriel(const Facet& f)const ;
|
|
bool is_Gabriel(const Edge& e) const;
|
|
|
|
bool is_delaunay_after_displacement(Vertex_handle v, const Point& p) const;
|
|
|
|
// Dual functions
|
|
Point dual(Cell_handle c) const;
|
|
Object dual(const Facet& f) const { return dual(f.first, f.second); }
|
|
Object dual(Cell_handle c, int i) const;
|
|
|
|
Line dual_support(Cell_handle c, int i) const;
|
|
|
|
bool is_valid(bool verbose = false, int level = 0) const;
|
|
bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const;
|
|
|
|
template < class Stream>
|
|
Stream& draw_dual(Stream& os)
|
|
{
|
|
for(Finite_facets_iterator fit = finite_facets_begin(),
|
|
end = finite_facets_end();
|
|
fit != end; ++fit) {
|
|
Object o = dual(*fit);
|
|
if(const Segment* s = object_cast<Segment>(&o))
|
|
os << *s;
|
|
else if(const Ray* r = object_cast<Ray>(&o))
|
|
os << *r;
|
|
else if(const Point* p = object_cast<Point>(&o))
|
|
os << *p;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
protected:
|
|
|
|
Vertex_handle
|
|
nearest_vertex(const Point& p, Vertex_handle v, Vertex_handle w) const
|
|
{
|
|
// In case of equality, v is returned.
|
|
CGAL_triangulation_precondition(v != w);
|
|
|
|
if(is_infinite(v))
|
|
return w;
|
|
if(is_infinite(w))
|
|
return v;
|
|
return less_distance(p, w->point(), v->point()) ? w : v;
|
|
}
|
|
|
|
class Conflict_tester_3
|
|
{
|
|
const Point& p;
|
|
const Self *t;
|
|
|
|
public:
|
|
Conflict_tester_3(const Point& pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->side_of_sphere(c, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
Oriented_side compare_weight(const Point& , const Point& ) const
|
|
{
|
|
return ZERO;
|
|
}
|
|
|
|
bool test_initial_cell(Cell_handle) const
|
|
{
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class Conflict_tester_2
|
|
{
|
|
const Point& p;
|
|
const Self *t;
|
|
|
|
public:
|
|
Conflict_tester_2(const Point& pt, const Self *tr)
|
|
: p(pt), t(tr) {}
|
|
|
|
bool operator()(const Cell_handle c) const
|
|
{
|
|
return t->side_of_circle(c, 3, p, true) == ON_BOUNDED_SIDE;
|
|
}
|
|
|
|
Oriented_side compare_weight(const Point& , const Point& ) const
|
|
{
|
|
return ZERO;
|
|
}
|
|
|
|
bool test_initial_cell(Cell_handle) const
|
|
{
|
|
return true;
|
|
}
|
|
};
|
|
class Hidden_point_visitor
|
|
{
|
|
public:
|
|
|
|
Hidden_point_visitor() {}
|
|
|
|
template <class InputIterator>
|
|
void process_cells_in_conflict(InputIterator, InputIterator) const {}
|
|
void reinsert_vertices(Vertex_handle) {}
|
|
Vertex_handle replace_vertex(Cell_handle c, int index, const Point& )
|
|
{
|
|
return c->vertex(index);
|
|
}
|
|
void hide_point(Cell_handle, const Point& ) {}
|
|
};
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
// Functor for parallel insert(begin, end) function
|
|
template <typename DT>
|
|
class Insert_point
|
|
{
|
|
typedef typename DT::Point Point;
|
|
typedef typename DT::Vertex_handle Vertex_handle;
|
|
|
|
DT& m_dt;
|
|
const std::vector<Point>& m_points;
|
|
tbb::enumerable_thread_specific<Vertex_handle>& m_tls_hint;
|
|
|
|
public:
|
|
// Constructor
|
|
Insert_point(DT& dt,
|
|
const std::vector<Point>& points,
|
|
tbb::enumerable_thread_specific<Vertex_handle>& tls_hint)
|
|
: m_dt(dt), m_points(points), m_tls_hint(tls_hint)
|
|
{}
|
|
|
|
// Constructor
|
|
Insert_point(const Insert_point& ip)
|
|
: m_dt(ip.m_dt), m_points(ip.m_points), m_tls_hint(ip.m_tls_hint)
|
|
{}
|
|
|
|
// operator()
|
|
void operator()(const tbb::blocked_range<size_t>& r) const
|
|
{
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
static Profile_branch_counter_3 bcounter(
|
|
"early withdrawals / late withdrawals / successes [Delaunay_tri_3::insert]");
|
|
#endif
|
|
|
|
Vertex_handle& hint = m_tls_hint.local();
|
|
for(std::size_t i_point = r.begin() ; i_point != r.end() ; ++i_point)
|
|
{
|
|
bool success = false;
|
|
while(!success)
|
|
{
|
|
if(m_dt.try_lock_vertex(hint) && m_dt.try_lock_point(m_points[i_point]))
|
|
{
|
|
bool could_lock_zone;
|
|
Vertex_handle new_hint = m_dt.insert(m_points[i_point], hint, &could_lock_zone);
|
|
|
|
m_dt.unlock_all_elements();
|
|
|
|
if(could_lock_zone)
|
|
{
|
|
hint = new_hint;
|
|
success = true;
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
++bcounter;
|
|
#endif
|
|
}
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
else
|
|
{
|
|
bcounter.increment_branch_1(); // THIS is a late withdrawal!
