dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/PCA_util.h

792 lines
29 KiB
C++
Executable File

// Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Pierre Alliez and Sylvain Pion and Ankit Gupta
#ifndef CGAL_LINEAR_LEAST_SQUARES_FITTING_UTIL_H
#define CGAL_LINEAR_LEAST_SQUARES_FITTING_UTIL_H
#include <CGAL/license/Principal_component_analysis.h>
#include <CGAL/Linear_algebraCd.h>
#include <CGAL/Dimension.h>
namespace CGAL {
namespace internal {
// Initialize a matrix in n dimension by an array or numbers
template <typename FT>
typename CGAL::Linear_algebraCd<FT>::Matrix
init_matrix(const int n,
FT entries[])
{
CGAL_assertion(n > 1); // dimension > 1
typedef typename CGAL::Linear_algebraCd<FT>::Matrix Matrix;
Matrix m(n);
int i,j;
for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
m[i][j] = entries[i*n+j];
return m;
} // end initialization of matrix
// assemble covariance matrix from a point set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K& k, // kernel
const typename K::Point_3*, // used for indirection
const CGAL::Dimension_tag<0>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point;
typedef typename K::Vector_3 Vector;
// Matrix numbering:
// 0 1 2
// 3 4
// 5
covariance[0] = covariance[1] = covariance[2] =
covariance[3] = covariance[4] = covariance[5] = (FT)0.0;
for(InputIterator it = first;
it != beyond;
it++)
{
const Point& p = *it;
Vector d = k.construct_vector_3_object()(c,p);
covariance[0] += d.x() * d.x();
covariance[1] += d.x() * d.y();
covariance[2] += d.x() * d.z();
covariance[3] += d.y() * d.y();
covariance[4] += d.y() * d.z();
covariance[5] += d.z() * d.z();
}
}
// assemble covariance matrix from a triangle set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K&, // kernel
const typename K::Triangle_3*,// used for indirection
const CGAL::Dimension_tag<2>&,
const DiagonalizeTraits&)
{
// Use FT from the DiagonalizeTraits to avoid warnings if the Kernel
// uses double but the user wants to compute diagonalization using floats
typedef typename DiagonalizeTraits::Vector::value_type FT;
typedef typename K::Triangle_3 Triangle;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
//Final combined covariance matrix for all triangles and their combined mass
FT mass = FT(0.0);
// assemble 2nd order moment about the origin.
FT temp[9] = {FT(1.0/12.0), FT(1.0/24.0), FT(1.0/24.0),
FT(1.0/24.0), FT(1.0/12.0), FT(1.0/24.0),
FT(1.0/24.0), FT(1.0/24.0), FT(1.0/12.0)};
Matrix moment = init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each triangle, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Triangle& t = *it;
// defined for convenience.
FT delta[9] = {FT(t[0].x()), FT(t[1].x()), FT(t[2].x()),
FT(t[0].y()), FT(t[1].y()), FT(t[2].y()),
FT(t[0].z()), FT(t[1].z()), FT(t[2].z())};
Matrix transformation = init_matrix<FT>(3,delta);
FT area = FT(std::sqrt(t.squared_area()));
// skip zero measure primitives
if(area == (FT)0.0)
continue;
// Find the 2nd order moment for the triangle wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = 2 * area * transformation * moment * LA::transpose(transformation);
// and add to covariance matrix
covariance[0] += transformation[0][0];
covariance[1] += transformation[1][0];
covariance[2] += transformation[2][0];
covariance[3] += transformation[1][1];
covariance[4] += transformation[2][1];
covariance[5] += transformation[2][2];
mass += area;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * FT(-1.0 * c.x() * c.x());
covariance[1] += mass * FT(-1.0 * c.x() * c.y());
covariance[2] += mass * FT(-1.0 * c.z() * c.x());
covariance[3] += mass * FT(-1.0 * c.y() * c.y());
covariance[4] += mass * FT(-1.0 * c.z() * c.y());
covariance[5] += mass * FT(-1.0 * c.z() * c.z());
}
// assemble covariance matrix from a cuboid set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K& , // kernel
const typename K::Iso_cuboid_3*,// used for indirection
const CGAL::Dimension_tag<3>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
// final combined covariance matrix for all cuboids and their combined mass
FT mass = (FT)0.0;
// assemble 2nd order moment about the origin.
FT temp[9] = {(FT)(1.0/3.0), (FT)(1.0/4.0), (FT)(1.0/4.0),
(FT)(1.0/4.0), (FT)(1.0/3.0), (FT)(1.0/4.0),
(FT)(1.0/4.0), (FT)(1.0/4.0), (FT)(1.0/3.0)};
Matrix moment = init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each cuboid, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Iso_cuboid& t = *it;
// defined for convenience.
