dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Polyhedron_3.h

1553 lines
64 KiB
C++
Executable File

// Copyright (c) 1997 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>)
#ifndef CGAL_POLYHEDRON_3_H
#define CGAL_POLYHEDRON_3_H 1
#include <CGAL/license/Polyhedron.h>
#include <CGAL/Polyhedron_3_fwd.h>
#include <CGAL/basic.h>
#include <algorithm>
#include <cstddef>
#include <CGAL/HalfedgeDS_iterator.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/function_objects.h>
#include <CGAL/N_step_adaptor_derived.h>
#include <CGAL/Polyhedron_items_3.h>
#include <CGAL/HalfedgeDS_default.h>
#include <CGAL/HalfedgeDS_const_decorator.h>
#include <CGAL/HalfedgeDS_decorator.h>
#include <CGAL/Modifier_base.h>
#include <CGAL/IO/Verbose_ostream.h>
#include <CGAL/Polyhedron_traits_3.h>
namespace CGAL {
template <class VertexBase>
class I_Polyhedron_vertex : public VertexBase {
public:
typedef VertexBase Base;
//typedef typename Base::HalfedgeDS HDS;
typedef typename Base::Point Point;
typedef Point Point_3;
// Handles have to explicitly repeated, although they are derived
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Halfedge_handle Halfedge_handle;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Face_handle Facet_handle;
typedef typename Base::Vertex_const_handle Vertex_const_handle;
typedef typename Base::Halfedge_const_handle Halfedge_const_handle;
typedef typename Base::Face_const_handle Face_const_handle;
typedef typename Base::Face_const_handle Facet_const_handle;
typedef typename Base::Halfedge Halfedge;
typedef typename Base::Face Face;
typedef typename Base::Face Facet;
// Supported options by HDS.
typedef typename Base::Supports_vertex_halfedge
Supports_vertex_halfedge;
typedef typename Base::Supports_vertex_point Supports_vertex_point;
// Circulator category.
typedef typename Halfedge::Supports_halfedge_prev Supports_prev;
public:
// Circulator category.
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
typedef typename Ctr::iterator_category circulator_category;
// Circulators around a vertex and around a facet.
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
Halfedge_around_facet_circulator;
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
Halfedge_around_vertex_circulator;
typedef I_HalfedgeDS_facet_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_facet_const_circulator;
typedef I_HalfedgeDS_vertex_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_vertex_const_circulator;
typedef typename Halfedge_around_vertex_circulator::size_type
size_type;
typedef typename Halfedge_around_vertex_circulator::difference_type
difference_type;
public:
// We need to repeat the constructors here.
I_Polyhedron_vertex() {}
I_Polyhedron_vertex( const VertexBase& b) : VertexBase(b) {}
I_Polyhedron_vertex( const Point_3& p) : VertexBase(p) {}
// New Access Functions (not provided in VertexBase).
Halfedge_around_vertex_circulator vertex_begin() {
// a circulator of halfedges around the vertex (clockwise).
return Halfedge_around_vertex_circulator( this->halfedge());
}
Halfedge_around_vertex_const_circulator vertex_begin() const {
// a circulator of halfedges around the vertex (clockwise).
return Halfedge_around_vertex_const_circulator( this->halfedge());
}
// the degree of the vertex, i.e., edges emanating from this vertex
std::size_t vertex_degree() const {
return this->halfedge()->vertex_degree();
}
size_type degree() const { return vertex_degree(); } //backwards compatible
// returns true if the vertex has exactly two incident edges
bool is_bivalent() const { return this->halfedge()->is_bivalent(); }
// returns true if the vertex has exactly three incident edges
bool is_trivalent() const { return this->halfedge()->is_trivalent(); }
// No longer hidden. Now the restricted version with precondition.
// sets incident halfedge to h. Precondition: h is incident, i.e.,
// h->vertex() == v.
void set_halfedge( Halfedge_handle hh) {
CGAL_assertion( &*(hh->vertex()) == this);
Base::set_halfedge(hh);
}
};
// A halfedge is an oriented edge. Both orientations exist, i.e.
// an edge is represented by two opposite halfedges. The geometric
// relations are as follows:
//
// _ _ _ .
// / |\.
// | \.
// / \ next half
// \ edge
// / \.
//
// | O incident vertex
// facet ,
// | /| |
// / | | opposite
// \ | | half edge
// half | |
// \ edge | | /
// | |/
// \_ _ _ _ _ _ '
//
template <class HalfedgeBase>
class I_Polyhedron_halfedge : public HalfedgeBase {
public:
typedef HalfedgeBase Base;
typedef typename Base::HalfedgeDS HDS;
// Handles have to explicitly repeated, although they are derived
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Halfedge_handle Halfedge_handle;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Face_handle Facet_handle;
typedef typename Base::Vertex_const_handle Vertex_const_handle;
typedef typename Base::Halfedge_const_handle Halfedge_const_handle;
typedef typename Base::Face_const_handle Face_const_handle;
typedef typename Base::Face_const_handle Facet_const_handle;
typedef typename Base::Vertex Vertex;
typedef typename Base::Face Face;
typedef typename Base::Face Facet;
// Supported options by HDS.
typedef typename Base::Supports_halfedge_prev Supports_halfedge_prev;
typedef typename Base::Supports_halfedge_vertex
Supports_halfedge_vertex;
typedef typename Base::Supports_halfedge_face Supports_halfedge_face;
// Circulator category.
typedef typename Base::Supports_halfedge_prev Supports_prev;
public:
// Circulator category.