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
m_dt.unlock_all_elements();
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
bcounter.increment_branch_2(); // THIS is an early withdrawal!
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
};
|
|
|
|
// Functor for parallel insert_with_info(begin, end) function
|
|
template <typename DT>
|
|
class Insert_point_with_info
|
|
{
|
|
typedef typename DT::Point Point;
|
|
typedef typename DT::Vertex_handle Vertex_handle;
|
|
typedef typename DT::Triangulation_data_structure::Vertex::Info Info;
|
|
|
|
DT& m_dt;
|
|
const std::vector<Point>& m_points;
|
|
const std::vector<Info>& m_infos;
|
|
const std::vector<std::size_t>& m_indices;
|
|
tbb::enumerable_thread_specific<Vertex_handle>& m_tls_hint;
|
|
|
|
public:
|
|
// Constructor
|
|
Insert_point_with_info(DT& dt,
|
|
const std::vector<Point>& points,
|
|
const std::vector<Info>& infos,
|
|
const std::vector<std::size_t>& indices,
|
|
tbb::enumerable_thread_specific<Vertex_handle>& tls_hint)
|
|
: m_dt(dt), m_points(points), m_infos(infos), m_indices(indices),
|
|
m_tls_hint(tls_hint)
|
|
{}
|
|
|
|
// Constructor
|
|
Insert_point_with_info(const Insert_point_with_info& ip)
|
|
: m_dt(ip.m_dt), m_points(ip.m_points), m_infos(ip.m_infos),
|
|
m_indices(ip.m_indices), m_tls_hint(ip.m_tls_hint)
|
|
{}
|
|
|
|
// operator()
|
|
void operator()(const tbb::blocked_range<size_t>& r) const
|
|
{
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
static Profile_branch_counter_3 bcounter(
|
|
"early withdrawals / late withdrawals / successes [Delaunay_tri_3::insert_with_info]");
|
|
#endif
|
|
|
|
Vertex_handle& hint = m_tls_hint.local();
|
|
for(std::size_t i_idx = r.begin() ; i_idx != r.end() ; ++i_idx)
|
|
{
|
|
bool success = false;
|
|
std::ptrdiff_t i_point = m_indices[i_idx];
|
|
const Point& p = m_points[i_point];
|
|
while(!success)
|
|
{
|
|
if(m_dt.try_lock_vertex(hint) && m_dt.try_lock_point(p))
|
|
{
|
|
bool could_lock_zone;
|
|
Vertex_handle new_hint = m_dt.insert(p, hint, &could_lock_zone);
|
|
|
|
m_dt.unlock_all_elements();
|
|
|
|
if(could_lock_zone)
|
|
{
|
|
hint = new_hint;
|
|
if(hint!=Vertex_handle()) hint->info()=m_infos[i_point];
|
|
success = true;
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
++bcounter;
|
|
#endif
|
|
}
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
else
|
|
{
|
|
bcounter.increment_branch_1(); // THIS is a late withdrawal!
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
m_dt.unlock_all_elements();
|
|
|
|
#ifdef CGAL_CONCURRENT_TRIANGULATION_3_PROFILING
|
|
bcounter.increment_branch_2(); // THIS is an early withdrawal!
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
};
|
|
|
|
// Functor for parallel remove(begin, end) function
|
|
template <typename DT>
|
|
class Remove_point
|
|
{
|
|
typedef typename DT::Point Point;
|
|
typedef typename DT::Vertex_handle Vertex_handle;
|
|
|
|
DT& m_dt;
|
|
const std::vector<Vertex_handle>& m_vertices;
|
|
tbb::concurrent_vector<Vertex_handle>& m_vertices_to_remove_sequentially;
|
|
|
|
public:
|
|
// Constructor
|
|
Remove_point(DT& dt,
|
|
const std::vector<Vertex_handle>& vertices,
|
|
tbb::concurrent_vector<Vertex_handle>& vertices_to_remove_sequentially)
|
|
: m_dt(dt), m_vertices(vertices),
|
|
m_vertices_to_remove_sequentially(vertices_to_remove_sequentially)
|
|
{}
|
|
|
|
// Constructor
|
|
Remove_point(const Remove_point& rp)
|
|
: m_dt(rp.m_dt), m_vertices(rp.m_vertices),
|
|
m_vertices_to_remove_sequentially(rp.m_vertices_to_remove_sequentially)
|
|
{}
|
|
|
|
// operator()
|
|
void operator()(const tbb::blocked_range<size_t>& r) const
|
|
{
|
|
for(size_t i_vertex = r.begin() ; i_vertex != r.end() ; ++i_vertex)
|
|
{
|
|
Vertex_handle v = m_vertices[i_vertex];
|
|
bool could_lock_zone, needs_to_be_done_sequentially;
|
|
do
|
|
{
|
|
needs_to_be_done_sequentially =
|
|
!m_dt.remove(v, &could_lock_zone);
|
|
m_dt.unlock_all_elements();
|
|
}
|
|
while(!could_lock_zone);
|
|
|
|
if(needs_to_be_done_sequentially)
|
|
m_vertices_to_remove_sequentially.push_back(v);
|
|
}
|
|
}
|
|
};
|
|
#endif // CGAL_LINKED_WITH_TBB
|
|
|
|
template < class DelaunayTriangulation_3 >
|
|
class Vertex_remover;
|
|
|
|
template < class DelaunayTriangulation_3 >
|
|
class Vertex_inserter;
|
|
|
|
friend class Conflict_tester_3;
|
|
friend class Conflict_tester_2;
|
|
|
|
Hidden_point_visitor hidden_point_visitor;
|
|
};
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
insert(const Point& p, Cell_handle start, bool *could_lock_zone)
|
|
{
|
|
Locate_type lt;
|
|
int li, lj;