// FT example = CGAL::to_double(t[0].x());
FT x0 = t[0].x();
FT y0 = t[0].y();
FT z0 = t[0].z();
FT delta[9] = {t[1].x()-x0, t[3].x()-x0, t[5].x()-x0,
t[1].y()-y0, t[3].y()-y0, t[5].y()-y0,
t[1].z()-z0, t[3].z()-z0, t[5].z()-z0};
Matrix transformation = init_matrix<FT>(3,delta);
FT volume = t.volume();
// skip zero measure primitives
if(volume == (FT)0.0)
continue;
// Find the 2nd order moment for the cuboid wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = volume * transformation * moment * LA::transpose(transformation);
// Translate the 2nd order moment to the minimum corner (x0,y0,z0) of the cuboid.
FT xav0 = (delta[0] + delta[1] + delta[2])/4.0;
FT yav0 = (delta[3] + delta[4] + delta[5])/4.0;
FT zav0 = (delta[6] + delta[7] + delta[8])/4.0;
// and add to covariance matrix
covariance[0] += transformation[0][0] + volume * (2*x0*xav0 + x0*x0);
covariance[1] += transformation[1][0] + volume * (xav0*y0 + yav0*x0 + x0*y0);
covariance[2] += transformation[2][0] + volume * (x0*zav0 + xav0*z0 + x0*z0);
covariance[3] += transformation[1][1] + volume * (2*y0*yav0 + y0*y0);
covariance[4] += transformation[2][1] + volume * (yav0*z0 + y0*zav0 + z0*y0);
covariance[5] += transformation[2][2] + volume * (2*zav0*z0 + z0*z0);
mass += volume;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (- c.x() * c.x());
covariance[1] += mass * (- c.x() * c.y());
covariance[2] += mass * (- c.z() * c.x());
covariance[3] += mass * (- c.y() * c.y());
covariance[4] += mass * (- c.z() * c.y());
covariance[5] += mass * (- c.z() * c.z());
}
// assemble covariance matrix from a cuboid set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K& , // kernel
const typename K::Iso_cuboid_3*,// used for indirection
const CGAL::Dimension_tag<2>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Iso_cuboid_3 Iso_cuboid;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
//Final combined covariance matrix for all cuboids and their combined mass
FT mass = (FT)0.0;
// assemble 2nd order moment about the origin.
FT temp[9] = {(FT)(7.0/3.0), (FT)1.5, (FT)1.5,
(FT)1.5, (FT)(7.0/3.0), (FT)1.5,
(FT)1.5, (FT)1.5, (FT)(7.0/3.0)};
Matrix moment = init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each cuboid, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Iso_cuboid& t = *it;
// defined for convenience.
FT x0 = t[0].x();
FT y0 = t[0].y();
FT z0 = t[0].z();
FT delta[9] = {t[1].x()-x0, t[3].x()-x0, t[5].x()-x0,
t[1].y()-y0, t[3].y()-y0, t[5].y()-y0,
t[1].z()-z0, t[3].z()-z0, t[5].z()-z0};
Matrix transformation = init_matrix<FT>(3,delta);
FT area = std::pow(delta[0]*delta[0] + delta[3]*delta[3] +
delta[6]*delta[6],1/3.0)*std::pow(delta[1]*delta[1] +
delta[4]*delta[4] + delta[7]*delta[7],1/3.0)*2 +
std::pow(delta[0]*delta[0] + delta[3]*delta[3] +
delta[6]*delta[6],1/3.0)*std::pow(delta[2]*delta[2] +
delta[5]*delta[5] + delta[8]*delta[8],1/3.0)*2 +
std::pow(delta[1]*delta[1] + delta[4]*delta[4] +
delta[7]*delta[7],1/3.0)*std::pow(delta[2]*delta[2] +
delta[5]*delta[5] + delta[8]*delta[8],1/3.0)*2;
// skip zero measure primitives
if(area == (FT)0.0)
continue;
// Find the 2nd order moment for the cuboid wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = area * transformation * moment * LA::transpose(transformation);
// Translate the 2nd order moment to the minimum corner (x0,y0,z0) of the cuboid.
