dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Triangulation_data_structure.h

1611 lines
54 KiB
C++
Executable File

// Copyright (c) 2009-2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Samuel Hornus
#ifndef CGAL_TRIANGULATION_DATA_STRUCTURE_H
#define CGAL_TRIANGULATION_DATA_STRUCTURE_H
#include <CGAL/license/Triangulation.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/basic.h>
#include <CGAL/Default.h>
#include <CGAL/iterator.h>
#include <CGAL/Compact_container.h>
#include <CGAL/Triangulation_face.h>
#include <CGAL/Triangulation_ds_vertex.h>
#include <CGAL/Triangulation_ds_full_cell.h>
#include <CGAL/internal/Combination_enumerator.h>
#include <CGAL/internal/Triangulation/utilities.h>
#include <CGAL/internal/Triangulation/Triangulation_ds_iterators.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
namespace CGAL {
template< class Dimen,
class Vb = Default,
class Fcb = Default >
class Triangulation_data_structure
{
typedef Triangulation_data_structure<Dimen, Vb, Fcb> Self;
typedef typename Default::Get<Vb, Triangulation_ds_vertex<> >::type V_base;
typedef typename Default::Get<Fcb, Triangulation_ds_full_cell<> >::type FC_base;
public:
typedef typename V_base::template Rebind_TDS<Self>::Other Vertex; /* Concept */
typedef typename FC_base::template Rebind_TDS<Self>::Other Full_cell; /* Concept */
// Tools to change the Vertex and Cell types of the TDS.
template < typename Vb2 >
struct Rebind_vertex {
typedef Triangulation_data_structure<Dimen, Vb2, Fcb> Other;
};
template < typename Fcb2 >
struct Rebind_full_cell {
typedef Triangulation_data_structure<Dimen, Vb, Fcb2> Other;
};
// we want to store an object of this class in every Full_cell:
class Full_cell_data
{
unsigned char bits_;
public:
Full_cell_data() : bits_(0) {}
Full_cell_data(const Full_cell_data & fcd) : bits_(fcd.bits_) {}
void clear() { bits_ = 0; }
void mark_visited() { bits_ = 1; }
void clear_visited() { bits_ = 0; }
bool is_clear() const { return bits_ == 0; }
bool is_visited() const { return bits_ == 1; }
// WARNING: if we use more bits and several bits can be set at once,
// then make sure to use bitwise operation above, instead of direct
// affectation.
};
protected:
typedef Compact_container<Vertex> Vertex_container;
typedef Compact_container<Full_cell> Full_cell_container;
public:
typedef Dimen Maximal_dimension;
typedef typename Vertex_container::size_type size_type; /* Concept */
typedef typename Vertex_container::difference_type difference_type; /* Concept */
typedef typename Vertex_container::iterator Vertex_handle; /* Concept */
typedef typename Vertex_container::iterator Vertex_iterator; /* Concept */
typedef typename Vertex_container::const_iterator Vertex_const_handle;
typedef typename Vertex_container::const_iterator Vertex_const_iterator;
typedef typename Full_cell_container::iterator Full_cell_handle; /* Concept */
typedef typename Full_cell_container::iterator Full_cell_iterator; /* Concept */
typedef typename Full_cell_container::const_iterator Full_cell_const_handle;
typedef typename Full_cell_container::const_iterator Full_cell_const_iterator;
typedef internal::Triangulation::
Triangulation_ds_facet_iterator<Self> Facet_iterator; /* Concept */
/* The 2 types defined below, |Facet| and |Rotor| are used when traversing
the boundary `B' of the union of a set of full cells. |Rotor| makes it
easy to rotate around itself, in the search of neighbors in `B' (see
|rotate_rotor| and |insert_in_tagged_hole|) */
// A co-dimension 1 sub-simplex.
class Facet /* Concept */
{
Full_cell_handle full_cell_;
int index_of_covertex_;
public:
Facet() : full_cell_(), index_of_covertex_(0) {}
Facet(Full_cell_handle f, int i) : full_cell_(f), index_of_covertex_(i) {}
Full_cell_handle full_cell() const { return full_cell_; }
int index_of_covertex() const { return index_of_covertex_; }
};
// A co-dimension 2 sub-simplex. called a Rotor because we can rotate
// the two "covertices" around the sub-simplex. Useful for traversing the
// boundary of a hole. NOT DOCUMENTED
class Rotor : public Facet
{
int index_of_second_covertex_;
public:
Rotor() : Facet(), index_of_second_covertex_(0) {}
Rotor(Full_cell_handle f, int first, int second) : Facet(f, first), index_of_second_covertex_(second) {}
int index_of_second_covertex() const { return index_of_second_covertex_; }
};
typedef Triangulation_face<Self> Face; /* Concept */
protected: // DATA MEMBERS
int dmax_, dcur_; // dimension of the current triangulation
Vertex_container vertices_; // list of all vertices
Full_cell_container full_cells_; // list of all full cells
private:
void clean_dynamic_memory()
{
vertices_.clear();
full_cells_.clear();
}
template < class Dim_tag >
struct get_maximal_dimension
{
static int value(int D) { return D; }
};
// specialization
template < int D >
struct get_maximal_dimension<Dimension_tag<D> >
{