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
typedef typename Ctr::iterator_category circulator_category;
// Circulators around a vertex and around a facet.
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
Halfedge_around_facet_circulator;
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
Halfedge_around_vertex_circulator;
typedef I_HalfedgeDS_facet_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_facet_const_circulator;
typedef I_HalfedgeDS_vertex_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_vertex_const_circulator;
public:
I_Polyhedron_halfedge() {}
I_Polyhedron_halfedge( const HalfedgeBase& b) : HalfedgeBase(b) {}
// New Access Functions (not provided in HalfedgeBase).
// Change semantic of prev: it is always available at this level.
// If the HDS does not provide a prev-function, the previous
// halfedge will be searched around the incident facet.
private:
Halfedge_handle find_prev( Halfedge_handle, Tag_true) {
return Base::prev();
}
Halfedge_const_handle find_prev( Halfedge_const_handle, Tag_true) const {
return Base::prev();
}
Halfedge_handle find_prev( Halfedge_handle h, Tag_false) const {
CGAL_precondition( &*h != this); // we have at least 2-gons
while ( &*(h->next()) != this)
h = h->next();
return h;
}
Halfedge_const_handle find_prev( Halfedge_const_handle h, Tag_false) const{
CGAL_precondition( &*h != this); // we have at least 2-gons
while ( &*(h->next()) != this)
h = h->next();
return h;
}
public:
Halfedge_handle prev() {
return find_prev( this->next(), Supports_halfedge_prev());
}
Halfedge_const_handle prev() const {
return find_prev( this->next(), Supports_halfedge_prev());
}
// Make face-functions also available as facet-functions.
Face_handle facet() { return this->face();}
Face_const_handle facet() const { return this->face();}
// the next halfedge around the vertex (clockwise). This is equal to
// `h.next()->opposite()'.
Halfedge_handle next_on_vertex() { return this->next()->opposite(); }
Halfedge_const_handle next_on_vertex() const {
return this->next()->opposite();
}
// the previous halfedge around the vertex (counterclockwise). Is
// equal to `h.opposite()->prev()'.
Halfedge_handle prev_on_vertex() { return this->opposite()->prev(); }
Halfedge_const_handle prev_on_vertex() const {
return this->opposite()->prev();
}
bool is_border_edge() const {
// is true if `h' or `h.opposite()' is a border halfedge.
return (this->opposite()->is_border() || this->is_border());
}
// a circulator of halfedges around the vertex (clockwise).
Halfedge_around_vertex_circulator vertex_begin() {
return Halfedge_around_vertex_circulator(
HDS::halfedge_handle(this));
}
Halfedge_around_vertex_const_circulator vertex_begin() const {
return Halfedge_around_vertex_const_circulator(
HDS::halfedge_handle(this));
}
// a circulator of halfedges around the facet (counterclockwise).
Halfedge_around_facet_circulator facet_begin() {
return Halfedge_around_facet_circulator(
HDS::halfedge_handle(this));
}
Halfedge_around_facet_const_circulator facet_begin() const {
return Halfedge_around_facet_const_circulator(
HDS::halfedge_handle(this));
}
// the degree of the incident vertex, i.e., edges emanating from this
// vertex
std::size_t vertex_degree() const {
return circulator_size( vertex_begin());
}
// the degree of the incident facet, i.e., edges on the boundary of this
// facet
std::size_t facet_degree() const {
return circulator_size( facet_begin());
}
// returns true if the incident vertex has exactly two incident edges
bool is_bivalent() const {
CGAL_precondition( this != &* (this->next()->opposite()));
return (this == &* (this->next()->opposite()->next()->opposite()));
}
// returns true if the incident vertex has exactly three incident edges
bool is_trivalent() const {
CGAL_precondition( this != &* (this->next()->opposite()));
return ( this != &* (this->next()->opposite()->next()->opposite())
&& this == &* (this->next()->opposite()->next()->opposite()
->next()->opposite()));
}
// returns true if the incident facet is a triangle.
bool is_triangle() const {
CGAL_precondition( this != &* (this->next()));
CGAL_precondition( this != &* (this->next()->next()));
return (this == &* (this->next()->next()->next()));
}
// returns true if the incident facet is a quadrilateral.
bool is_quad() const {
CGAL_precondition( this != &* (this->next()));
CGAL_precondition( this != &* (this->next()->next()));
return (this == &* (this->next()->next()->next()->next()));
}
private:
// Hide some other functions of H.