FT xav0 = (delta[0] + delta[1] + delta[2])/4.0;
FT yav0 = (delta[3] + delta[4] + delta[5])/4.0;
FT zav0 = (delta[6] + delta[7] + delta[8])/4.0;
// and add to covariance matrix
covariance[0] += transformation[0][0] + area * (2*x0*xav0 + x0*x0);
covariance[1] += transformation[1][0] + area * (xav0*y0 + yav0*x0 + x0*y0);
covariance[2] += transformation[2][0] + area * (x0*zav0 + xav0*z0 + x0*z0);
covariance[3] += transformation[1][1] + area * (2*y0*yav0 + y0*y0);
covariance[4] += transformation[2][1] + area * (yav0*z0 + y0*zav0 + z0*y0);
covariance[5] += transformation[2][2] + area * (2*zav0*z0 + z0*z0);
mass += area;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (-1.0 * c.x() * c.x());
covariance[1] += mass * (-1.0 * c.x() * c.y());
covariance[2] += mass * (-1.0 * c.z() * c.x());
covariance[3] += mass * (-1.0 * c.y() * c.y());
covariance[4] += mass * (-1.0 * c.z() * c.y());
covariance[5] += mass * (-1.0 * c.z() * c.z());
}
// assemble covariance matrix from a sphere set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K&, // kernel
const typename K::Sphere_3*, // used for indirection
const CGAL::Dimension_tag<3>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Sphere_3 Sphere;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
//Final combined covariance matrix for all spheres and their combined mass
FT mass = 0.0;
// assemble 2nd order moment about the origin.
FT temp[9] = {4.0/15.0, 0.0, 0.0,
0.0, 4.0/15.0, 0.0,
0.0, 0.0, 4.0/15.0};
Matrix moment = init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each sphere, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Sphere& t = *it;
// defined for convenience.
FT radius = std::sqrt(t.squared_radius());
FT delta[9] = {radius, 0.0, 0.0,
0.0, radius, 0.0,
0.0, 0.0, radius};
Matrix transformation = init_matrix<FT>(3,delta);
FT volume = (FT)(4.0/3.0) * radius * t.squared_radius();
// skip zero measure primitives
if(volume == (FT)0.0)
continue;
// Find the 2nd order moment for the sphere wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = (3.0/4.0) * volume * transformation * moment * LA::transpose(transformation);
// Translate the 2nd order moment to the center of the sphere.
FT x0 = t.center().x();
FT y0 = t.center().y();
FT z0 = t.center().z();
// and add to covariance matrix
covariance[0] += transformation[0][0] + volume * x0*x0;
covariance[1] += transformation[1][0] + volume * x0*y0;
covariance[2] += transformation[2][0] + volume * x0*z0;
covariance[3] += transformation[1][1] + volume * y0*y0;
covariance[4] += transformation[2][1] + volume * z0*y0;
covariance[5] += transformation[2][2] + volume * z0*z0;
mass += volume;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (-1.0 * c.x() * c.x());
covariance[1] += mass * (-1.0 * c.x() * c.y());
covariance[2] += mass * (-1.0 * c.z() * c.x());
covariance[3] += mass * (-1.0 * c.y() * c.y());
covariance[4] += mass * (-1.0 * c.z() * c.y());
covariance[5] += mass * (-1.0 * c.z() * c.z());
}
// assemble covariance matrix from a sphere set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K&, // kernel
const typename K::Sphere_3*, // used for indirection
const CGAL::Dimension_tag<2>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Sphere_3 Sphere;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
//Final combined covariance matrix for all spheres and their combined mass
FT mass = 0.0;
// assemble 2nd order moment about the origin.
FT temp[9] = {4.0/3.0, 0.0, 0.0,
0.0, 4.0/3.0, 0.0,
0.0, 0.0, 4.0/3.0};
Matrix moment = init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each sphere, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Sphere& t = *it;
// defined for convenience.
// FT example = CGAL::to_double(t[0].x());
FT radius = std::sqrt(t.squared_radius());
FT delta[9] = {radius, 0.0, 0.0,
0.0, radius, 0.0,
0.0, 0.0, radius};
Matrix transformation = init_matrix<FT>(3,delta);
FT area = (FT)4.0 * t.squared_radius();
// skip zero measure primitives
if(area == (FT)0.0)
continue;
// Find the 2nd order moment for the sphere wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = (1.0/4.0) * area * transformation * moment * LA::transpose(transformation);
// Translate the 2nd order moment to the center of the sphere.