static int value(int) { return D; }
};
public:
Triangulation_data_structure( int dim=0) /* Concept */
: dmax_(get_maximal_dimension<Dimen>::value(dim)), dcur_(-2),
vertices_(), full_cells_()
{
CGAL_assertion_msg(dmax_ > 0, "maximal dimension must be positive.");
}
~Triangulation_data_structure()
{
clean_dynamic_memory();
}
Triangulation_data_structure(const Triangulation_data_structure & tds)
: dmax_(tds.dmax_), dcur_(tds.dcur_),
vertices_(tds.vertices_), full_cells_(tds.full_cells_)
{
typedef std::map<Vertex_const_handle, Vertex_handle> V_map;
typedef std::map<Full_cell_const_handle, Full_cell_handle> C_map;
V_map vmap;
C_map cmap;
Vertex_const_iterator vfrom = tds.vertices_begin();
Vertex_iterator vto = vertices_begin();
Full_cell_const_iterator cfrom = tds.full_cells_begin();
Full_cell_iterator cto = full_cells_begin();
while( vfrom != tds.vertices_end() )
vmap[vfrom++] = vto++;
while( cfrom != tds.full_cells_end() )
cmap[cfrom++] = cto++;
cto = full_cells_begin();
while( cto != full_cells_end() )
{
for( int i = 0; i <= (std::max)(0, current_dimension()); ++i )
{
associate_vertex_with_full_cell(cto, i, vmap[cto->vertex(i)]);
cto->set_neighbor(i, cmap[cto->neighbor(i)]);
}
++cto;
}
}
// QUERIES
protected:
bool check_range(int i) const
{
if( current_dimension() < 0 )
{
return (0 == i);
}
return ( (0 <= i) && (i <= current_dimension()) );
}
public:
/* returns the current dimension of the full cells in the triangulation. */
int maximal_dimension() const { return dmax_; } /* Concept */
int current_dimension() const { return dcur_; } /* Concept */
size_type number_of_vertices() const /* Concept */
{
return this->vertices_.size();
}
size_type number_of_full_cells() const /* Concept */
{
return this->full_cells_.size();
}
bool empty() const /* Concept */
{
return current_dimension() == -2;
}
Vertex_container & vertices() { return vertices_; }
const Vertex_container & vertices() const { return vertices_; }
Full_cell_container & full_cells() { return full_cells_; }
const Full_cell_container & full_cells() const { return full_cells_; }
Vertex_handle vertex(Full_cell_handle s, int i) const /* Concept */
{
CGAL_precondition(s != Full_cell_handle() && check_range(i));
return s->vertex(i);
}
Vertex_const_handle vertex(Full_cell_const_handle s, int i) const /* Concept */
{
CGAL_precondition(s != Full_cell_handle() && check_range(i));
return s->vertex(i);
}
bool is_vertex(Vertex_const_handle v) const /* Concept */
{
if( Vertex_const_handle() == v )
return false;
Vertex_const_iterator vit = vertices_begin();
while( vit != vertices_end() && ( v != vit ) )
++vit;
return v == vit;
}
bool is_full_cell(Full_cell_const_handle s) const /* Concept */
{
if( Full_cell_const_handle() == s )
return false;
Full_cell_const_iterator sit = full_cells_begin();
while( sit != full_cells_end() && ( s != sit ) )
++sit;
return s == sit;
}
Full_cell_handle full_cell(Vertex_handle v) const /* Concept */
{
CGAL_precondition(v != Vertex_handle());
return v->full_cell();
}
Full_cell_const_handle full_cell(Vertex_const_handle v) const /* Concept */
{
CGAL_precondition(Vertex_const_handle() != v);
return v->full_cell();
}
Full_cell_handle neighbor(Full_cell_handle s, int i) const /* Concept */
{
CGAL_precondition(Full_cell_handle() != s && check_range(i));
return s->neighbor(i);
}
Full_cell_const_handle neighbor(Full_cell_const_handle s, int i) const/* Concept */
{
CGAL_precondition(Full_cell_const_handle() != s && check_range(i));
return s->neighbor(i);
}
int mirror_index(Full_cell_handle s, int i) const /* Concept */
{
CGAL_precondition(Full_cell_handle() != s && check_range(i));
return s->mirror_index(i);
}
int mirror_index(Full_cell_const_handle s, int i) const
{
CGAL_precondition(Full_cell_const_handle() != s && check_range(i)); /* Concept */
return s->mirror_index(i);
}
int mirror_vertex(Full_cell_handle s, int i) const /* Concept */
{
CGAL_precondition(Full_cell_handle() != s && check_range(i));
return s->mirror_vertex(i);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FACETS OPERATIONS
// works for Face_ = Facet and Face_ = Rotor.
// NOT DOCUMENTED for the Rotor case...
template< typename Face_ >
Full_cell_handle full_cell(const Face_ & f) const /* Concept */
{
return f.full_cell();
}
// works for Face_ = Facet and Face_ = Rotor.
// NOT DOCUMENTED for the Rotor case...
template< class Face_ >
int index_of_covertex(const Face_ & f) const /* Concept */
{
return f.index_of_covertex();
}
// NOT DOCUMENTED
// A Rotor has two covertices
int index_of_second_covertex(const Rotor & f) const
{
return f.index_of_second_covertex();
}
// works for Face_ = Facet and Face_ = Rotor.
// NOT DOCUMENTED...
template< class Face_ >
bool is_boundary_facet(const Face_ & f) const
{
if( get_visited(neighbor(full_cell(f), index_of_covertex(f))) )
return false;
if( ! get_visited(full_cell(f)) )
return false;
return true;
}
// NOT DOCUMENTED...