void set_next( Halfedge_handle hh) { Base::set_next(hh);}
void set_prev( Halfedge_handle hh) { Base::set_prev(hh);}
void set_vertex( Vertex_handle vv) { Base::set_vertex(vv);}
void set_face( Face_handle ff) { Base::set_face(ff);}
void set_facet( Face_handle ff) { set_face(ff);}
};
template <class FacetBase>
class I_Polyhedron_facet : public FacetBase {
public:
typedef FacetBase Base;
//typedef typename Base::HalfedgeDS HDS;
typedef typename Base::Plane Plane;
typedef Plane Plane_3;
// Handles have to explicitly repeated, although they are derived
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Halfedge_handle Halfedge_handle;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Face_handle Facet_handle;
typedef typename Base::Vertex_const_handle Vertex_const_handle;
typedef typename Base::Halfedge_const_handle Halfedge_const_handle;
typedef typename Base::Face_const_handle Face_const_handle;
typedef typename Base::Face_const_handle Facet_const_handle;
typedef typename Base::Vertex Vertex;
typedef typename Base::Halfedge Halfedge;
// Supported options by HDS.
typedef typename Base::Supports_face_halfedge Supports_face_halfedge;
typedef typename Base::Supports_face_plane Supports_face_plane;
// No longer required.
typedef Tag_false Supports_face_normal;
// Circulator category.
typedef typename Halfedge::Supports_halfedge_prev Supports_prev;
public:
// Circulator category.
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
typedef typename Ctr::iterator_category circulator_category;
// Circulators around a vertex and around a facet.
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
Halfedge_around_facet_circulator;
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
Halfedge_around_vertex_circulator;
typedef I_HalfedgeDS_facet_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_facet_const_circulator;
typedef I_HalfedgeDS_vertex_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_vertex_const_circulator;
typedef typename Halfedge_around_vertex_circulator::size_type
size_type;
typedef typename Halfedge_around_vertex_circulator::difference_type
difference_type;
public:
// We need to repeat the constructors here.
I_Polyhedron_facet() {}
I_Polyhedron_facet( const FacetBase& b) : FacetBase(b) {}
// New Access Functions (not provided in FacetBase).
Halfedge_around_facet_circulator facet_begin() {
// a circulator of halfedges around the facet (counterclockwise).
return Halfedge_around_facet_circulator( this->halfedge());
}
Halfedge_around_facet_const_circulator facet_begin() const {
// a circulator of halfedges around the facet (counterclockwise).
return Halfedge_around_facet_const_circulator( this->halfedge());
}
// the degree of the incident facet, i.e., edges on the boundary of this
// facet
std::size_t facet_degree() const {return this->halfedge()->facet_degree();}
size_type size() const { return facet_degree(); } // backwards compatible
// returns true if the facet is a triangle.
bool is_triangle() const { return this->halfedge()->is_triangle(); }
// returns true if the facet is a quadrilateral.
bool is_quad() const { return this->halfedge()->is_quad(); }
// No longer hidden. Now the restricted version with precondition.
// sets incident halfedge to h. Precondition: h is incident, i.e.,
// h->face() == v.
void set_halfedge( Halfedge_handle hh) {
CGAL_assertion( &*(hh->facet()) == this);
Base::set_halfedge(hh);
}
};
template < class Items>
class I_Polyhedron_derived_items_3 {
public:
template < class Refs, class Traits>
class Vertex_wrapper {
public:
typedef typename Items::template Vertex_wrapper<Refs,Traits> VWrap;
typedef typename VWrap::Vertex Vertex_base;
typedef I_Polyhedron_vertex< Vertex_base> Vertex;
};
template < class Refs, class Traits>
class Halfedge_wrapper {
public:
typedef typename Items::template Halfedge_wrapper<Refs,Traits> HWrap;
typedef typename HWrap::Halfedge Halfedge_base;
typedef I_Polyhedron_halfedge< Halfedge_base> Halfedge;
};
template < class Refs, class Traits>
class Face_wrapper {
public:
typedef typename Items::template Face_wrapper<Refs,Traits> FWrap;
typedef typename FWrap::Face Face_base;
typedef I_Polyhedron_facet< Face_base> Face;
};
};
template < class PolyhedronTraits_3,
class PolyhedronItems_3,
template < class T, class I, class A>
class T_HDS,
class Alloc>
class Polyhedron_3 {
//
// DEFINITION
//
// The boundary representation of a 3d-polyhedron P of the type
// Polyhedron consists of vertices, edges and facets. The
// vertices are points in space. The edges are straight line
// segments. The facets are planar polygons. We restrict here
// the facets to be simple planar polygons without holes and the
// boundary of the polyhedron to be an oriented 2-manifold. Thus
// facets are consistently oriented and an edge is incident to
// exactly two facets. We restrict the representation further
// that an edge has two distinct incident endpoints and
// following duality that an edge has two distinct incident
// facets. The class Polyhedron is able to guarantee
// the combinatorial properties, but not all geometric
// properties. Support functions are provided for testing
// geometric properties, e.g. test for self intersections which
// is too expensive to be guaranteed as a class invariant.