|
|
|
|
// Parallel
|
|
if(could_lock_zone)
|
|
{
|
|
Cell_handle c = locate(p, lt, li, lj, start, could_lock_zone);
|
|
if(*could_lock_zone)
|
|
return insert(p, lt, c, li, lj, could_lock_zone);
|
|
else
|
|
return Vertex_handle();
|
|
}
|
|
// Sequential
|
|
else
|
|
{
|
|
Cell_handle c = locate(p, lt, li, lj, start);
|
|
return insert(p, lt, c, li, lj);
|
|
}
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
insert(const Point& p, Locate_type lt, Cell_handle c, int li, int lj, bool *could_lock_zone)
|
|
{
|
|
switch(dimension())
|
|
{
|
|
case 3:
|
|
{
|
|
Conflict_tester_3 tester(p, this);
|
|
Vertex_handle v = insert_in_conflict(p, lt, c, li, lj,
|
|
tester, hidden_point_visitor, could_lock_zone);
|
|
return v;
|
|
}// dim 3
|
|
case 2:
|
|
{
|
|
Conflict_tester_2 tester(p, this);
|
|
return insert_in_conflict(p, lt, c, li, lj,
|
|
tester, hidden_point_visitor, could_lock_zone);
|
|
}//dim 2
|
|
default :
|
|
// dimension <= 1
|
|
// Do not use the generic insert.
|
|
return Tr_Base::insert(p, c);
|
|
}
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
template <class OutputItCells>
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
insert_and_give_new_cells(const Point &p, OutputItCells fit, Cell_handle start)
|
|
{
|
|
Vertex_handle v = insert(p, start);
|
|
int dimension = this->dimension();
|
|
if(dimension == 3)
|
|
{
|
|
this->incident_cells(v, fit);
|
|
}
|
|
else if(dimension == 2)
|
|
{
|
|
Cell_handle c = v->cell(), end = c;
|
|
do
|
|
{
|
|
*fit++ = c;
|
|
int i = c->index(v);
|
|
c = c->neighbor((i+1)%3);
|
|
}
|
|
while(c != end);
|
|
}
|
|
else if(dimension == 1)
|
|
{
|
|
Cell_handle c = v->cell();
|
|
*fit++ = c;
|
|
*fit++ = c->neighbor((~(c->index(v)))&1);
|
|
}
|
|
else // dimension = 0
|
|
{
|
|
*fit++ = v->cell();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
template <class OutputItCells>
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
insert_and_give_new_cells(const Point& p, OutputItCells fit, Vertex_handle hint)
|
|
{
|
|
Vertex_handle v = insert(p, hint);
|
|
int dimension = this->dimension();
|
|
if(dimension == 3)
|
|
{
|
|
this->incident_cells(v, fit);
|
|
}
|
|
else if(dimension == 2)
|
|
{
|
|
Cell_handle c = v->cell(), end = c;
|
|
do
|
|
{
|
|
*fit++ = c;
|
|
int i = c->index(v);
|
|
c = c->neighbor((i+1)%3);
|
|
}
|
|
while(c != end);
|
|
}
|
|
else if(dimension == 1)
|
|
{
|
|
Cell_handle c = v->cell();
|
|
*fit++ = c;
|
|
*fit++ = c->neighbor((~(c->index(v)))&1);
|
|
}
|
|
else // dimension = 0
|
|
{
|
|
*fit++ = v->cell();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
template <class OutputItCells>
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
insert_and_give_new_cells(const Point& p,
|
|
Locate_type lt,
|
|
Cell_handle c, int li, int lj,
|
|
OutputItCells fit)
|
|
{
|
|
Vertex_handle v = insert(p, lt, c, li, lj);
|
|
int dimension = this->dimension();
|
|
if(dimension == 3)
|
|
{
|
|
this->incident_cells(v, fit);
|
|
}
|
|
else if(dimension == 2)
|
|
{
|
|
Cell_handle c = v->cell(), end = c;
|
|
do
|
|
{
|
|
*fit++ = c;
|
|
int i = c->index(v);
|
|
c = c->neighbor((i+1)%3);
|
|
}
|
|
while(c != end);
|
|
}
|
|
else if(dimension == 1)
|
|
{
|
|
Cell_handle c = v->cell();
|
|
*fit++ = c;
|
|
*fit++ = c->neighbor((~(c->index(v)))&1);
|
|
}
|
|
else // dimension = 0
|
|
{
|
|
*fit++ = v->cell();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
template <class Gt, class Tds, class Lds >
|
|
template <class DelaunayTriangulation_3>
|
|
class Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_remover
|
|
{
|
|
typedef DelaunayTriangulation_3 Delaunay;
|
|
|
|
public:
|
|
typedef Nullptr_t Hidden_points_iterator;
|
|
|
|
Vertex_remover(Delaunay &tmp_) : tmp(tmp_) {}
|
|
|
|
Delaunay &tmp;
|
|
|
|
void add_hidden_points(Cell_handle) {}
|
|
Hidden_points_iterator hidden_points_begin() { return NULL; }
|
|
Hidden_points_iterator hidden_points_end() { return NULL; }
|
|
|
|
Bounded_side side_of_bounded_circle(const Point& p, const Point& q,
|
|
const Point& r, const Point& s,
|
|
bool perturb = false) const
|
|
{
|
|
return tmp.coplanar_side_of_bounded_circle(p,q,r,s,perturb);
|
|
}
|
|
};
|
|
|
|
template <class Gt, class Tds, class Lds >
|
|
template <class DelaunayTriangulation_3>
|
|
class Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_inserter
|
|
{
|
|
typedef DelaunayTriangulation_3 Delaunay;
|
|
|
|
public:
|
|
typedef Nullptr_t Hidden_points_iterator;
|
|
|
|
Vertex_inserter(Delaunay &tmp_) : tmp(tmp_) {}
|
|
|
|
Delaunay &tmp;
|
|
|
|
void add_hidden_points(Cell_handle) {}
|
|