Rotor rotate_rotor(Rotor & f)
{
int opposite = mirror_index(full_cell(f), index_of_covertex(f));
Full_cell_handle s = neighbor(full_cell(f), index_of_covertex(f));
int new_second = s->index(vertex(full_cell(f), index_of_second_covertex(f)));
return Rotor(s, new_second, opposite);
}
// NICE UPDATE OPERATIONS
protected:
void do_insert_increase_dimension(Vertex_handle, Vertex_handle);
public:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
Vertex_handle collapse_face(const Face &); /* Concept */
void remove_decrease_dimension(Vertex_handle, Vertex_handle); /* Concept */
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS
Vertex_handle insert_in_full_cell(Full_cell_handle); /* Concept */
Vertex_handle insert_in_face(const Face &); /* Concept */
Vertex_handle insert_in_facet(const Facet &); /* Concept */
template< typename Forward_iterator >
Vertex_handle insert_in_hole(Forward_iterator, Forward_iterator, Facet); /* Concept */
template< typename Forward_iterator, typename OutputIterator >
Vertex_handle insert_in_hole(Forward_iterator, Forward_iterator, Facet, OutputIterator); /* Concept */
template< typename OutputIterator >
Full_cell_handle insert_in_tagged_hole(Vertex_handle, Facet, OutputIterator);
Vertex_handle insert_increase_dimension(Vertex_handle=Vertex_handle()); /* Concept */
private:
// Used by insert_in_tagged_hole
struct IITH_task
{
IITH_task(
Facet boundary_facet_,
int index_of_inside_cell_in_outside_cell_,
Full_cell_handle future_neighbor_ = Full_cell_handle(),
int new_cell_index_in_future_neighbor_ = -1,
int index_of_future_neighbor_in_new_cell_ = -1)
: boundary_facet(boundary_facet_),
index_of_inside_cell_in_outside_cell(index_of_inside_cell_in_outside_cell_),
future_neighbor(future_neighbor_),
new_cell_index_in_future_neighbor(new_cell_index_in_future_neighbor_),
index_of_future_neighbor_in_new_cell(index_of_future_neighbor_in_new_cell_)
{}
// "new_cell" is the cell about to be created
Facet boundary_facet;
int index_of_inside_cell_in_outside_cell;
Full_cell_handle future_neighbor;
int new_cell_index_in_future_neighbor;
int index_of_future_neighbor_in_new_cell;
};
// NOT DOCUMENTED
void clear_visited_marks(Full_cell_handle) const;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DANGEROUS UPDATE OPERATIONS
private:
// NOT DOCUMENTED
template< typename FCH > // FCH = Full_cell_[const_]handle
bool get_visited(FCH c) const
{
return c->tds_data().is_visited();
}
// NOT DOCUMENTED
template< typename FCH > // FCH = Full_cell_[const_]handle
void set_visited(FCH c, bool m) const
{
if( m )
c->tds_data().mark_visited();
else
c->tds_data().clear_visited();
}
public:
void clear() /* Concept */
{
clean_dynamic_memory();
dcur_ = -2;
}
void set_current_dimension(int d) /* Concept */
{
CGAL_precondition(-2<=d && d<=maximal_dimension());
dcur_ = d;
}
Full_cell_handle new_full_cell(Full_cell_handle s)
{
return full_cells_.emplace(*s);
}
Full_cell_handle new_full_cell() /* Concept */
{
return full_cells_.emplace(dmax_);
}
void delete_full_cell(Full_cell_handle s) /* Concept */
{
CGAL_precondition(Full_cell_handle() != s);
// CGAL_expensive_precondition(is_full_cell(s));
full_cells_.erase(s);
}
template< typename Forward_iterator >
void delete_full_cells(Forward_iterator start, Forward_iterator end) /* Concept */
{
Forward_iterator s = start;
while( s != end )
full_cells_.erase(*s++);
}
template< class T >
Vertex_handle new_vertex( const T & t )
{
return vertices_.emplace(t);
}
Vertex_handle new_vertex() /* Concept */
{
return vertices_.emplace();
}
void delete_vertex(Vertex_handle v) /* Concept */
{
CGAL_precondition( Vertex_handle() != v );
vertices_.erase(v);
}
void associate_vertex_with_full_cell(Full_cell_handle s, int i, Vertex_handle v) /* Concept */
{
CGAL_precondition(check_range(i));
CGAL_precondition(s != Full_cell_handle());
CGAL_precondition(v != Vertex_handle());
s->set_vertex(i, v);
v->set_full_cell(s);
}
void set_neighbors(Full_cell_handle s, int i, Full_cell_handle s1, int j) /* Concept */
{
CGAL_precondition(check_range(i));
CGAL_precondition(check_range(j));
CGAL_precondition(s != Full_cell_handle());
CGAL_precondition(s1 != Full_cell_handle());
s->set_neighbor(i, s1);
s1->set_neighbor(j, s);
s->set_mirror_index(i, j);
s1->set_mirror_index(j, i);
}
// SANITY CHECKS
bool is_valid(bool = true, int = 0) const; /* Concept */
// NOT DOCUMENTED
template< class OutStream> void write_graph(OutStream &);
Vertex_iterator vertices_begin() { return vertices_.begin(); } /* Concept */
Vertex_iterator vertices_end() { return vertices_.end(); } /* Concept */
Full_cell_iterator full_cells_begin() { return full_cells_.begin(); } /* Concept */
Full_cell_iterator full_cells_end() { return full_cells_.end(); } /* Concept */
Vertex_const_iterator vertices_begin() const { return vertices_.begin(); } /* Concept */
Vertex_const_iterator vertices_end() const { return vertices_.end(); } /* Concept */
Full_cell_const_iterator full_cells_begin() const { return full_cells_.begin(); } /* Concept */
Full_cell_const_iterator full_cells_end() const { return full_cells_.end(); } /* Concept */
Facet_iterator facets_begin() /* Concept */
{
if( current_dimension() <= 0 )
return facets_end();
return Facet_iterator(*this);
}
Facet_iterator facets_end() /* Concept */
{
return Facet_iterator(*this, 0);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - FULL CELL GATHERING
// a traversal predicate for gathering full_cells incident to a given face
// ``incident'' means that the given face is a subface of the full_cell
class Incident_full_cell_traversal_predicate
{
const Face & f_;
int dim_;
const Triangulation_data_structure & tds_;
public:
Incident_full_cell_traversal_predicate(const Triangulation_data_structure & tds,
const Face & f)
: f_(f), tds_(tds)
{
dim_ = f.face_dimension();
}
bool operator()(const Facet & facet) const
{
Vertex_handle v = tds_.full_cell(facet)->vertex(tds_.index_of_covertex(facet));
for( int i = 0; i <= dim_; ++i )
{
if( v == f_.vertex(i) )
return false;
}
return true;
}
};
// a traversal predicate for gathering full_cells having a given face as subface
class Star_traversal_predicate
{
const Face & f_;
int dim_;
const Triangulation_data_structure & tds_;
public:
Star_traversal_predicate(const Triangulation_data_structure & tds,
const Face & f)
: f_(f), tds_(tds)
{
dim_ = f.face_dimension();
}
bool operator()(const Facet & facet) const
{
Full_cell_handle s = tds_.full_cell(facet)->neighbor(tds_.index_of_covertex(facet));
for( int j = 0; j <= tds_.current_dimension(); ++j )
{
for( int i = 0; i <= dim_; ++i )
if( s->vertex(j) == f_.vertex(i) )
return true;
}
return false;
}
};
