dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Range_tree_d.h

628 lines
16 KiB
C++
Executable File

// Copyright (c) 1997 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Gabriele Neyer
#ifndef CGAL_RANGE_TREE_D_H
#define CGAL_RANGE_TREE_D_H
#include <CGAL/license/SearchStructures.h>
#include <algorithm>
#include <iterator>
#include <functional>
#include <CGAL/Tree_base.h>
#include <list>
#include <vector>
// A d-dimensional Range Tree or a multilayer tree consisting of Range
// and other trees that are derived public
// Tree_base<C_Data, C_Window, C_Interface>
// can be construced within this class.
// C_Data: container class which contains the d-dimensional data the tree holds.
// C_Window: Query window -- a d-dimensional interval
// C_Interface: Interface for the class with functions that allow to
// access the data.
// cf. file Tree_interface.h, class point_interface for the requirements.
namespace CGAL {
template <class C_Data, class C_Window, class C_Interface>
class Range_tree_d;
template <class C_Data, class C_Window, class C_Interface>
struct Range_tree_node: public Tree_node_base<Range_tree_node<C_Data, C_Window, C_Interface> >
{
private:
typedef C_Data Data;
typedef C_Window Window;
typedef typename C_Interface::Key Key;
typedef C_Interface Interface;
typedef typename Tree_base< C_Data, C_Window>::Tree_base_type Tree_base_type;
// protected:
//typedef Range_tree_d< C_Data, C_Window, C_Interface> rT_d;
public:
friend class Range_tree_d< C_Data, C_Window, C_Interface>;
typedef Tree_node_base<Range_tree_node<C_Data, C_Window, C_Interface> > Base;
Range_tree_node()
: sublayer(0)
{}
Range_tree_node( Range_tree_node * p_left,
Range_tree_node * p_right,
const Data & v_obj,
const Key & v_key )
: Base(p_left, p_right), object( v_obj ), key( v_key ), sublayer(0)
{}
Range_tree_node( Range_tree_node * p_left,
Range_tree_node * p_right,
const Key & v_key )
: Base(p_left, p_right), key( v_key ), sublayer(0)
{}
virtual ~Range_tree_node()
{
if (sublayer != 0)
delete sublayer;
}
Data object;
Key key;
Tree_base_type *sublayer;
};
template <class C_Data, class C_Window, class C_Interface>
class Range_tree_d: public Tree_base< C_Data, C_Window>
{
private:
typedef C_Data Data;
typedef C_Window Window;
typedef typename C_Interface::Key Key;
typedef C_Interface Interface;
typedef Tree_base< C_Data, C_Window> tbt;
protected:
// typedef Range_tree_d< C_Data, C_Window, C_Interface> rT_d;
Tree_base<C_Data, C_Window> *sublayer_tree;
C_Interface m_interface;
int is_built;
// A vertex is of this type:
// struct Range_tree_node;
friend struct Range_tree_node<C_Data,C_Window,C_Interface>;
typedef Range_tree_node<C_Data,C_Window,C_Interface> Range_tree_node2;
typedef Range_tree_node<C_Data,C_Window,C_Interface> *link_type;
static link_type& left(link_type x) {
return x->left_link;
}
static link_type& right(link_type x) {
return x->right_link;
}
static link_type& parent(link_type x) {
return x->parent_link;
}
link_type header;
link_type node;
link_type rightmost(){return right(header);}
link_type leftmost(){return left(header);}
link_type root() const {
if(header!=0)
return header->parent_link;
// return parent(header);
else
return 0;
}
bool is_less_equal(const Key& x, const Key& y) const
{
return (!m_interface.comp(y,x));
}
// this tree is not a recursion anchor
bool is_anchor() const {return false;}
// returns true, if the object lies inside of win
bool is_inside( C_Window const &win, C_Data const& object) const
{
if(is_less_equal(m_interface.get_left(win), m_interface.get_key(object))
&& m_interface.comp(m_interface.get_key(object),m_interface.get_right(win)))
//half open
// && is_less_equal(m_interface.get_key(object),m_interface.get_right(win)))
//closed interval
{
return sublayer_tree->is_inside(win,object);
}
return false;
}
// merge sort algorithms that takes O(n) time if the sequence to
// be sorted consists of two sorted subsequences.