Hidden_points_iterator hidden_points_begin() { return NULL; }
|
|
Hidden_points_iterator hidden_points_end() { return NULL; }
|
|
|
|
Vertex_handle insert(const Point& p, Locate_type lt, Cell_handle c, int li, int lj)
|
|
{
|
|
return tmp.insert(p, lt, c, li, lj);
|
|
}
|
|
|
|
Vertex_handle insert(const Point& p, Cell_handle c)
|
|
{
|
|
return tmp.insert(p, c);
|
|
}
|
|
|
|
Vertex_handle insert(const Point& p)
|
|
{
|
|
return tmp.insert(p);
|
|
}
|
|
};
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
remove(Vertex_handle v)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
Tr_Base::remove(v, remover);
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
remove(Vertex_handle v, bool *could_lock_zone)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
bool ret = Tr_Base::remove(v, remover, could_lock_zone);
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return ret;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
move_if_no_collision(Vertex_handle v, const Point& p)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
Vertex_inserter<Self> inserter(*this);
|
|
Vertex_handle res = Tr_Base::move_if_no_collision(v,p,remover,inserter);
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return res;
|
|
}
|
|
|
|
template <class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
move(Vertex_handle v, const Point& p)
|
|
{
|
|
CGAL_triangulation_precondition(!is_infinite(v));
|
|
if(v->point() == p)
|
|
return v;
|
|
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
Vertex_inserter<Self> inserter(*this);
|
|
return Tr_Base::move(v,p,remover,inserter);
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
template <class OutputItCells>
|
|
void
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
remove_and_give_new_cells(Vertex_handle v, OutputItCells fit)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
Tr_Base::remove_and_give_new_cells(v,remover,fit);
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
template <class OutputItCells>
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
move_if_no_collision_and_give_new_cells(Vertex_handle v, const Point& p,
|
|
OutputItCells fit)
|
|
{
|
|
Self tmp;
|
|
Vertex_remover<Self> remover(tmp);
|
|
Vertex_inserter<Self> inserter(*this);
|
|
Vertex_handle res =
|
|
Tr_Base::move_if_no_collision_and_give_new_cells(v,p,
|
|
remover,inserter,fit);
|
|
|
|
CGAL_triangulation_expensive_postcondition(is_valid());
|
|
return res;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
Oriented_side
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
side_of_oriented_sphere(const Point& p0, const Point& p1, const Point& p2,
|
|
const Point& p3, const Point& p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition(orientation(p0, p1, p2, p3) == POSITIVE);
|
|
|
|
Oriented_side os =
|
|
geom_traits().side_of_oriented_sphere_3_object()(p0, p1, p2, p3, p);
|
|
|
|
if(os != ON_ORIENTED_BOUNDARY || !perturb)
|
|
return os;
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
// We sort the points lexicographically.
|
|
const Point * points[5] = {&p0, &p1, &p2, &p3, &p};
|
|
std::sort(points, points + 5, typename Tr_Base::Perturbation_order(this));
|
|
|
|
// We successively look whether the leading monomial, then 2nd monomial
|
|
// of the determinant has non null coefficient.
|
|
// 2 iterations are enough (cf paper)
|
|
for(int i=4; i>2; --i)
|
|
{
|
|
if(points[i] == &p)
|
|
return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar
|
|
// and positively oriented
|
|
Orientation o;
|
|
if(points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR)
|
|
return o;
|
|
if(points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR)
|
|
return o;
|
|
if(points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR)
|
|
return o;
|
|
if(points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR)
|
|
return o;
|
|
}
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return ON_NEGATIVE_SIDE;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
Bounded_side
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
coplanar_side_of_bounded_circle(const Point& p0, const Point& p1,
|
|
const Point& p2, const Point& p, bool perturb) const
|
|
{
|
|
// In dim==2, we should even be able to assert orient == POSITIVE.
|
|
CGAL_triangulation_precondition(coplanar_orientation(p0, p1, p2)
|
|
!= COLLINEAR);
|
|
|
|
Bounded_side bs =
|
|
geom_traits().coplanar_side_of_bounded_circle_3_object()(p0, p1, p2, p);
|
|
|
|
if(bs != ON_BOUNDARY || !perturb)
|
|
return bs;
|
|
|
|
// We are now in a degenerate case => we do a symbolic perturbation.