template< typename TraversalPredicate, typename OutputIterator >
Facet gather_full_cells(Full_cell_handle, TraversalPredicate &, OutputIterator &) const; /* Concept */
template< typename OutputIterator >
OutputIterator incident_full_cells(const Face &, OutputIterator) const; /* Concept */
template< typename OutputIterator >
OutputIterator incident_full_cells(Vertex_const_handle, OutputIterator) const; /* Concept */
template< typename OutputIterator >
OutputIterator star(const Face &, OutputIterator) const; /* Concept */
#ifndef CGAL_CFG_NO_CPP0X_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES
template< typename OutputIterator, typename Comparator = std::less<Vertex_const_handle> >
OutputIterator incident_upper_faces(Vertex_const_handle v, int dim, OutputIterator out, Comparator cmp = Comparator())
{
return incident_faces(v, dim, out, cmp, true);
}
template< typename OutputIterator, typename Comparator = std::less<Vertex_const_handle> >
OutputIterator incident_faces(Vertex_const_handle, int, OutputIterator, Comparator = Comparator(), bool = false) const;
#else
template< typename OutputIterator, typename Comparator >
OutputIterator incident_upper_faces(Vertex_const_handle v, int dim, OutputIterator out, Comparator cmp = Comparator())
{
return incident_faces(v, dim, out, cmp, true);
}
template< typename OutputIterator >
OutputIterator incident_upper_faces(Vertex_const_handle v, int dim, OutputIterator out)
{
return incident_faces(v, dim, out, std::less<Vertex_const_handle>(), true);
}
template< typename OutputIterator, typename Comparator >
OutputIterator incident_faces(Vertex_const_handle, int, OutputIterator, Comparator = Comparator(), bool = false) const;
template< typename OutputIterator >
OutputIterator incident_faces(Vertex_const_handle, int, OutputIterator,
std::less<Vertex_const_handle> = std::less<Vertex_const_handle>(), bool = false) const;
#endif
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INPUT / OUTPUT
std::istream & read_full_cells(std::istream &, const std::vector<Vertex_handle> &);
std::ostream & write_full_cells(std::ostream &, std::map<Vertex_const_handle, int> &) const;
}; // end of ``declaration/definition'' of Triangulation_data_structure<...>
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE MEMBER FUNCTIONS:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE GATHERING METHODS
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_full_cells(const Face & f, OutputIterator out) const /* Concept */
{
// CGAL_expensive_precondition_msg(is_full_cell(f.full_cell()), "the facet does not belong to the Triangulation");
Incident_full_cell_traversal_predicate tp(*this, f);
gather_full_cells(f.full_cell(), tp, out);
return out;
}
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_full_cells(Vertex_const_handle v, OutputIterator out) const /* Concept */
{
// CGAL_expensive_precondition(is_vertex(v));
CGAL_precondition(Vertex_handle() != v);
Face f(v->full_cell());
f.set_index(0, v->full_cell()->index(v));
return incident_full_cells(f, out);
}
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::star(const Face & f, OutputIterator out) const /* Concept */
{
// CGAL_precondition_msg(is_full_cell(f.full_cell()), "the facet does not belong to the Triangulation");
Star_traversal_predicate tp(*this, f);
gather_full_cells(f.full_cell(), tp, out);
return out;
}
template< class Dim, class Vb, class Fcb >
template< typename TraversalPredicate, typename OutputIterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Facet
Triangulation_data_structure<Dim, Vb, Fcb>
::gather_full_cells(Full_cell_handle start,
TraversalPredicate & tp,
OutputIterator & out) const /* Concept */
{
std::queue<Full_cell_handle> queue;
set_visited(start, true);
queue.push(start);
const int cur_dim = current_dimension();
Facet ft;
while( ! queue.empty() )
{
Full_cell_handle s = queue.front();
queue.pop();
*out = s;
++out;
for( int i = 0; i <= cur_dim; ++i )
{
Full_cell_handle n = s->neighbor(i);
if( ! get_visited(n) )
{
set_visited(n, true);
if( tp(Facet(s, i)) )
queue.push(n);
else
ft = Facet(s, i);
}
}
}
clear_visited_marks(start);
return ft;
}
#ifdef CGAL_CFG_NO_CPP0X_DEFAULT_TEMPLATE_ARGUMENTS_FOR_FUNCTION_TEMPLATES
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_faces(Vertex_const_handle v, int dim, OutputIterator out,
std::less<Vertex_const_handle> cmp, bool upper_faces) const
{
return incident_faces<OutputIterator, std::less<Vertex_const_handle> >(v, dim, out, cmp, upper_faces);
}
#endif
template< class Dim, class Vb, class Fcb >
template< typename OutputIterator, typename Comparator >
OutputIterator
Triangulation_data_structure<Dim, Vb, Fcb>
::incident_faces(Vertex_const_handle v, int dim, OutputIterator out, Comparator cmp, bool upper_faces) const
{
CGAL_precondition( 0 < dim );
if( dim >= current_dimension() )
return out;
typedef std::vector<Full_cell_handle> Simplices;
Simplices simps;
simps.reserve(64);
// gather incident full_cells
std::back_insert_iterator<Simplices> sout(simps);
incident_full_cells(v, sout);
// for storing the handles to the vertices of a full_cell
typedef std::vector<Vertex_const_handle> Vertices;
typedef std::vector<int> Indices;
Vertices vertices(1 + current_dimension());
Indices sorted_idx(1 + current_dimension());
// setup Face comparator and Face_set
typedef internal::Triangulation::Compare_faces_with_common_first_vertex<Self>
Upper_face_comparator;
Upper_face_comparator ufc(dim);
typedef std::set<Face, Upper_face_comparator> Face_set;
Face_set face_set(ufc);
for( typename Simplices::const_iterator s = simps.begin(); s != simps.end(); ++s )
{
int v_idx(0); // the index of |v| in the sorted full_cell
// get the vertices of the full_cell and sort them
for( int i = 0; i <= current_dimension(); ++i )
vertices[i] = (*s)->vertex(i);
if( upper_faces )
{
std::sort(vertices.begin(), vertices.end(), cmp);
while( vertices[v_idx] != v )
++v_idx;
}
else
{
while( vertices[v_idx] != v )
++v_idx;
if( 0 != v_idx )
std::swap(vertices[0], vertices[v_idx]);
v_idx = 0;
typename Vertices::iterator vbegin(vertices.begin());
++vbegin;
std::sort(vbegin, vertices.end(), cmp);
}
if( v_idx + dim > current_dimension() )
continue; // |v| is too far to the right
// stores the index of the vertices of s in the same order
// as in |vertices|:
for( int i = 0; i <= current_dimension(); ++i )
sorted_idx[i] = (*s)->index(vertices[i]);
// init state for enumerating all candidate faces:
internal::Combination_enumerator f_idx(dim, v_idx + 1, current_dimension());
Face f(*s);
f.set_index(0, sorted_idx[v_idx]);
while( ! f_idx.end() )
{
for( int i = 0; i < dim; ++i )
f.set_index(1 + i, sorted_idx[f_idx[i]]);
face_set.insert(f); // checks if face has already been found