template <class T>
void dynamic_merge(const T& first, const T& last) // af: was not const
{
T prev, current=first;
T current_first, current_middle, current_last;
std::list<T> startpoints, tmp_startpoints;
startpoints.push_back(current);
prev = current++;
while(current!=last)
{
if (m_interface.comp(m_interface.get_key(*current),m_interface.get_key(*prev)))
startpoints.push_back(current);
prev = current++;
}
while(startpoints.size()>1)
{
while(startpoints.size()>1)
{
current_first = startpoints.front();
startpoints.erase(startpoints.begin());
current_middle = startpoints.front();
startpoints.erase(startpoints.begin());
if(startpoints.size()>0)
current_last = startpoints.front();
else
current_last = last;
tmp_startpoints.push_back(current_first);
std::inplace_merge(current_first, current_middle, current_last,
m_interface.key_comp);
}
if(startpoints.size()>0)
{
tmp_startpoints.push_back(startpoints.front());
startpoints.erase(startpoints.begin());
}
startpoints.swap(tmp_startpoints);
}
}
// recursive function
// (current,last) describe an interval of length n of sorted elements,
// for this interval a tree is build containing these elements.
// the most left child is returend in prevchild.
template <class T>
void build_range_tree(int n, link_type& leftchild,
link_type& rightchild,
link_type& prevchild,
link_type& leftmostlink,
T& current,
const T& last,
T& sublevel_first,
T& sublevel_last)
{
// only two elements ==> two leaves and a parent is constructed
if (n==2)
{
sublevel_first = current;
link_type vleft = new Range_tree_node2( 0, 0,
(*current), m_interface.get_key(*current) );
//CGAL_NIL CGAL_NIL first two arguments
CGAL_Tree_assertion( vleft != 0);
++current;
link_type vright = new Range_tree_node2( 0,0,
(*current), m_interface.get_key(*current) );
//CGAL_NIL CGAL_NIL first two arguments
CGAL_Tree_assertion( vright != 0);
current++;
sublevel_last = current;
link_type vparent = new Range_tree_node2( vleft, vright, vleft->key );
CGAL_Tree_assertion( vparent != 0);
vleft->parent_link = vparent;
vright->parent_link = vparent;
leftchild = vleft;
rightchild = vright;
prevchild = vparent;
if ( leftmostlink == 0)
leftmostlink = leftchild;
Tree_base<C_Data, C_Window> *g = sublayer_tree->clone();
T sub_first = sublevel_first;
T sub_last = sublevel_last;
g->make_tree(sub_first, sub_last);
vparent->sublayer= g;
}
else
// only one element ==> one leaf is constructed
if(n==1)
{
sublevel_first = current;
link_type vright = new Range_tree_node2( 0, 0,
(*current), m_interface.get_key(*current) );
//CGAL_NIL CGAL_NIL first two arguments
CGAL_Tree_assertion( vright != 0); //CGAL_NIL
current++;
sublevel_last = current;
prevchild = vright;
rightchild = vright;
}
else
{
// recursiv call for the construction. the interval is devided.