public:
typedef Polyhedron_3< PolyhedronTraits_3, PolyhedronItems_3, T_HDS, Alloc>
Self;
typedef PolyhedronTraits_3 Traits;
typedef PolyhedronItems_3 Items;
typedef I_Polyhedron_derived_items_3<Items> Derived_items;
typedef T_HDS< Traits, Derived_items, Alloc> HDS;
typedef HDS HalfedgeDS;
// portability with older CGAL release
typedef HDS Halfedge_data_structure;
typedef Alloc Allocator;
typedef Alloc allocator_type; // STL name
// Container stuff.
typedef typename HDS::size_type size_type;
typedef typename HDS::difference_type difference_type;
typedef typename HDS::iterator_category iterator_category;
typedef typename HDS::Supports_removal Supports_removal;
// Geometry
typedef typename Traits::Point_3 Point_3;
typedef Point_3 Point;
typedef typename Traits::Plane_3 Plane_3;
// No longer required.
//typedef typename Traits::Normal Normal;
// Items
typedef typename HDS::Vertex Vertex;
typedef typename HDS::Halfedge Halfedge;
typedef typename HDS::Face Face;
typedef typename Vertex::Base VBase;
typedef typename Halfedge::Base HBase;
typedef typename Face::Base FBase;
// Handles and Iterators
typedef typename HDS::Vertex_handle Vertex_handle;
typedef typename HDS::Halfedge_handle Halfedge_handle;
typedef typename HDS::Face_handle Face_handle;
typedef typename HDS::Vertex_iterator Vertex_iterator;
typedef typename HDS::Halfedge_iterator Halfedge_iterator;
typedef typename HDS::Face_iterator Face_iterator;
typedef typename HDS::Vertex_const_handle Vertex_const_handle;
typedef typename HDS::Halfedge_const_handle Halfedge_const_handle;
typedef typename HDS::Face_const_handle Face_const_handle;
typedef typename HDS::Vertex_const_iterator Vertex_const_iterator;
typedef typename HDS::Halfedge_const_iterator Halfedge_const_iterator;
typedef typename HDS::Face_const_iterator Face_const_iterator;
// Auxiliary iterators for convenience
typedef Project_point<Vertex> Proj_point;
typedef Iterator_project<Vertex_iterator, Proj_point>
Point_iterator;
typedef Iterator_project<Vertex_const_iterator, Proj_point,
const Point_3&, const Point_3*> Point_const_iterator;
typedef Project_plane<Face> Proj_plane;
typedef Iterator_project<Face_iterator, Proj_plane>
Plane_iterator;
typedef Iterator_project<Face_const_iterator, Proj_plane,
const Plane_3&, const Plane_3*> Plane_const_iterator;
typedef typename HDS::Edge_iterator Edge_iterator;
typedef typename HDS::Edge_const_iterator Edge_const_iterator;
/*
typedef N_step_adaptor_derived<Halfedge_iterator, 2>
Edge_iterator;
typedef N_step_adaptor_derived<Halfedge_const_iterator, 2>
Edge_const_iterator;
*/
// All face related types get a related facet type name.
typedef Face Facet;
typedef Face_handle Facet_handle;
typedef Face_iterator Facet_iterator;
typedef Face_const_handle Facet_const_handle;
typedef Face_const_iterator Facet_const_iterator;
// Supported options by HDS.
typedef typename VBase::Supports_vertex_halfedge
Supports_vertex_halfedge;
typedef typename HBase::Supports_halfedge_prev Supports_halfedge_prev;
typedef typename HBase::Supports_halfedge_prev Supports_prev;
typedef typename HBase::Supports_halfedge_vertex
Supports_halfedge_vertex;
typedef typename HBase::Supports_halfedge_face Supports_halfedge_face;
typedef typename FBase::Supports_face_halfedge Supports_face_halfedge;
// Supported options especially for Polyhedron_3.
typedef typename VBase::Supports_vertex_point Supports_vertex_point;
typedef typename FBase::Supports_face_plane Supports_face_plane;
// No longer required.
typedef Tag_false Supports_face_normal;
// Renamed versions for facet
typedef Supports_halfedge_face Supports_halfedge_facet;
typedef Supports_face_halfedge Supports_facet_halfedge;
typedef Supports_face_plane Supports_facet_plane;
// No longer required.
typedef Supports_face_normal Supports_facet_normal;
public:
// Circulator category.
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
typedef typename Ctr::iterator_category circulator_category;
// Circulators around a vertex and around a facet.
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
Halfedge_around_facet_circulator;
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
Halfedge_around_vertex_circulator;
typedef I_HalfedgeDS_facet_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_facet_const_circulator;
typedef I_HalfedgeDS_vertex_circ<
Halfedge_const_handle,
circulator_category> Halfedge_around_vertex_const_circulator;
protected:
HDS hds_; // the boundary representation.