FT x0 = t.center().x();
FT y0 = t.center().y();
FT z0 = t.center().z();
// and add to covariance matrix
covariance[0] += transformation[0][0] + area * x0*x0;
covariance[1] += transformation[1][0] + area * x0*y0;
covariance[2] += transformation[2][0] + area * x0*z0;
covariance[3] += transformation[1][1] + area * y0*y0;
covariance[4] += transformation[2][1] + area * z0*y0;
covariance[5] += transformation[2][2] + area * z0*z0;
mass += area;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (-1.0 * c.x() * c.x());
covariance[1] += mass * (-1.0 * c.x() * c.y());
covariance[2] += mass * (-1.0 * c.z() * c.x());
covariance[3] += mass * (-1.0 * c.y() * c.y());
covariance[4] += mass * (-1.0 * c.z() * c.y());
covariance[5] += mass * (-1.0 * c.z() * c.z());
}
// assemble covariance matrix from a tetrahedron set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K& , // kernel
const typename K::Tetrahedron_3*,// used for indirection
const CGAL::Dimension_tag<3>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Tetrahedron_3 Tetrahedron;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
//Final combined covariance matrix for all tetrahedrons and their combined mass
FT mass = 0.0;
// assemble 2nd order moment about the origin.
FT temp[9] = {1.0/60.0, 1.0/120.0, 1.0/120.0,
1.0/120.0, 1.0/60.0, 1.0/120.0,
1.0/120.0, 1.0/120.0, 1.0/60.0};
Matrix moment = init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each tetrahedron, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Tetrahedron& t = *it;
// defined for convenience.
FT x0 = t[0].x();
FT y0 = t[0].y();
FT z0 = t[0].z();
FT delta[9] = {t[1].x()-x0, t[2].x()-x0, t[3].x()-x0,
t[1].y()-y0, t[2].y()-y0, t[3].y()-y0,
t[1].z()-z0, t[2].z()-z0, t[3].z()-z0};
Matrix transformation = init_matrix<FT>(3,delta);
FT volume = t.volume();
// skip zero measure primitives
if(volume == (FT)0.0)
continue;
// Find the 2nd order moment for the tetrahedron wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = 6 * volume * transformation * moment * LA::transpose(transformation);
// Translate the 2nd order moment to the center of the tetrahedron.
FT xav0 = (delta[0]+delta[1]+delta[2])/4.0;
FT yav0 = (delta[3]+delta[4]+delta[5])/4.0;
FT zav0 = (delta[6]+delta[7]+delta[8])/4.0;
// and add to covariance matrix
covariance[0] += transformation[0][0] + volume * (2*x0*xav0 + x0*x0);
covariance[1] += transformation[1][0] + volume * (xav0*y0 + yav0*x0 + x0*y0);
covariance[2] += transformation[2][0] + volume * (x0*zav0 + xav0*z0 + x0*z0);
covariance[3] += transformation[1][1] + volume * (2*y0*yav0 + y0*y0);
covariance[4] += transformation[2][1] + volume * (yav0*z0 + y0*zav0 + z0*y0);
covariance[5] += transformation[2][2] + volume * (2*zav0*z0 + z0*z0);
mass += volume;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (-1.0 * c.x() * c.x());
covariance[1] += mass * (-1.0 * c.x() * c.y());
covariance[2] += mass * (-1.0 * c.z() * c.x());
covariance[3] += mass * (-1.0 * c.y() * c.y());
covariance[4] += mass * (-1.0 * c.z() * c.y());
covariance[5] += mass * (-1.0 * c.z() * c.z());
}
// assemble covariance matrix from a segment set
template < typename InputIterator,
typename K,
typename DiagonalizeTraits >
void
assemble_covariance_matrix_3(InputIterator first,
InputIterator beyond,
typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
const K& , // kernel
const typename K::Segment_3*,// used for indirection
const CGAL::Dimension_tag<1>&,
const DiagonalizeTraits&)
{
typedef typename K::FT FT;
typedef typename K::Segment_3 Segment;
typedef typename CGAL::Linear_algebraCd<FT> LA;
typedef typename LA::Matrix Matrix;
// assemble covariance matrix as a semi-definite matrix.
// Matrix numbering:
// 0 1 2
// 3 4
// 5
//Final combined covariance matrix for all segments and their combined mass
FT mass = 0.0;
// assemble 2nd order moment about the origin.
FT temp[9] = {1.0, 0.5, 0.0,
0.5, 1.0, 0.0,
0.0, 0.0, 0.0};
Matrix moment = (FT)(1.0/3.0) * init_matrix<FT>(3,temp);
for(InputIterator it = first;
it != beyond;
it++)
{
// Now for each segment, construct the 2nd order moment about the origin.
// assemble the transformation matrix.
const Segment& t = *it;
// defined for convenience.