// compute next sorted face (lexicographic enumeration)
++f_idx;
}
}
typename Face_set::iterator fit = face_set.begin();
while( fit != face_set.end() )
*out++ = *fit++;
return out;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE REMOVAL METHODS
template <class Dim, class Vb, class Fcb>
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::collapse_face(const Face & f) /* Concept */
{
const int fd = f.face_dimension();
CGAL_precondition( (1 <= fd ) && (fd < current_dimension()));
std::vector<Full_cell_handle> simps;
// save the Face's vertices:
Full_cell s;
for( int i = 0; i <= fd; ++i )
s.set_vertex(i, f.vertex(i));
// compute the star of f
simps.reserve(64);
std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
star(f, out);
Vertex_handle v = insert_in_hole(simps.begin(), simps.end(), Facet(f.full_cell(), f.index(0)));
for( int i = 0; i <= fd; ++i )
delete_vertex(s.vertex(i));
return v;
}
template <class Dim, class Vb, class Fcb>
void
Triangulation_data_structure<Dim, Vb, Fcb>
::remove_decrease_dimension(Vertex_handle v, Vertex_handle star) /* Concept */
{
CGAL_assertion( current_dimension() >= -1 );
if( -1 == current_dimension() )
{
clear();
return;
}
else if( 0 == current_dimension() )
{
delete_full_cell(v->full_cell());
delete_vertex(v);
star->full_cell()->set_neighbor(0, Full_cell_handle());
set_current_dimension(-1);
return;
}
else if( 1 == current_dimension() )
{
Full_cell_handle s = v->full_cell();
int star_index;
if( s->has_vertex(star, star_index) )
s = s->neighbor(star_index);
// Here, |star| is not a vertex of |s|, so it's the only finite
// full_cell
Full_cell_handle inf1 = s->neighbor(0);
Full_cell_handle inf2 = s->neighbor(1);
Vertex_handle v2 = s->vertex(1 - s->index(v));
delete_vertex(v);
delete_full_cell(s);
inf1->set_vertex(1, Vertex_handle());
inf1->set_vertex(1, Vertex_handle());
inf2->set_neighbor(1, Full_cell_handle());
inf2->set_neighbor(1, Full_cell_handle());
associate_vertex_with_full_cell(inf1, 0, star);
associate_vertex_with_full_cell(inf2, 0, v2);
set_neighbors(inf1, 0, inf2, 0);
set_current_dimension(0);
return;
}
typedef std::vector<Full_cell_handle> Simplices;
Simplices simps;
incident_full_cells(v, std::back_inserter(simps));
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
{
int v_idx = (*it)->index(v);
if( ! (*it)->has_vertex(star) )
{
delete_full_cell((*it)->neighbor(v_idx));
for( int i = 0; i <= current_dimension(); ++i )
(*it)->vertex(i)->set_full_cell(*it);
}
else
star->set_full_cell(*it);
if( v_idx != current_dimension() )
{
(*it)->swap_vertices(v_idx, current_dimension());
(*it)->swap_vertices(current_dimension() - 2, current_dimension() - 1);
}
(*it)->set_vertex(current_dimension(), Vertex_handle());
(*it)->set_neighbor(current_dimension(), Full_cell_handle());
}
set_current_dimension(current_dimension()-1);
delete_vertex(v);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - THE INSERTION METHODS
template <class Dim, class Vb, class Fcb>
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_full_cell(Full_cell_handle s) /* Concept */
{
CGAL_precondition(0 < current_dimension());
CGAL_precondition(Full_cell_handle() != s);
// CGAL_expensive_precondition(is_full_cell(s));
const int cur_dim = current_dimension();
Vertex_handle v = new_vertex();
// the full_cell 'fc' is just used to store the handle to all the new full_cells.
Full_cell fc(maximal_dimension());
for( int i = 1; i <= cur_dim; ++i )
{
Full_cell_handle new_s = new_full_cell(s);
fc.set_neighbor(i, new_s);
associate_vertex_with_full_cell(new_s, i, v);
s->vertex(i-1)->set_full_cell(new_s);
set_neighbors(new_s, i, neighbor(s, i), mirror_index(s, i));
}
fc.set_neighbor(0, s);
associate_vertex_with_full_cell(s, 0, v);
for( int i = 0; i <= cur_dim; ++i )
for( int j = 0; j <= cur_dim; ++j )
{
if( j == i ) continue;
set_neighbors(fc.neighbor(i), j, fc.neighbor(j), i);
}
return v;
}
template <class Dim, class Vb, class Fcb >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_face(const Face & f) /* Concept */
{
std::vector<Full_cell_handle> simps;
simps.reserve(64);
std::back_insert_iterator<std::vector<Full_cell_handle> > out(simps);
incident_full_cells(f, out);
return insert_in_hole(simps.begin(), simps.end(), Facet(f.full_cell(), f.index(0)));
}
template <class Dim, class Vb, class Fcb >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_facet(const Facet & ft) /* Concept */
{
Full_cell_handle s[2];
s[0] = full_cell(ft);
int i = index_of_covertex(ft);
s[1] = s[0]->neighbor(i);
i = ( i + 1 ) % current_dimension();
return insert_in_hole(s, s+2, Facet(s[0], i));
}
template <class Dim, class Vb, class Fcb >
template < typename OutputIterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Full_cell_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_tagged_hole(Vertex_handle v, Facet f,
OutputIterator new_full_cells)
{
CGAL_assertion_msg(is_boundary_facet(f), "starting facet should be on the hole boundary");
const int cur_dim = current_dimension();
Full_cell_handle new_s;
std::queue<IITH_task> task_queue;
task_queue.push(
IITH_task(f, mirror_index(full_cell(f), index_of_covertex(f))) );
while (!task_queue.empty())
{
IITH_task task = task_queue.front();
task_queue.pop();
Full_cell_handle old_s = full_cell(task.boundary_facet);
const int facet_index = index_of_covertex(task.boundary_facet);
Full_cell_handle outside_neighbor = neighbor(old_s, facet_index);
// Here, "new_s" might actually be a new cell, but it might also be "old_s"
// if it has not been treated already in the meantime
new_s = neighbor(outside_neighbor, task.index_of_inside_cell_in_outside_cell);
// If the cell has not been treated yet
if (old_s == new_s)
{
new_s = new_full_cell();
int i(0);
for ( ; i < facet_index ; ++i)
associate_vertex_with_full_cell(new_s, i, old_s->vertex(i));
++i; // skip facet_index
for ( ; i <= cur_dim ; ++i)
associate_vertex_with_full_cell(new_s, i, old_s->vertex(i));
associate_vertex_with_full_cell(new_s, facet_index, v);
set_neighbors(new_s,
facet_index,
outside_neighbor,
mirror_index(old_s, facet_index));
// add the new full_cell to the list of new full_cells
*new_full_cells++ = new_s;
// check all of |Facet f|'s neighbors
for (i = 0 ; i <= cur_dim ; ++i)
{
if (facet_index == i)
continue;
// we define a |Rotor| because it makes it easy to rotate around
// in a self contained fashion. The corresponding potential
// boundary facet is Facet(full_cell(rot), index_of_covertex(rot))
Rotor rot(old_s, i, facet_index);
// |rot| on line above, stands for Candidate Facet
while (!is_boundary_facet(rot))
rot = rotate_rotor(rot);
// we did find the |i|-th neighbor of Facet(old_s, facet_index)...