Traits m_traits;
public:
HDS& hds() { return hds_; }
const HDS& hds() const { return hds_; }
// CREATION
public:
Polyhedron_3( const Traits& trts = Traits()) : m_traits(trts) {}
// the empty polyhedron `P'.
Polyhedron_3( size_type v, size_type h, size_type f,
const Traits& traits = Traits())
: hds_(v,h,f), m_traits(traits) {}
// a polyhedron `P' with storage reserved for v vertices, h
// halfedges, and f facets. The reservation sizes are a hint for
// optimizing storage allocation.
void reserve( size_type v, size_type h, size_type f) {
// reserve storage for v vertices, h halfedges, and f facets. The
// reservation sizes are a hint for optimizing storage allocation.
// If the `capacity' is already greater than the requested size
// nothing happens. If the `capacity' changes all iterators and
// circulators invalidates.
hds_.reserve(v,h,f);
}
protected:
Halfedge_handle
make_triangle( Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) {
HalfedgeDS_decorator<HDS> decorator(hds_);
Halfedge_handle h = hds_.edges_push_back( Halfedge(), Halfedge());
h->HBase::set_next( hds_.edges_push_back( Halfedge(), Halfedge()));
h->next()->HBase::set_next( hds_.edges_push_back( Halfedge(),
Halfedge()));
h->next()->next()->HBase::set_next( h);
decorator.set_prev( h, h->next()->next());
decorator.set_prev( h->next(), h);
decorator.set_prev( h->next()->next(), h->next());
h->opposite()->HBase::set_next( h->next()->next()->opposite());
h->next()->opposite()->HBase::set_next( h->opposite());
h->next()->next()->opposite()->HBase::set_next(
h->next()->opposite());
decorator.set_prev( h->opposite(), h->next()->opposite());
decorator.set_prev( h->next()->opposite(),
h->next()->next()->opposite());
decorator.set_prev( h->next()->next()->opposite(), h->opposite());
// the vertices
decorator.set_vertex( h, v1);
decorator.set_vertex( h->next(), v2);
decorator.set_vertex( h->next()->next(), v3);
decorator.set_vertex( h->opposite(), v3);
decorator.set_vertex( h->next()->opposite(), v1);
decorator.set_vertex( h->next()->next()->opposite(), v2);
decorator.set_vertex_halfedge( h);
decorator.set_vertex_halfedge( h->next());
decorator.set_vertex_halfedge( h->next()->next());
// the facet
Facet_handle f = decorator.faces_push_back( Facet());
decorator.set_face( h, f);
decorator.set_face( h->next(), f);
decorator.set_face( h->next()->next(), f);
decorator.set_face_halfedge( h);
return h;
}
Halfedge_handle
make_tetrahedron( Vertex_handle v1,
Vertex_handle v2,
Vertex_handle v3,
Vertex_handle v4) {
HalfedgeDS_decorator<HDS> decorator(hds_);
Halfedge_handle h = make_triangle(v1,v2,v3);
// The remaining tip.
Halfedge_handle g = hds_.edges_push_back( Halfedge(), Halfedge());
decorator.insert_tip( g->opposite(), h->opposite());
decorator.close_tip( g);
decorator.set_vertex( g, v4);
Halfedge_handle e = hds_.edges_push_back( Halfedge(), Halfedge());
Halfedge_handle d = hds_.edges_push_back( Halfedge(), Halfedge());
decorator.insert_tip( e->opposite(), h->next()->opposite());
decorator.insert_tip( e, g);
decorator.insert_tip( d->opposite(),h->next()->next()->opposite());
decorator.insert_tip( d, e);
decorator.set_vertex_halfedge( g);
// facets
Facet_handle f = decorator.faces_push_back( Facet());
decorator.set_face( h->opposite(), f);
decorator.set_face( g, f);
decorator.set_face( e->opposite(), f);
decorator.set_face_halfedge( g);
f = decorator.faces_push_back( Facet());
decorator.set_face( h->next()->opposite(), f);
decorator.set_face( e, f);
decorator.set_face( d->opposite(), f);
decorator.set_face_halfedge( e);
f = decorator.faces_push_back( Facet());
decorator.set_face( h->next()->next()->opposite(), f);
decorator.set_face( d, f);
decorator.set_face( g->opposite(), f);
decorator.set_face_halfedge( d);
return h;
}
public:
Halfedge_handle make_tetrahedron() {
// the combinatorial structure of a tetrahedron is added to the
// actual polyhedral surface. Returns an arbitrary halfedge of
// this structure.