// FT example = CGAL::to_double(t[0].x());
FT delta[9] = {t[0].x(), t[1].x(), 0.0,
t[0].y(), t[1].y(), 0.0,
t[0].z(), t[1].z(), 1.0};
Matrix transformation = init_matrix<FT>(3,delta);
FT length = std::sqrt(t.squared_length());
// skip zero measure primitives
if(length == (FT)0.0)
continue;
// Find the 2nd order moment for the segment wrt to the origin by an affine transformation.
// Transform the standard 2nd order moment using the transformation matrix
transformation = length * transformation * moment * LA::transpose(transformation);
// and add to covariance matrix
covariance[0] += transformation[0][0];
covariance[1] += transformation[1][0];
covariance[2] += transformation[2][0];
covariance[3] += transformation[1][1];
covariance[4] += transformation[2][1];
covariance[5] += transformation[2][2];
mass += length;
}
// Translate the 2nd order moment calculated about the origin to
// the center of mass to get the covariance.
covariance[0] += mass * (-1.0 * c.x() * c.x());
covariance[1] += mass * (-1.0 * c.x() * c.y());
covariance[2] += mass * (-1.0 * c.z() * c.x());
covariance[3] += mass * (-1.0 * c.y() * c.y());
covariance[4] += mass * (-1.0 * c.z() * c.y());
covariance[5] += mass * (-1.0 * c.z() * c.z());
}
// compute the eigen values and vectors of the covariance
// matrix and deduces the best linear fitting plane.
// returns fitting quality
template < typename K, typename DiagonalizeTraits >
typename K::FT
fitting_plane_3(typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
typename K::Plane_3& plane, // best fit plane
const K&, // kernel
const DiagonalizeTraits& ) // Diagonalize traits
{
typedef typename K::FT FT;
typedef typename K::Plane_3 Plane;
typedef typename K::Vector_3 Vector;
// solve for eigenvalues and eigenvectors.
// eigen values are sorted in ascending order,
// eigen vectors are sorted in accordance.
typename DiagonalizeTraits::Vector eigen_values = {{ 0. , 0., 0. }};
typename DiagonalizeTraits::Matrix eigen_vectors = {{ 0., 0., 0.,
0., 0., 0.,
0., 0., 0. }};
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
(covariance, eigen_values, eigen_vectors);
// degenerate case
if(eigen_values[0] == eigen_values[1] &&
eigen_values[1] == eigen_values[2])
{
// assemble a default horizontal plane that goes
// through the centroid.
plane = Plane(c,Vector(FT(0),FT(0),FT(1)));
return FT(0);
}
else // regular and line case
{
Vector normal(eigen_vectors[0],
eigen_vectors[1],
eigen_vectors[2]);
plane = Plane(c,normal);
return FT(1) - eigen_values[0] / eigen_values[1];
} // end regular case
}
// compute the eigen values and vectors of the covariance
// matrix and deduces the best linear fitting line
// (this is an internal function)
// returns fitting quality
template < typename K, typename DiagonalizeTraits >
typename K::FT
fitting_line_3(typename DiagonalizeTraits::Covariance_matrix& covariance, // covariance matrix
const typename K::Point_3& c, // centroid
typename K::Line_3& line, // best fit line
const K&, // kernel
const DiagonalizeTraits& ) // Diagonalize traits
{
typedef typename K::FT FT;
typedef typename K::Line_3 Line;
typedef typename K::Vector_3 Vector;
// solve for eigenvalues and eigenvectors.
// eigen values are sorted in ascending order,
// eigen vectors are sorted in accordance.
typename DiagonalizeTraits::Vector eigen_values = {{ 0. , 0., 0. }};
typename DiagonalizeTraits::Matrix eigen_vectors = {{ 0., 0., 0.,
0., 0., 0.,
0., 0., 0. }};
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
(covariance, eigen_values, eigen_vectors);
// isotropic case (infinite number of directions)
if(eigen_values[0] == eigen_values[1] &&
eigen_values[0] == eigen_values[2])
{
// assemble a default line along x axis which goes
// through the centroid.
line = Line(c,Vector(FT(1),FT(0),FT(0)));
return (FT)0.0;
}
else
{
// regular case
Vector direction(eigen_vectors[6],eigen_vectors[7],eigen_vectors[8]);
line = Line(c,direction);
return (FT)1.0 - eigen_values[1] / eigen_values[2];
}
}
} // end namespace internal
} //namespace CGAL
#ifdef CGAL_EIGEN3_ENABLED
#include <CGAL/PCA_util_Eigen.h>
#endif
#endif // CGAL_LINEAR_LEAST_SQUARES_FITTING_UTIL_H