T sublevel_left, sublevel_right;
build_range_tree(n - (int)n/2, leftchild, rightchild,
prevchild, leftmostlink, current, last,
sublevel_first, sublevel_left);
link_type vparent = new Range_tree_node2( prevchild, 0,
rightchild->key );
//CGAL_NIL argument
CGAL_Tree_assertion( vparent != 0);
prevchild->parent_link = vparent;
build_range_tree((int)n/2, leftchild, rightchild,
prevchild, leftmostlink, current,
last, sublevel_right, sublevel_last);
vparent->right_link = prevchild;
prevchild->parent_link = vparent;
prevchild = vparent;
Tree_base<C_Data, C_Window> *g = sublayer_tree->clone();
T sub_first = sublevel_first;
T sub_last = sublevel_last;
g->make_tree(sub_first, sub_last);
vparent->sublayer = g;
}
}
void delete_tree(link_type v)
{
if (v->left_link != 0)
{
delete_tree(left(v));
delete_tree(right(v));
}
delete v;
}
// the vertex from that the way from root to the left interval bound
// and the right interval bound splits.
link_type findSplitNode(Window const &key)
{
link_type v = root();
while(v->left_link!=0)
{
// if(m_interface.comp(m_interface.get_right(key), v->key))
if(is_less_equal(m_interface.get_right(key), v->key))
v = left(v);
else
if(m_interface.comp(v->key, m_interface.get_left(key)))
v = right(v);
else
break;
}
return v;
}
template <class T>
void report_subtree(link_type v,
T result)
{
if(left(v)!=0)
{
report_subtree(left(v), result);
report_subtree(right(v), result);
}
else
(*result++)=v->object;
}
bool is_valid(link_type& v, link_type& leftmost_child,
link_type& rightmost_child) const
{
link_type leftmost_child_l, rightmost_child_l, leftmost_child_r,
rightmost_child_r;
if (v->sublayer != 0)
{
Tree_base<C_Data, C_Window> *T= v->sublayer;
if(! T->is_valid())
return false;
}
if(left(v)!=0)
{
if(!is_valid(left(v), leftmost_child_l, rightmost_child_l))
return false;
if(!is_valid(right(v), leftmost_child_r, rightmost_child_r))
return false;
if(m_interface.comp(v->key, rightmost_child_l->key) ||
m_interface.comp(rightmost_child_l->key, v->key))
return false;
rightmost_child = rightmost_child_r;
leftmost_child = leftmost_child_l;
}
else
{
rightmost_child = v;
leftmost_child = v;
}
return true;
}
public:
// construction of a tree
Range_tree_d(Range_tree_d const &fact, bool):
sublayer_tree(fact.sublayer_tree->clone()), is_built(false), header(0)
{}
// construction of a tree
Range_tree_d(Tree_base<C_Data, C_Window> const &fact):
sublayer_tree(fact.clone()), is_built(false), header(0)
{}
// destruction
virtual ~Range_tree_d()
{
link_type v=root();
if (v!=0)
delete_tree(v);
if (header!=0)
delete header;
if (sublayer_tree!=0)
delete sublayer_tree;
}
// a prototype of the tree is returned
Tree_base<C_Data, C_Window> *clone() const
{
return new Range_tree_d(*this, true);
}
bool make_tree(const typename std::list< C_Data>::iterator& beg,
const typename std::list< C_Data>::iterator& end,
typename tbt::lit * =0){
return make_tree_impl(beg,end);
}
#ifdef stlvector
bool make_tree(const typename std::vector< C_Data>::iterator& beg,
const typename std::vector< C_Data>::iterator& end,
typename tbt::vbit * =0){
return make_tree_impl(beg,end);
}
#endif
#ifdef carray
bool make_tree(const C_Data *beg,
const C_Data *end){
return make_tree_impl(beg,end);
}
#endif
// the tree is build according to the input elements in [first,last)
template<class T>
inline
bool make_tree_impl(T first,
T last) // af: was & todo: can we turn it in const& ??