reserve( 4 + size_of_vertices(),
12 + size_of_halfedges(),
4 + size_of_facets());
HalfedgeDS_decorator<HDS> decorator(hds_);
return make_tetrahedron( decorator.vertices_push_back( Vertex()),
decorator.vertices_push_back( Vertex()),
decorator.vertices_push_back( Vertex()),
decorator.vertices_push_back( Vertex()));
}
Halfedge_handle make_tetrahedron( const Point_3& p1,
const Point_3& p2,
const Point_3& p3,
const Point_3& p4) {
reserve( 4 + size_of_vertices(),
12 + size_of_halfedges(),
4 + size_of_facets());
HalfedgeDS_decorator<HDS> decorator(hds_);
return make_tetrahedron( decorator.vertices_push_back( Vertex(p1)),
decorator.vertices_push_back( Vertex(p2)),
decorator.vertices_push_back( Vertex(p3)),
decorator.vertices_push_back( Vertex(p4)));
}
Halfedge_handle make_triangle() {
// the combinatorial structure of a single triangle with border
// edges is added to the actual polyhedral surface. Returns an
// arbitrary halfedge of this structure.
reserve( 3 + size_of_vertices(),
6 + size_of_halfedges(),
1 + size_of_facets());
HalfedgeDS_decorator<HDS> decorator(hds_);
return make_triangle( decorator.vertices_push_back( Vertex()),
decorator.vertices_push_back( Vertex()),
decorator.vertices_push_back( Vertex()));
}
Halfedge_handle make_triangle( const Point_3& p1,
const Point_3& p2,
const Point_3& p3) {
// the single triangle p_1, p_2, p_3 with border edges is added to
// the actual polyhedral surface. Returns an arbitrary halfedge of
// this structure.
reserve( 3 + size_of_vertices(),
6 + size_of_halfedges(),
1 + size_of_facets());
HalfedgeDS_decorator<HDS> decorator(hds_);
return make_triangle( decorator.vertices_push_back( Vertex(p1)),
decorator.vertices_push_back( Vertex(p2)),
decorator.vertices_push_back( Vertex(p3)));
}
// Access Member Functions
allocator_type get_allocator() const { return hds_.get_allocator(); }
size_type size_of_vertices() const { return hds_.size_of_vertices();}
// number of vertices.
size_type size_of_halfedges() const { return hds_.size_of_halfedges();}
// number of all halfedges (including border halfedges).
size_type size_of_facets() const { return hds_.size_of_faces();}
// number of facets.
bool empty() const { return size_of_halfedges() == 0; }
bool is_empty() const { return size_of_halfedges() == 0; }
size_type capacity_of_vertices() const {
// space reserved for vertices.
return hds_.capacity_of_vertices();
}
size_type capacity_of_halfedges() const {
// space reserved for halfedges.
return hds_.capacity_of_halfedges();
}
size_type capacity_of_facets() const {
// space reserved for facets.
return hds_.capacity_of_faces();
}
std::size_t bytes() const {
// bytes used for the polyhedron.
return sizeof(Self) - sizeof(HDS) + hds_.bytes();
}
std::size_t bytes_reserved() const {
// bytes reserved for the polyhedron.
return sizeof(Self) - sizeof(HDS) + hds_.bytes_reserved();
}
Vertex_iterator vertices_begin() { return hds_.vertices_begin();}
// iterator over all vertices.
Vertex_iterator vertices_end() { return hds_.vertices_end();}
Halfedge_iterator halfedges_begin() { return hds_.halfedges_begin();}
// iterator over all halfedges
Halfedge_iterator halfedges_end() { return hds_.halfedges_end();}
Facet_iterator facets_begin() { return hds_.faces_begin();}
// iterator over all facets
Facet_iterator facets_end() { return hds_.faces_end();}
// The constant iterators and circulators.
Vertex_const_iterator vertices_begin() const {
return hds_.vertices_begin();
}
Vertex_const_iterator vertices_end() const {
return hds_.vertices_end();
}
Halfedge_const_iterator halfedges_begin() const {
return hds_.halfedges_begin();
}
Halfedge_const_iterator halfedges_end() const {
return hds_.halfedges_end();
}
Facet_const_iterator facets_begin() const { return hds_.faces_begin();}
Facet_const_iterator facets_end() const { return hds_.faces_end();}
// Auxiliary iterators for convinience
Point_iterator points_begin() { return vertices_begin();}
Point_iterator points_end() { return vertices_end();}
Point_const_iterator points_begin() const { return vertices_begin();}
Point_const_iterator points_end() const { return vertices_end();}
Plane_iterator planes_begin() { return facets_begin();}
Plane_iterator planes_end() { return facets_end();}
Plane_const_iterator planes_begin() const { return facets_begin();}
Plane_const_iterator planes_end() const { return facets_end();}
Edge_iterator edges_begin() { return halfedges_begin();}
// iterator over all edges. The iterator refers to halfedges, but
// enumerates only one of the two corresponding opposite
// halfedges.
Edge_iterator edges_end() { return halfedges_end();}
// end of the range over all edges.