// has it already been extruded to center point |v| ?
Full_cell_handle inside = full_cell(rot);
Full_cell_handle outside = neighbor(inside, index_of_covertex(rot));
// "m" is the vertex of outside which is not on the boundary
Vertex_handle m = inside->mirror_vertex(index_of_covertex(rot), current_dimension()); // CJTODO: use mirror_index?
// "index" is the index of m in "outside"
int index = outside->index(m);
// new_neighbor is the inside cell which is registered as the neighbor
// of the outside cell => it's either a newly created inside cell or an
// old inside cell which we are about to delete
Full_cell_handle new_neighbor = outside->neighbor(index);
// Is new_neighbor still the old neighbor?
if (new_neighbor == inside)
{
task_queue.push(IITH_task(
Facet(inside, index_of_covertex(rot)), // boundary facet
index, // index_of_inside_cell_in_outside_cell
new_s, // future_neighbor
i, // new_cell_index_in_future_neighbor
index_of_second_covertex(rot) // index_of_future_neighbor_in_new_cell
));
}
}
}
// If there is some neighbor stories to fix
if (task.future_neighbor != Full_cell_handle())
{
// now the new neighboring full_cell exists, we link both
set_neighbors(new_s,
task.index_of_future_neighbor_in_new_cell,
task.future_neighbor,
task.new_cell_index_in_future_neighbor);
}
}
return new_s;
}
template< class Dim, class Vb, class Fcb >
template< typename Forward_iterator, typename OutputIterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_hole(Forward_iterator start, Forward_iterator end, Facet f,
OutputIterator out) /* Concept */
{
CGAL_expensive_precondition(
( std::distance(start, end) == 1 )
|| ( current_dimension() > 1 ) );
Forward_iterator sit = start;
while( end != sit )
set_visited(*sit++, true);
Vertex_handle v = new_vertex();
insert_in_tagged_hole(v, f, out);
delete_full_cells(start, end);
return v;
}
template< class Dim, class Vb, class Fcb >
template< typename Forward_iterator >
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_in_hole(Forward_iterator start, Forward_iterator end, Facet f) /* Concept */
{
Emptyset_iterator out;
return insert_in_hole(start, end, f, out);
}
template <class Dim, class Vb, class Fcb>
void
Triangulation_data_structure<Dim, Vb, Fcb>
::clear_visited_marks(Full_cell_handle start) const // NOT DOCUMENTED
{
CGAL_precondition(start != Full_cell_handle());
std::queue<Full_cell_handle> queue;
set_visited(start, false);
queue.push(start);
const int cur_dim = current_dimension();
while( ! queue.empty() )
{
Full_cell_handle s = queue.front();
queue.pop();
for( int i = 0; i <= cur_dim; ++i )
{
if( get_visited(s->neighbor(i)) )
{
set_visited(s->neighbor(i), false);
queue.push(s->neighbor(i));
}
}
}
}
template <class Dim, class Vb, class Fcb>
void Triangulation_data_structure<Dim, Vb, Fcb>
::do_insert_increase_dimension(Vertex_handle x, Vertex_handle star)
{
Full_cell_handle start = full_cells_begin();
Full_cell_handle swap_me;
const int cur_dim = current_dimension();
for( Full_cell_iterator S = full_cells_begin(); S != full_cells_end(); ++S )
{
if( Vertex_handle() != S->vertex(cur_dim) )
continue;
set_visited(S, true);
// extends full_cell |S| to include the new vertex as the
// current_dimension()-th vertex
associate_vertex_with_full_cell(S, cur_dim, x);
if( ! S->has_vertex(star) )
{ // S is bounded, we create its unbounded "twin" full_cell
Full_cell_handle S_new = new_full_cell();
set_neighbors(S, cur_dim, S_new, 0);
associate_vertex_with_full_cell(S_new, 0, star);
// here, we could be clever so as to get consistent orientation
for( int k = 1; k <= cur_dim; ++k )
associate_vertex_with_full_cell(S_new, k, vertex(S, k - 1));
}
}
// now we setup the neighbors
set_visited(start, false);
std::queue<Full_cell_handle> queue;
queue.push(start);
while( ! queue.empty() )
{
Full_cell_handle S = queue.front();
queue.pop();
// here, the first visit above ensured that all neighbors exist now.
// Now we need to connect them with adjacency relation
int star_index;
if( S->has_vertex(star, star_index) )
{
set_neighbors( S, cur_dim, neighbor(neighbor(S, star_index), cur_dim),
// this is tricky :-) :
mirror_index(S, star_index) + 1);
}
else
{
Full_cell_handle S_new = neighbor(S, cur_dim);
for( int k = 0 ; k < cur_dim ; ++k )
{
Full_cell_handle S_opp = neighbor(S, k);
if( ! S_opp->has_vertex(star) )
set_neighbors(S_new, k + 1, neighbor(S_opp, cur_dim), mirror_index(S, k) + 1);
// neighbor of S_new opposite to v is S_new'
// the vertex opposite to v remains the same but ...