|
|
|
|
// We sort the points lexicographically.
|
|
const Point * points[4] = {&p0, &p1, &p2, &p};
|
|
std::sort(points, points + 4, typename Tr_Base::Perturbation_order(this));
|
|
|
|
Orientation local = coplanar_orientation(p0, p1, p2);
|
|
|
|
// we successively look whether the leading monomial, then 2nd monimial,
|
|
// then 3rd monomial, of the determinant which has non null coefficient
|
|
// [syl] : TODO : Probably it can be stopped earlier like the 3D version
|
|
for(int i=3; i>0; --i)
|
|
{
|
|
if(points[i] == &p)
|
|
return Bounded_side(NEGATIVE); // since p0 p1 p2 are non collinear
|
|
// but not necessarily positively oriented
|
|
Orientation o;
|
|
if(points[i] == &p2 && (o = coplanar_orientation(p0,p1,p)) != COLLINEAR)
|
|
// [syl] : TODO : I'm not sure of the signs here (nor the rest :)
|
|
return Bounded_side(o*local);
|
|
if(points[i] == &p1 && (o = coplanar_orientation(p0,p,p2)) != COLLINEAR)
|
|
return Bounded_side(o*local);
|
|
if(points[i] == &p0 && (o = coplanar_orientation(p,p1,p2)) != COLLINEAR)
|
|
return Bounded_side(o*local);
|
|
}
|
|
|
|
// case when the first non null coefficient is the coefficient of
|
|
// the 4th monomial
|
|
// moreover, the tests (points[] == &p) were false up to here, so the
|
|
// monomial corresponding to p is the only monomial with non-zero
|
|
// coefficient, it is equal to coplanar_orient(p0,p1,p2) == positive
|
|
// so, no further test is required
|
|
return Bounded_side(-local); //ON_UNBOUNDED_SIDE;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
Bounded_side
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
side_of_sphere(Vertex_handle v0, Vertex_handle v1,
|
|
Vertex_handle v2, Vertex_handle v3,
|
|
const Point& p, bool perturb) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3);
|
|
|
|
if(is_infinite(v0))
|
|
{
|
|
Orientation o = orientation(v2->point(), v1->point(), v3->point(), p);
|
|
if(o != COPLANAR)
|
|
return Bounded_side(o);
|
|
|
|
return coplanar_side_of_bounded_circle(v2->point(), v1->point(), v3->point(), p, perturb);
|
|
}
|
|
|
|
if(is_infinite(v1))
|
|
{
|
|
Orientation o = orientation(v2->point(), v3->point(), v0->point(), p);
|
|
if(o != COPLANAR)
|
|
return Bounded_side(o);
|
|
|
|
return coplanar_side_of_bounded_circle(v2->point(), v3->point(), v0->point(), p, perturb);
|
|
}
|
|
|
|
if(is_infinite(v2))
|
|
{
|
|
Orientation o = orientation(v1->point(), v0->point(), v3->point(), p);
|
|
if(o != COPLANAR)
|
|
return Bounded_side(o);
|
|
|
|
return coplanar_side_of_bounded_circle(v1->point(), v0->point(), v3->point(), p, perturb);
|
|
}
|
|
|
|
if(is_infinite(v3))
|
|
{
|
|
Orientation o = orientation(v0->point(), v1->point(), v2->point(), p);
|
|
if(o != COPLANAR)
|
|
return Bounded_side(o);
|
|
|
|
return coplanar_side_of_bounded_circle(v0->point(), v1->point(), v2->point(), p, perturb);
|
|
}
|
|
|
|
return (Bounded_side) side_of_oriented_sphere(v0->point(), v1->point(), v2->point(), v3->point(), p, perturb);
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
Bounded_side
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
side_of_circle(Cell_handle c, int i, const Point& p, bool perturb) const
|
|
{
|
|
// precondition : dimension >=2
|
|
// in dimension 3, - for a finite facet
|
|
// returns ON_BOUNDARY if the point lies on the circle,
|
|
// ON_UNBOUNDED_SIDE when exterior, ON_BOUNDED_SIDE
|
|
// interior
|
|
// for an infinite facet, considers the plane defined by the
|
|
// adjacent finite facet of the same cell, and does the same as in
|
|
// dimension 2 in this plane
|
|
// in dimension 2, for an infinite facet
|
|
// in this case, returns ON_BOUNDARY if the point lies on the
|
|
// finite edge (endpoints included)
|
|
// ON_BOUNDED_SIDE for a point in the open half-plane
|
|
// ON_UNBOUNDED_SIDE elsewhere
|
|
|
|
CGAL_triangulation_precondition(dimension() >= 2);
|
|
int i3 = 5;
|
|
|
|
if(dimension() == 2)
|
|
{
|
|
CGAL_triangulation_precondition(i == 3);
|
|
// the triangulation is supposed to be valid, ie the facet
|
|
// with vertices 0 1 2 in this order is positively oriented
|
|
if(! c->has_vertex(infinite_vertex(), i3))
|
|
return coplanar_side_of_bounded_circle(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point(),
