327 lines
7.1 KiB
C++
Executable File
327 lines
7.1 KiB
C++
Executable File
// Copyright (c) 2003,2004 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0+
|
|
//
|
|
//
|
|
// Author(s) : Menelaos Karavelas <mkaravel@iacm.forth.gr>
|
|
|
|
|
|
|
|
#ifndef CGAL_PARABOLA_2_H
|
|
#define CGAL_PARABOLA_2_H
|
|
|
|
#include <CGAL/license/Apollonius_graph_2.h>
|
|
|
|
|
|
#include <vector>
|
|
#include <CGAL/determinant.h>
|
|
#include <CGAL/Algebraic_structure_traits.h>
|
|
#include <CGAL/number_utils.h>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
template < class Gt >
|
|
class Parabola_2
|
|
{
|
|
private:
|
|
typedef Parabola_2<Gt> Self;
|
|
public:
|
|
typedef typename Gt::Site_2 Site_2;
|
|
typedef typename Gt::Point_2 Point_2;
|
|
typedef typename Gt::Segment_2 Segment_2;
|
|
typedef typename Gt::Line_2 Line_2;
|
|
typedef typename Gt::FT FT;
|
|
// typedef CGAL::Point_2< Cartesian<double> > Point_2;
|
|
// typedef CGAL::Segment_2< Cartesian<double> > Segment_2;
|
|
// typedef CGAL::Line_2< Cartesian<double> > Line_2;
|
|
private:
|
|
typedef Algebraic_structure_traits<FT> AST;
|
|
protected:
|
|
|
|
// inline static
|
|
// FT square(const FT &x)
|
|
// {
|
|
// return x * x;
|
|
// }
|
|
|
|
inline static
|
|
FT divide(const FT& x, const FT& y) {
|
|
return CGAL::integral_division(x,y);
|
|
}
|
|
inline static
|
|
FT sqrt(const FT& x, Integral_domain_without_division_tag) {
|
|
return CGAL::sqrt(CGAL::to_double(x));
|
|
}
|
|
|
|
inline static
|
|
FT sqrt(const FT& x, Field_with_sqrt_tag) {
|
|
return CGAL::sqrt(x);
|
|
}
|
|
|
|
inline static
|
|
FT sqrt(const FT& x) {
|
|
return sqrt(x, typename AST::Algebraic_category());
|
|
}
|
|
|
|
inline static
|
|
FT norm2(const Point_2& p)
|
|
{
|
|
return CGAL::square(p.x()) + CGAL::square(p.y());
|
|
}
|
|
|
|
inline static
|
|
FT distance2(const Point_2& p1, const Point_2& p2)
|
|
{
|
|
FT dx = p1.x()-p2.x();
|
|
FT dy = p1.y()-p2.y();
|
|
return CGAL::square(dx) + CGAL::square(dy);
|
|
}
|
|
|
|
inline static
|
|
FT distance(const Point_2& p1, const Point_2& p2)
|
|
{
|
|
return sqrt( distance2(p1, p2) );
|
|
}
|
|
|
|
inline static
|
|
FT distance(const Point_2& p, const Line_2& l)
|
|
{
|
|
return divide( p.x() * l.a() + p.y() * l.b() + l.c(),
|
|
sqrt( CGAL::square(l.a()) + CGAL::square(l.b()) ) );
|
|
}
|
|
|
|
// instance stuff
|
|
Point_2 c;
|
|
Line_2 l;
|
|
Point_2 o;
|
|
|
|
inline
|
|
Point_2 lchain(const FT &t) const
|
|
{
|
|
std::vector< Point_2 > p = compute_points(t);
|
|
if ( right(p[0]) ) return p[1];
|
|
return p[0];
|
|
}
|
|
|
|
inline
|
|
Point_2 rchain(const FT &t) const
|
|
{
|
|
std::vector< Point_2 > p = compute_points(t);
|
|
if ( right(p[0]) ) return p[0];
|
|
return p[1];
|
|
}
|
|
|
|
std::vector< Point_2 > compute_points(const FT &d) const
|
|
{
|
|
CGAL_assertion(d >= 0);
|
|
FT d1 = distance(o, c) + d;
|
|
FT d2 = distance(o, l) + d;
|
|
d2 = d1;
|
|
d1 *= d1;
|
|
|
|
std::vector< Point_2 > p;
|
|
|
|
if ( l.a() == ZERO ) {
|
|
FT y = d2 * CGAL::sign(l.b()) - divide(l.c(), l.b());
|
|
|
|
FT C = CGAL::square(y) - FT(2) * c.y() * y +
|
|
CGAL::square(c.x()) + CGAL::square(c.y()) - d1;
|
|
|
|
FT D = CGAL::square(c.x()) - C;
|
|
|
|
D = CGAL::abs(D);
|
|
|
|
FT x1 = sqrt(D) + c.x();
|
|
FT x2 = -sqrt(D) + c.x();
|
|
|
|
p.push_back(Point_2(x1, y));
|
|
p.push_back(Point_2(x2, y));
|
|
|
|
return p;
|
|
}
|
|
|
|
FT A = d2 * sqrt( CGAL::square(l.a()) + CGAL::square(l.b()) ) - l.c();
|
|
FT B = CGAL::square(c.x()) + CGAL::square(c.y()) - d1;
|
|
|
|