// remember the shifting of the vertices one step to the right
}
}
for( int k = 0 ; k < cur_dim ; ++k )
if( get_visited(neighbor(S, k)) )
{
set_visited(neighbor(S, k), false);
queue.push(neighbor(S, k));
}
}
if( ( ( cur_dim % 2 ) == 0 ) && ( cur_dim > 1 ) )
{
for( Full_cell_iterator S = full_cells_begin(); S != full_cells_end(); ++S )
{
if( x != S->vertex(cur_dim) )
S->swap_vertices(cur_dim - 1, cur_dim);
}
}
if( Full_cell_handle() != swap_me )
swap_me->swap_vertices(1, 2);
}
template <class Dim, class Vb, class Fcb>
typename Triangulation_data_structure<Dim, Vb, Fcb>::Vertex_handle
Triangulation_data_structure<Dim, Vb, Fcb>
::insert_increase_dimension(Vertex_handle star) /* Concept */
{
const int prev_cur_dim = current_dimension();
CGAL_precondition(prev_cur_dim < maximal_dimension());
if( -2 != current_dimension() )
{
CGAL_precondition( Vertex_handle() != star );
CGAL_expensive_precondition(is_vertex(star));
}
set_current_dimension(prev_cur_dim + 1);
Vertex_handle v = new_vertex();
switch( prev_cur_dim )
{
case -2:
{ // insertion of the first vertex
// ( geometrically : infinite vertex )
Full_cell_handle s = new_full_cell();
associate_vertex_with_full_cell(s, 0, v);
break;
}
case -1:
{ // insertion of the second vertex
// ( geometrically : first finite vertex )
//we create a triangulation of the 0-sphere, with
// vertices |star| and |v|
Full_cell_handle infinite_full_cell = star->full_cell();
Full_cell_handle finite_full_cell = new_full_cell();
associate_vertex_with_full_cell(finite_full_cell, 0, v);
set_neighbors(infinite_full_cell, 0, finite_full_cell, 0);
break;
}
default:
do_insert_increase_dimension(v, star);
break;
}
return v;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY CHECKS
template <class Dimen, class Vb, class Fcb>
bool Triangulation_data_structure<Dimen, Vb, Fcb>
::is_valid(bool verbose, int /* level */) const /* Concept */
{
Full_cell_const_handle s, t;
Vertex_const_handle v;
int i, j, k;
if( current_dimension() == -2 )
{
if( ! vertices_.empty() || ! full_cells_.empty() )
{
if( verbose ) CGAL_warning_msg(false, "current dimension is -2 but there are vertices or full_cells");
return false;
}
}
if( current_dimension() == -1 )
{
if ( (number_of_vertices() != 1) || (number_of_full_cells() != 1) )
{
if( verbose ) CGAL_warning_msg(false, "current dimension is -1 but there isn't one vertex and one full_cell");
return false;
}
}
for( v = vertices_begin(); v != vertices_end(); ++v )
{
if( ! v->is_valid(verbose) )
return false;
}
// FUTURE: for each vertex v, gather incident full_cells. then, check that
// any full_cell containing v is among those gathered full_cells...
if( current_dimension() < 0 )
return true;
for( s = full_cells_begin(); s != full_cells_end(); ++s )
{
if( ! s->is_valid(verbose) )
return false;
// check that the full cell has no duplicate vertices
for( i = 0; i <= current_dimension(); ++i )
for( j = i + 1; j <= current_dimension(); ++j )
if( vertex(s,i) == vertex(s,j) )
{
CGAL_warning_msg(false, "a full_cell has two equal vertices");
return false;
}
}
for( s = full_cells_begin(); s != full_cells_end(); ++s )
{
for( i = 0; i <= current_dimension(); ++i )
if( (t = neighbor(s,i)) != Full_cell_const_handle() )
{
int l = mirror_index(s,i);
if( s != neighbor(t,l) || i != mirror_index(t,l) )
{
if( verbose ) CGAL_warning_msg(false, "neighbor relation is not symmetric");
return false;
}
for( j = 0; j <= current_dimension(); ++j )
if( j != i )
{
// j must also occur as a vertex of t
for( k = 0; k <= current_dimension() && ( vertex(s,j) != vertex(t,k) || k == l); ++k )
;
if( k > current_dimension() )
{
if( verbose ) CGAL_warning_msg(false, "too few shared vertices between neighbors full_cells.");
return false;
}
}
}
else
{
if( verbose ) CGAL_warning_msg(false, "full_cell has a NULL neighbor");
return false;
}
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// - - - - - - - - - - - - - - - - - - - - - - - - INPUT / OUTPUT
// NOT DOCUMENTED
template <class Dim, class Vb, class Fcb>
template <class OutStream>
void Triangulation_data_structure<Dim, Vb, Fcb>
::write_graph(OutStream & os)
{
std::vector<std::set<int> > edges;
os << number_of_vertices() + 1; // add the vertex at infinity
int count(1);
for( Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit )
vit->idx_ = count++;
edges.resize(number_of_vertices()+1);
for( Full_cell_iterator sit = full_cells_begin(); sit != full_cells_end(); ++sit )
{
int v1 = 0;
while( v1 < current_dimension() )
{
int v2 = v1 + 1;
while( v2 <= current_dimension() )
{
int i1, i2;
if( Vertex_handle() != sit-> vertex(v1) )
i1 = sit->vertex(v1)->idx_;
else
i1 = 0;
if( Vertex_handle() != sit-> vertex(v2) )
i2 = sit->vertex(v2)->idx_;
else
i2 = 0;
edges[i1].insert(i2);
edges[i2].insert(i1);
++v2;
}
++v1;
}
}
for( std::size_t i = 0; i < edges.size(); ++i )
{
os << std::endl << edges[i].size();
for( std::set<int>::const_iterator nit = edges[i].begin();
nit != edges[i].end(); ++nit )
{
os << ' ' << (*nit);
}
}
}
// NOT DOCUMENTED...