|
|
p, perturb);
|
|
// else infinite facet
|
|
// v1, v2 finite vertices of the facet such that v1,v2,infinite
|
|
// is positively oriented
|
|
Vertex_handle v1 = c->vertex(ccw(i3)),
|
|
v2 = c->vertex(cw(i3));
|
|
CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
|
|
mirror_vertex(c, i3)->point()) == NEGATIVE);
|
|
Orientation o = coplanar_orientation(v1->point(), v2->point(), p);
|
|
if(o != COLLINEAR)
|
|
return Bounded_side(o);
|
|
// because p is in f iff
|
|
// it does not lie on the same side of v1v2 as vn
|
|
int i_e;
|
|
Locate_type lt;
|
|
// case when p collinear with v1v2
|
|
return side_of_segment(p, v1->point(), v2->point(), lt, i_e);
|
|
}
|
|
|
|
// else dimension == 3
|
|
CGAL_triangulation_precondition(i >= 0 && i < 4);
|
|
if((! c->has_vertex(infinite_vertex(),i3)) || (i3 != i))
|
|
{
|
|
// finite facet
|
|
// initialization of i0 i1 i2, vertices of the facet positively
|
|
// oriented (if the triangulation is valid)
|
|
int i0 = (i>0) ? 0 : 1;
|
|
int i1 = (i>1) ? 1 : 2;
|
|
int i2 = (i>2) ? 2 : 3;
|
|
CGAL_triangulation_precondition(coplanar(c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(),
|
|
p));
|
|
return coplanar_side_of_bounded_circle(c->vertex(i0)->point(),
|
|
c->vertex(i1)->point(),
|
|
c->vertex(i2)->point(),
|
|
p, perturb);
|
|
}
|
|
|
|
//else infinite facet
|
|
// v1, v2 finite vertices of the facet such that v1,v2,infinite
|
|
// is positively oriented
|
|
Vertex_handle v1 = c->vertex(next_around_edge(i3,i)),
|
|
v2 = c->vertex(next_around_edge(i,i3));
|
|
Orientation o = (Orientation)
|
|
(coplanar_orientation(v1->point(), v2->point(),
|
|
c->vertex(i)->point()) *
|
|
coplanar_orientation(v1->point(), v2->point(), p));
|
|
// then the code is duplicated from 2d case
|
|
if(o != COLLINEAR)
|
|
return Bounded_side(-o);
|
|
// because p is in f iff
|
|
// it is not on the same side of v1v2 as c->vertex(i)
|
|
int i_e;
|
|
Locate_type lt;
|
|
// case when p collinear with v1v2
|
|
return side_of_segment(p, v1->point(), v2->point(), lt, i_e);
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
nearest_vertex_in_cell(const Point& p, Cell_handle c) const
|
|
{
|
|
// Returns the finite vertex of the cell c which is the closest to p.
|
|
CGAL_triangulation_precondition(dimension() >= 0);
|
|
|
|
Vertex_handle nearest = nearest_vertex(p, c->vertex(0), c->vertex(1));
|
|
if(dimension() >= 2)
|
|
{
|
|
nearest = nearest_vertex(p, nearest, c->vertex(2));
|
|
if(dimension() == 3)
|
|
nearest = nearest_vertex(p, nearest, c->vertex(3));
|
|
}
|
|
return nearest;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Vertex_handle
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
nearest_vertex(const Point& p, Cell_handle start) const
|
|
{
|
|
if(number_of_vertices() == 0)
|
|
return Vertex_handle();
|
|
|
|
// Use a brute-force algorithm if dimension < 3.
|
|
if(dimension() < 3)
|
|
{
|
|
Finite_vertices_iterator vit = finite_vertices_begin();
|
|
Vertex_handle res = vit;
|
|
++vit;
|
|
for(Finite_vertices_iterator end = finite_vertices_end(); vit != end; ++vit)
|
|
res = nearest_vertex(p, res, vit);
|
|
return res;
|
|
}
|
|
|
|
Locate_type lt;
|
|
int li, lj;
|
|
Cell_handle c = locate(p, lt, li, lj, start);
|
|
if(lt == Tr_Base::VERTEX)
|
|
return c->vertex(li);
|
|
|
|
// - start with the closest vertex from the located cell.
|
|
// - repeatedly take the nearest of its incident vertices if any
|
|
// - if not, we're done.
|
|
Vertex_handle nearest = nearest_vertex_in_cell(p, c);
|
|
std::vector<Vertex_handle> vs;
|
|
vs.reserve(32);
|
|
while(true)
|
|
{
|
|
Vertex_handle tmp = nearest;
|
|
adjacent_vertices(nearest, std::back_inserter(vs));
|
|
for(typename std::vector<Vertex_handle>::const_iterator
|
|
vsit = vs.begin(); vsit != vs.end(); ++vsit)
|
|
{
|
|
tmp = nearest_vertex(p, tmp, *vsit);
|
|
}
|
|
|
|
if(tmp == nearest)
|
|
break;
|
|
|
|
vs.clear();
|
|
nearest = tmp;
|
|
}
|
|
|
|
return nearest;
|
|
}
|
|
|
|
// This is not a fast version.
|
|
// The optimized version needs an int for book-keeping in
|
|
// tds() so as to avoiding the need to clear
|
|
// the tds marker in each cell (which is an unsigned char)
|
|
// Also the visitor in TDS could be more clever.