FT alpha = FT(1) + CGAL::square(divide(l.b(), l.a()));
|
|
FT beta = divide(A * l.b(), CGAL::square(l.a())) + c.y()
|
|
- divide(c.x() * l.b(), l.a());
|
|
FT gamma = CGAL::square(divide(A, l.a())) + B
|
|
- divide(FT(2) * c.x() * A, l.a());
|
|
|
|
FT D = CGAL::square(beta) - alpha * gamma;
|
|
|
|
D = CGAL::abs(D);
|
|
|
|
FT y1 = divide((beta + sqrt(D)), alpha);
|
|
FT y2 = divide((beta - sqrt(D)), alpha);
|
|
|
|
FT x1 = divide(A - l.b() * y1, l.a());
|
|
FT x2 = divide(A - l.b() * y2, l.a());
|
|
|
|
p.push_back(Point_2(x1, y1));
|
|
p.push_back(Point_2(x2, y2));
|
|
|
|
return p;
|
|
}
|
|
|
|
bool right(const Point_2& p) const
|
|
{
|
|
return
|
|
CGAL::is_positive( determinant<FT>(c.x(), c.y(), FT(1),
|
|
o.x(), o.y(), FT(1),
|
|
p.x(), p.y(), FT(1)) );
|
|
}
|
|
|
|
inline
|
|
Point_2 midpoint(const Point_2& p1, const Point_2& p2) const
|
|
{
|
|
FT t1 = t(p1);
|
|
FT t2 = t(p2);
|
|
FT midt = divide(t1+t2, FT(2));
|
|
return f(midt);
|
|
}
|
|
|
|
inline
|
|
Point_2 f(FT t) const
|
|
{
|
|
if ( CGAL::is_negative(t) ) return rchain(-t);
|
|
return lchain(t);
|
|
}
|
|
|
|
inline
|
|
FT t(const Point_2 &p) const
|
|
{
|
|
FT tt = distance(p, c) - distance(c, o);
|
|
if ( right(p) ) return -tt;
|
|
return tt;
|
|
}
|
|
|
|
void compute_origin()
|
|
{
|
|
FT d = divide(l.a() * c.x() + l.b() * c.y() + l.c(),
|
|
FT(2) * ( CGAL::square(l.a()) + CGAL::square(l.b()) ) );
|
|
o = Point_2(c.x() - l.a() * d, c.y() - l.b() * d);
|
|
}
|
|
|
|
public:
|
|
Parabola_2() {}
|
|
|
|
template<class ApolloniusSite>
|
|
Parabola_2(const ApolloniusSite &p, const Line_2 &l1)
|
|
{
|
|
this->c = p.point();
|
|
|
|
FT d_a = CGAL::to_double(l1.a());
|
|
FT d_b = CGAL::to_double(l1.b());
|
|
FT len = sqrt(CGAL::square(d_a) + CGAL::square(d_b));
|
|
|
|
FT r = p.weight() * len;
|
|
|
|
this->l = Line_2(-l1.a(), -l1.b(), -l1.c() + r);
|
|
compute_origin();
|
|
}
|
|
|
|
Parabola_2(const Point_2 &p, const Line_2 &line)
|
|
{
|
|
this->c = p;
|
|
|
|
if ( line.has_on_positive_side(p) ) {
|
|
this->l = line;
|
|
} else {
|
|
this->l = line.opposite();
|
|
}
|
|
compute_origin();
|
|
}
|
|
|
|
|
|
Oriented_side
|
|
side_of_parabola(const Point_2& p) const
|
|
{
|
|
Point_2 q(CGAL::to_double(p.x()), CGAL::to_double(p.y()));
|
|
|
|
FT d = distance(q, c) - CGAL::abs(distance(q, l));
|
|
if ( d < 0 ) return ON_NEGATIVE_SIDE;
|
|
if ( d > 0 ) return ON_POSITIVE_SIDE;
|
|
return ON_ORIENTED_BOUNDARY;
|
|
}
|
|
|
|
|
|
inline Line_2 line() const
|
|
{
|
|
return l;
|
|
}
|
|
|
|
inline Point_2 center() const
|
|
{
|
|
return c;
|
|
}
|
|
|
|
template< class Stream >
|
|
void draw(Stream& W) const
|
|
{
|
|
std::vector< Point_2 > p;
|
|
std::vector< Point_2 > pleft, pright;
|
|
|
|
pleft.push_back(o);
|
|
pright.push_back(o);
|
|
const FT STEP(2);
|
|
for (int i = 1; i <= 100; i++) {
|
|
p = compute_points(i * i * STEP);
|
|
|
|
W << p[0];
|
|
W << p[1];
|
|
|
|
if ( p.size() > 0 ) {
|
|
if ( right(p[0]) ) {
|
|
pright.push_back(p[0]);
|
|
pleft.push_back(p[1]);
|
|
} else {
|
|
pright.push_back(p[1]);
|
|
pleft.push_back(p[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned int i = 0; i < pleft.size() - 1; i++) {
|
|
W << Segment_2(pleft[i], pleft[i+1]);
|
|
}
|
|
|
|
for (unsigned int i = 0; i < pright.size() - 1; i++) {
|
|
W << Segment_2(pright[i], pright[i+1]);
|
|
}
|
|
|
|
W << o;
|
|
}
|
|
};
|
|
|
|
template< class Stream, class Gt >
|
|
inline
|
|
Stream& operator<<(Stream& s, const Parabola_2<Gt> &P)
|
|
{
|
|
P.draw(s);
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_PARABOLA_2_H
|