template<class Dimen, class Vb, class Fcb>
std::istream &
Triangulation_data_structure<Dimen, Vb, Fcb>
::read_full_cells(std::istream & is, const std::vector<Vertex_handle> & vertices)
{
std::size_t m; // number of full_cells
int index;
const int cd = current_dimension();
if( is_ascii(is) )
is >> m;
else
read(is, m, io_Read_write());
std::vector<Full_cell_handle> full_cells;
full_cells.reserve(m);
// read the vertices of each full_cell
std::size_t i = 0;
while( i < m )
{
Full_cell_handle s = new_full_cell();
full_cells.push_back(s);
for( int j = 0; j <= cd; ++j )
{
if( is_ascii(is) )
is >> index;
else
read(is, index);
s->set_vertex(j, vertices[index]);
}
// read other non-combinatorial information for the full_cells
is >> (*s);
++i;
}
// read the neighbors of each full_cell
i = 0;
if( is_ascii(is) )
while( i < m )
{
for( int j = 0; j <= cd; ++j )
{
is >> index;
full_cells[i]->set_neighbor(j, full_cells[index]);
}
++i;
}
else
while( i < m )
{
for( int j = 0; j <= cd; ++j )
{
read(is, index);
full_cells[i]->set_neighbor(j, full_cells[index]);
}
++i;
}
// compute the mirror indices
for( i = 0; i < m; ++i )
{
Full_cell_handle s = full_cells[i];
for( int j = 0; j <= cd; ++j )
{
if( -1 != s->mirror_index(j) )
continue;
Full_cell_handle n = s->neighbor(j);
int k = 0;
Full_cell_handle nn = n->neighbor(k);
while( s != nn )
nn = n->neighbor(++k);
s->set_mirror_index(j,k);
n->set_mirror_index(k,j);
}
}
return is;
}
// NOT DOCUMENTED...
template<class Dimen, class Vb, class Fcb>
std::ostream &
Triangulation_data_structure<Dimen, Vb, Fcb>
::write_full_cells(std::ostream & os, std::map<Vertex_const_handle, int> & index_of_vertex) const
{
std::map<Full_cell_const_handle, int> index_of_full_cell;
std::size_t m = number_of_full_cells();
if( is_ascii(os) )
os << std::endl << m;
else
write(os, m, io_Read_write());
const int cur_dim = current_dimension();
// write the vertex indices of each full_cell
int i = 0;
for( Full_cell_const_iterator it = full_cells_begin(); it != full_cells_end(); ++it )
{
index_of_full_cell[it] = i++;
if( is_ascii(os) )
os << std::endl;
for( int j = 0; j <= cur_dim; ++j )
{
if( is_ascii(os) )
os << ' ' << index_of_vertex[it->vertex(j)];
else
write(os, index_of_vertex[it->vertex(j)]);
}
// write other non-combinatorial information for the full_cells
os << (*it);
}
CGAL_assertion( (std::size_t) i == m );
// write the neighbors of each full_cell
if( is_ascii(os) )
for( Full_cell_const_iterator it = full_cells_begin(); it != full_cells_end(); ++it )
{
os << std::endl;
for( int j = 0; j <= cur_dim; ++j )
os << ' ' << index_of_full_cell[it->neighbor(j)];
}
else
for( Full_cell_const_iterator it = full_cells_begin(); it != full_cells_end(); ++it )
{
for( int j = 0; j <= cur_dim; ++j )
write(os, index_of_full_cell[it->neighbor(j)]);
}
return os;
}
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE NOT MEMBER FUNCTIONS:
template<class Dimen, class Vb, class Fcb>
std::istream &
operator>>(std::istream & is, Triangulation_data_structure<Dimen, Vb, Fcb> & tr)
// reads :
// - the dimensions (maximal and current)
// - the number of finite vertices
// - the non combinatorial information on vertices (point, etc)
// - the number of full_cells
// - the full_cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each full_cell
// - the neighbors of each full_cell by their index in the preceding list
{
typedef Triangulation_data_structure<Dimen, Vb, Fcb> TDS;
typedef typename TDS::Vertex_handle Vertex_handle;
// read current dimension and number of vertices
std::size_t n;
int cd;
if( is_ascii(is) )
is >> cd >> n;
else
{
read(is, cd);
read(is, n, io_Read_write());
}
CGAL_assertion_msg( cd <= tr.maximal_dimension(), "input Triangulation_data_structure has too high dimension");
tr.clear();
tr.set_current_dimension(cd);
if( n == 0 )
return is;
std::vector<Vertex_handle> vertices;
vertices.resize(n);
// read the vertices:
std::size_t i(0);
while( i < n )
{
vertices[i] = tr.new_vertex();
is >> (*vertices[i]); // read a vertex
++i;
}
// now, read the combinatorial information
return tr.read_full_cells(is, vertices);
}
template<class Dimen, class Vb, class Fcb>
std::ostream &
operator<<(std::ostream & os, const Triangulation_data_structure<Dimen, Vb, Fcb> & tr)
// writes :
// - the dimensions (maximal and current)
// - the number of finite vertices
// - the non combinatorial information on vertices (point, etc)
// - the number of full cells
// - the full cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each full_cell
// - the neighbors of each full_cell by their index in the preceding list
{
typedef Triangulation_data_structure<Dimen, Vb, Fcb> TDS;
typedef typename TDS::Vertex_const_handle Vertex_handle;
typedef typename TDS::Vertex_const_iterator Vertex_iterator;
// outputs dimension and number of vertices
std::size_t n = tr.number_of_vertices();
if( is_ascii(os) )
os << tr.current_dimension() << std::endl << n;
else
{
write(os, tr.current_dimension());
write(os, n, io_Read_write());
}
if( n == 0 )
return os;
// write the vertices
std::map<Vertex_handle, int> index_of_vertex;
int i = 0;
for( Vertex_iterator it = tr.vertices_begin(); it != tr.vertices_end(); ++it, ++i )
{
os << *it; // write the vertex
if (is_ascii(os))
os << std::endl;
index_of_vertex[it] = i;
}
CGAL_assertion( (std::size_t) i == n );
// output the combinatorial information
return tr.write_full_cells(os, index_of_vertex);
}
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_TRIANGULATION_DATA_STRUCTURE_H