|
|
// The Delaunay triangulation which filters displacements
|
|
// will do these optimizations.
|
|
template <class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_delaunay_after_displacement(Vertex_handle v, const Point& p) const
|
|
{
|
|
CGAL_triangulation_precondition(!this->is_infinite(v));
|
|
CGAL_triangulation_precondition(this->dimension() == 2);
|
|
CGAL_triangulation_precondition(!this->test_dim_down(v));
|
|
if(v->point() == p)
|
|
return true;
|
|
|
|
Point ant = v->point();
|
|
v->set_point(p);
|
|
|
|
std::size_t size;
|
|
|
|
// are incident cells well-oriented
|
|
std::vector<Cell_handle> cells;
|
|
cells.reserve(64);
|
|
this->incident_cells(v, std::back_inserter(cells));
|
|
size = cells.size();
|
|
for(std::size_t i=0; i<size; i++)
|
|
{
|
|
Cell_handle c = cells[i];
|
|
if(this->is_infinite(c)) continue;
|
|
if(this->orientation(c->vertex(0)->point(), c->vertex(1)->point(),
|
|
c->vertex(2)->point(), c->vertex(3)->point()) != POSITIVE)
|
|
{
|
|
v->set_point(ant);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// are incident bi-cells Delaunay?
|
|
std::vector<Facet> facets;
|
|
facets.reserve(128);
|
|
this->incident_facets(v, std::back_inserter(facets));
|
|
size = facets.size();
|
|
for(std::size_t i=0; i<size; i++)
|
|
{
|
|
const Facet& f = facets[i];
|
|
Cell_handle c = f.first;
|
|
int j = f.second;
|
|
Cell_handle cj = c->neighbor(j);
|
|
int mj = this->mirror_index(c, j);
|
|
Vertex_handle h1 = c->vertex(j);
|
|
if(this->is_infinite(h1))
|
|
{
|
|
if(this->side_of_sphere(c, cj->vertex(mj)->point(), true) != ON_UNBOUNDED_SIDE)
|
|
{
|
|
v->set_point(ant);
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(this->side_of_sphere(cj, h1->point(), true) != ON_UNBOUNDED_SIDE)
|
|
{
|
|
v->set_point(ant);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
v->set_point(ant);
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_Gabriel(const Facet& f) const
|
|
{
|
|
return is_Gabriel(f.first, f.second);
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_Gabriel(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i));
|
|
typename Geom_traits::Side_of_bounded_sphere_3 side_of_bounded_sphere =
|
|
geom_traits().side_of_bounded_sphere_3_object();
|
|
|
|
if((!is_infinite(c->vertex(i))) &&
|
|
side_of_bounded_sphere (c->vertex(vertex_triple_index(i,0))->point(),
|
|
c->vertex(vertex_triple_index(i,1))->point(),
|
|
c->vertex(vertex_triple_index(i,2))->point(),
|
|
c->vertex(i)->point()) == ON_BOUNDED_SIDE)
|
|
return false;
|
|
|
|
Cell_handle neighbor = c->neighbor(i);
|
|
int in = neighbor->index(c);
|
|
|
|
if((!is_infinite(neighbor->vertex(in))) &&
|
|
side_of_bounded_sphere(c->vertex(vertex_triple_index(i,0))->point(),
|
|
c->vertex(vertex_triple_index(i,1))->point(),
|
|
c->vertex(vertex_triple_index(i,2))->point(),
|
|
neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_Gabriel(const Edge& e) const
|
|
{
|
|
return is_Gabriel(e.first, e.second, e.third);
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_Gabriel(Cell_handle c, int i, int j) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j));
|
|
typename Geom_traits::Side_of_bounded_sphere_3 side_of_bounded_sphere =
|
|
geom_traits().side_of_bounded_sphere_3_object();
|
|
|
|
Facet_circulator fcirc = incident_facets(c,i,j), fdone(fcirc);
|
|
Vertex_handle v1 = c->vertex(i);
|
|
Vertex_handle v2 = c->vertex(j);
|
|
do
|
|
{
|
|
// test whether the vertex of cc opposite to *fcirc
|
|
// is inside the sphere defined by the edge e = (s, i,j)
|
|
Cell_handle cc = (*fcirc).first;
|
|
int ii = (*fcirc).second;
|
|
if(!is_infinite(cc->vertex(ii)) &&
|
|
side_of_bounded_sphere(v1->point(), v2->point(), cc->vertex(ii)->point())
|
|
== ON_BOUNDED_SIDE) return false;
|
|
}
|
|
while(++fcirc != fdone);
|
|
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Point
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
dual(Cell_handle c) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()==3);
|
|
CGAL_triangulation_precondition(! is_infinite(c));
|
|
return c->circumcenter(geom_traits());
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Object
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
dual(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()>=2);
|
|
CGAL_triangulation_precondition(! is_infinite(c,i));
|
|
|
|
if(dimension() == 2)
|
|
{
|
|
CGAL_triangulation_precondition(i == 3);
|
|
return construct_object(construct_circumcenter(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point()));
|
|
}
|
|
|
|
// dimension() == 3
|
|
Cell_handle n = c->neighbor(i);
|
|