Edge_const_iterator edges_begin() const { return halfedges_begin();}
Edge_const_iterator edges_end() const { return halfedges_end();}
Traits& traits() { return m_traits; }
const Traits& traits() const { return m_traits; }
// Combinatorial Predicates
bool is_closed() const {
for ( Halfedge_const_iterator i = halfedges_begin();
i != halfedges_end(); ++i) {
if ( i->is_border())
return false;
}
return true;
}
private:
bool is_pure_bivalent( Tag_true) const {
for ( Vertex_const_iterator i = vertices_begin();
i != vertices_end(); ++i)
if ( ! i->is_bivalent())
return false;
return true;
}
bool is_pure_bivalent( Tag_false) const {
for ( Halfedge_const_iterator i = halfedges_begin();
i != halfedges_end(); ++i)
if ( ! i->is_bivalent())
return false;
return true;
}
public:
// returns true if all vertices have exactly two incident edges
bool is_pure_bivalent() const {
return is_pure_bivalent( Supports_vertex_halfedge());
}
private:
bool is_pure_trivalent( Tag_true) const {
for ( Vertex_const_iterator i = vertices_begin();
i != vertices_end(); ++i)
if ( ! i->is_trivalent())
return false;
return true;
}
bool is_pure_trivalent( Tag_false) const {
for ( Halfedge_const_iterator i = halfedges_begin();
i != halfedges_end(); ++i)
if ( ! i->is_trivalent())
return false;
return true;
}
public:
// returns true if all vertices have exactly three incident edges
bool is_pure_trivalent() const {
return is_pure_trivalent( Supports_vertex_halfedge());
}
private:
bool is_pure_triangle( Tag_true) const {
for ( Facet_const_iterator i = facets_begin();
i != facets_end(); ++i)
if ( ! i->is_triangle())
return false;
return true;
}
bool is_pure_triangle( Tag_false) const {
for ( Halfedge_const_iterator i = halfedges_begin();
i != halfedges_end(); ++i)
if ( ! i->is_border() && ! i->is_triangle())
return false;
return true;
}
public:
// returns true if all facets are triangles
bool is_pure_triangle() const {
return is_pure_triangle( Supports_facet_halfedge());
}
private:
bool is_pure_quad( Tag_true) const {
for ( Facet_const_iterator i = facets_begin();
i != facets_end(); ++i)
if ( ! i->is_quad())
return false;
return true;
}
bool is_pure_quad( Tag_false) const {
for ( Halfedge_const_iterator i = halfedges_begin();
i != halfedges_end(); ++i)
if ( ! i->is_border() && ! i->is_quad())
return false;
return true;
}
public:
// returns true if all facets are quadrilaterals
bool is_pure_quad() const {
return is_pure_quad( Supports_facet_halfedge());
}
// Geometric Predicates
bool
is_triangle( Halfedge_const_handle h1) const {
Halfedge_const_handle h2 = h1->next();
Halfedge_const_handle h3 = h1->next()->next();
// check halfedge combinatorics.
// exact two edges at vertices 1, 2, 3.
if ( h1->opposite()->next() != h3->opposite()) return false;
if ( h2->opposite()->next() != h1->opposite()) return false;
if ( h3->opposite()->next() != h2->opposite()) return false;
// The facet is a triangle.
if ( h1->next()->next()->next() != h1) return false;
if ( check_tag( Supports_halfedge_face())
&& ! h1->is_border_edge())
return false; // implies h2 and h3
CGAL_assertion( ! h1->is_border() || ! h1->opposite()->is_border());
// Assert consistency.
CGAL_assertion( h1 != h2);
CGAL_assertion( h1 != h3);
CGAL_assertion( h3 != h2);
// check prev pointer.
CGAL_assertion_code( HalfedgeDS_items_decorator<HDS> D;)
CGAL_assertion(D.get_prev(h1) == Halfedge_handle() ||
D.get_prev(h1) == h3);
CGAL_assertion(D.get_prev(h2) == Halfedge_handle() ||
D.get_prev(h2) == h1);
CGAL_assertion(D.get_prev(h3) == Halfedge_handle() ||
D.get_prev(h3) == h2);
// check vertices.
CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h2->opposite()));
CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h3->opposite()));
CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h1->opposite()));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h1) != D.get_vertex(h2));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h1) != D.get_vertex(h3));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h2) != D.get_vertex(h3));
// check facets.
CGAL_assertion( D.get_face(h1) == D.get_face(h2));
CGAL_assertion( D.get_face(h1) == D.get_face(h3));
return true;
}
bool
is_tetrahedron( Halfedge_const_handle h1) const {
Halfedge_const_handle h2 = h1->next();
Halfedge_const_handle h3 = h1->next()->next();
Halfedge_const_handle h4 = h1->opposite()->next();
Halfedge_const_handle h5 = h2->opposite()->next();
Halfedge_const_handle h6 = h3->opposite()->next();
// check halfedge combinatorics.