{
link_type leftchild, rightchild, prevchild, leftmostlink;
if(!is_built)
is_built = true;
else
return false;
if(first == last) {
is_built = false;
return true;
}
int n = static_cast<int>(std::distance(first,last));
dynamic_merge(first, last);
leftmostlink = 0;
T sublevel_first, sublevel_last;
build_range_tree(n, leftchild, rightchild, prevchild,
leftmostlink, first, last,
sublevel_first, sublevel_last);
header = new Range_tree_node2();
header->right_link = rightchild;
header->parent_link = prevchild;
header->left_link = leftmostlink;
return true;
}
std::back_insert_iterator< std::list< C_Data> > window_query
( C_Window const &win,
std::back_insert_iterator< std::list< C_Data> > out,
typename tbt::lbit * =0){
return window_query_impl(win,out);
}
std::back_insert_iterator< std::vector< C_Data> > window_query
( C_Window const &win,
std::back_insert_iterator< std::vector< C_Data> > out,
typename tbt::vbit * =0){
return window_query_impl(win,out);
}
#ifdef carray
C_Data *window_query( C_Window const &win, C_Data *out){
return window_query_impl(win,out);
}
#endif
#ifdef ostreamiterator
std::ostream_iterator< C_Data> window_query( C_Window const &win,
std::ostream_iterator< C_Data> out,
typename tbt::oit *dummy=0){
return window_query_impl(win,out);
}
#endif
// all elements that ly in win are inserted in result
template <class X>
inline
X window_query_impl( C_Window const &win, X result)
{
if(is_less_equal(m_interface.get_right(win), m_interface.get_left(win)))
return result;
if(root()==0)
return result;
link_type split_node = findSplitNode(win);
if(left(split_node)==0)
{
if(is_inside(win,split_node->object))
(*result++)=split_node->object;
}
else
{
link_type v = (link_type) split_node->left_link;
while(left(v)!=0)
{
if(is_less_equal(m_interface.get_left(win),v->key))
{
link_type w = right(v);
if(left(w)!=0)
{
Tree_base<C_Data, C_Window> *T= (w)->sublayer;
if(T->is_anchor())
report_subtree(w,result);
else
T->window_query(win, result);
}
else
if(is_inside(win,w->object))
(*result++)=(w)->object;
v = left(v);
}
else
v = right(v);
} // end while
if(is_inside(win,v->object))
(*result++)=v->object;
v = right(split_node);
while(right(v)!=0)
{
// if(is_less_equal(v->key, m_interface.get_right(win))) closed interval
if(m_interface.comp(v->key, m_interface.get_right(win)))
//half open interval
{
if(left(left(v))!=0)
{
Tree_base<C_Data, C_Window> *T= (left(v))->sublayer;
if(T->is_anchor())
report_subtree(left(v),result);
else
T->window_query(win, result);
}
else
{
if(is_inside(win,left(v)->object))
(*result++)=left(v)->object;
}
v = right(v);
}
else
v = left(v);
}//end while
if(is_inside(win,v->object))
{
(*result++)=v->object;
}
}
return result;
}
std::back_insert_iterator< std::list< C_Data> > enclosing_query( C_Window const &win,
std::back_insert_iterator< std::list< C_Data> > out,
typename tbt::lbit * =0){
return enclosing_query_impl(win,out);
}
std::back_insert_iterator< std::vector< C_Data> > enclosing_query( C_Window const &win,
std::back_insert_iterator< std::vector< C_Data> > out,
typename tbt::vbit * =0){
return enclosing_query_impl(win,out);
}
#ifdef carray
C_Data *enclosing_query( C_Window const &win, C_Data *out){
return enclosing_query_impl(win,out);
}
#endif
#ifdef ostreamiterator
std::ostream_iterator< C_Data> enclosing_query( C_Window const &win,
std::ostream_iterator< C_Data> out,
typename tbt::oit *dummy=0){
return enclosing_query_impl(win,out);
}
#endif
// a window query is performed
template <class T>
inline
T enclosing_query_impl(C_Window const &win, T result)
{
return window_query_impl(win, result);
}
bool is_valid() const
{
link_type u,v,w;
u=v=w=root();
if(v!=0)
return is_valid(u, v, w);
return true;
}
};
} //namespace CGAL
#endif // CGAL_RANGE_TREE_D_H