if(! is_infinite(c) && ! is_infinite(n))
|
|
return construct_object(construct_segment(dual(c), dual(n)));
|
|
|
|
// either n or c is infinite
|
|
int in;
|
|
if(is_infinite(c))
|
|
{
|
|
in = n->index(c);
|
|
}
|
|
else
|
|
{
|
|
n = c;
|
|
in = i;
|
|
}
|
|
|
|
// n now denotes a finite cell, either c or c->neighbor(i)
|
|
int ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3};
|
|
if((in&1) == 1)
|
|
std::swap(ind[0], ind[1]);
|
|
|
|
// in=0: 1 2 3
|
|
// in=1: 3 2 0
|
|
// in=2: 3 0 1
|
|
// in=3: 1 0 2
|
|
const Point& p = n->vertex(ind[0])->point();
|
|
const Point& q = n->vertex(ind[1])->point();
|
|
const Point& r = n->vertex(ind[2])->point();
|
|
|
|
Line l = construct_equidistant_line(p, q, r);
|
|
return construct_object(construct_ray(dual(n), l));
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
typename Delaunay_triangulation_3<Gt,Tds,Default,Lds>::Line
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
dual_support(Cell_handle c, int i) const
|
|
{
|
|
CGAL_triangulation_precondition(dimension()>=2);
|
|
CGAL_triangulation_precondition(! is_infinite(c,i));
|
|
|
|
if(dimension() == 2)
|
|
{
|
|
CGAL_triangulation_precondition(i == 3);
|
|
return construct_equidistant_line(c->vertex(0)->point(),
|
|
c->vertex(1)->point(),
|
|
c->vertex(2)->point());
|
|
}
|
|
|
|
return construct_equidistant_line(c->vertex((i+1)&3)->point(),
|
|
c->vertex((i+2)&3)->point(),
|
|
c->vertex((i+3)&3)->point());
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_valid(bool verbose, int level) const
|
|
{
|
|
if(! tds().is_valid(verbose,level))
|
|
{
|
|
if(verbose)
|
|
std::cerr << "invalid data structure" << std::endl;
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
if(infinite_vertex() == Vertex_handle())
|
|
{
|
|
if(verbose)
|
|
std::cerr << "no infinite vertex" << std::endl;
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
|
|
switch(dimension())
|
|
{
|
|
case 3:
|
|
{
|
|
for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end(); it != end; ++it)
|
|
{
|
|
is_valid_finite(it);
|
|
for(int i=0; i<4; i++)
|
|
{
|
|
if(!is_infinite(it->neighbor(i)->vertex(it->neighbor(i)->index(it))))
|
|
{
|
|
if(side_of_sphere(it, it->neighbor(i)->vertex(
|
|
it->neighbor(i)->index(it))->point()) == ON_BOUNDED_SIDE)
|
|
{
|
|
if(verbose)
|
|
std::cerr << "non-empty sphere " << std::endl;
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end(); it != end; ++it)
|
|
{
|
|
is_valid_finite((*it).first);
|
|
for(int i=0; i<3; i++)
|
|
{
|
|
if(!is_infinite((*it).first->neighbor(i)->vertex(
|
|
(((*it).first)->neighbor(i))->index(
|
|
(*it).first))))
|
|
{
|
|
if(side_of_circle((*it).first, 3, (*it).first->neighbor(i)->
|
|
vertex((((*it).first)->neighbor(i))->index(
|
|
(*it).first))->point()) == ON_BOUNDED_SIDE)
|
|
{
|
|
if(verbose)
|
|
std::cerr << "non-empty circle " << std::endl;
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end(); it != end; ++it)
|
|
{
|
|
is_valid_finite((*it).first);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if(verbose)
|
|
std::cerr << "Delaunay valid triangulation" << std::endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
template < class Gt, class Tds, class Lds >
|
|
bool
|
|
Delaunay_triangulation_3<Gt,Tds,Default,Lds>::
|
|
is_valid(Cell_handle c, bool verbose, int level) const
|
|
{
|
|
if(! Tr_Base::is_valid(c, verbose, level))
|
|
{
|
|
if(verbose)
|
|
{
|
|
std::cerr << "combinatorically invalid cell" ;
|
|
for(int i=0; i <= dimension(); i++)
|
|
std::cerr << c->vertex(i)->point() << ", " ;
|
|
std::cerr << std::endl;
|
|
}
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
switch(dimension())
|
|
{
|
|
case 3:
|
|
{
|
|
if(! is_infinite(c))
|
|
{
|
|
is_valid_finite(c, verbose, level);
|
|
for(int i=0; i<4; i++) {
|
|
if(side_of_sphere(c, c->vertex((c->neighbor(i))->index(c))->point()) == ON_BOUNDED_SIDE)
|
|
{
|
|
if(verbose)
|
|
std::cerr << "non-empty sphere " << std::endl;
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
if(! is_infinite(c,3))
|
|
{
|
|
for(int i=0; i<2; i++)
|
|
{
|
|
if(side_of_circle(c, 3, c->vertex(c->neighbor(i)->index(c))->point()) == ON_BOUNDED_SIDE)
|
|
{
|
|
if(verbose)
|
|
std::cerr << "non-empty circle " << std::endl;
|
|
|
|
CGAL_triangulation_assertion(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if(verbose)
|
|
std::cerr << "Delaunay valid cell" << std::endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
} //namespace CGAL
|
|
|
|
#include <CGAL/internal/Delaunay_triangulation_hierarchy_3.h>
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_DELAUNAY_TRIANGULATION_3_H
|