// at least three edges at vertices 1, 2, 3.
if ( h4 == h3->opposite()) return false;
if ( h5 == h1->opposite()) return false;
if ( h6 == h2->opposite()) return false;
// exact three edges at vertices 1, 2, 3.
if ( h4->opposite()->next() != h3->opposite()) return false;
if ( h5->opposite()->next() != h1->opposite()) return false;
if ( h6->opposite()->next() != h2->opposite()) return false;
// three edges at v4.
if ( h4->next()->opposite() != h5) return false;
if ( h5->next()->opposite() != h6) return false;
if ( h6->next()->opposite() != h4) return false;
// All facets are triangles.
if ( h1->next()->next()->next() != h1) return false;
if ( h4->next()->next()->next() != h4) return false;
if ( h5->next()->next()->next() != h5) return false;
if ( h6->next()->next()->next() != h6) return false;
// all edges are non-border edges.
if ( h1->is_border()) return false; // implies h2 and h3
CGAL_assertion( ! h2->is_border());
CGAL_assertion( ! h3->is_border());
if ( h4->is_border()) return false;
if ( h5->is_border()) return false;
if ( h6->is_border()) return false;
// Assert consistency.
CGAL_assertion( h1 != h2);
CGAL_assertion( h1 != h3);
CGAL_assertion( h3 != h2);
CGAL_assertion( h4 != h5);
CGAL_assertion( h5 != h6);
CGAL_assertion( h6 != h4);
// check prev pointer.
CGAL_assertion_code( HalfedgeDS_items_decorator<HDS> D;)
CGAL_assertion(D.get_prev(h1) == Halfedge_handle() ||
D.get_prev(h1) == h3);
CGAL_assertion(D.get_prev(h2) == Halfedge_handle() ||
D.get_prev(h2) == h1);
CGAL_assertion(D.get_prev(h3) == Halfedge_handle() ||
D.get_prev(h3) == h2);
CGAL_assertion(D.get_prev(h4) == Halfedge_handle() ||
D.get_prev(h4) == h1->opposite());
CGAL_assertion(D.get_prev(h5) == Halfedge_handle() ||
D.get_prev(h5) == h2->opposite());
CGAL_assertion(D.get_prev(h6) == Halfedge_handle() ||
D.get_prev(h6) == h3->opposite());
// check vertices.
CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h2->opposite()));
CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h5->opposite()));
CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h3->opposite()));
CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h6->opposite()));
CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h1->opposite()));
CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h4->opposite()));
CGAL_assertion( D.get_vertex(h4) == D.get_vertex( h5));
CGAL_assertion( D.get_vertex(h4) == D.get_vertex( h6));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h1) != D.get_vertex(h2));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h1) != D.get_vertex(h3));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h1) != D.get_vertex(h4));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h2) != D.get_vertex(h3));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h2) != D.get_vertex(h4));
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(h3) != D.get_vertex(h4));
// check facets.
CGAL_assertion( D.get_face(h1) == D.get_face(h2));
CGAL_assertion( D.get_face(h1) == D.get_face(h3));
CGAL_assertion( D.get_face(h4) == D.get_face(h4->next()));
CGAL_assertion( D.get_face(h4) == D.get_face(h1->opposite()));
CGAL_assertion( D.get_face(h5) == D.get_face(h5->next()));
CGAL_assertion( D.get_face(h5) == D.get_face(h2->opposite()));
CGAL_assertion( D.get_face(h6) == D.get_face(h6->next()));
CGAL_assertion( D.get_face(h6) == D.get_face(h3->opposite()));
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
D.get_face(h1) != D.get_face(h4));
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
D.get_face(h1) != D.get_face(h5));
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
D.get_face(h1) != D.get_face(h6));
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
D.get_face(h4) != D.get_face(h5));
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
D.get_face(h4) != D.get_face(h6));
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
D.get_face(h5) != D.get_face(h6));
return true;
}
// Euler Operators (Combinatorial Modifications)
//
// The following Euler operations modify consistently the combinatorial
// structure of the polyhedral surface. The geometry remains unchanged.
Halfedge_handle split_facet( Halfedge_handle h, Halfedge_handle g) {
// split the facet incident to `h' and `g' into two facets with
// new diagonal between the two vertices denoted by `h' and `g'
// respectively. The second (new) facet is a copy of the first
// facet. It returns the new diagonal. The time is proportional to
// the distance from `h' to `g' around the facet. Precondition:
// `h' and `g' are incident to the same facet. `h != g' (no
// loops). `h->next() != g' and `g->next() != h' (no multi-edges).
reserve( size_of_vertices(),
2 + size_of_halfedges(),
1 + size_of_facets());
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_precondition( D.get_face(h) == D.get_face(g));
CGAL_precondition( h != g);
CGAL_precondition( h != g->next());
CGAL_precondition( h->next() != g);
return D.split_face( h, g);
}
Halfedge_handle join_facet( Halfedge_handle h) {
// join the two facets incident to h. The facet incident to
// `h->opposite()' gets removed. Both facets might be holes.
// Returns the predecessor of h. The invariant `join_facet(
// split_facet( h, g))' returns h and keeps the polyhedron
// unchanged. The time is proportional to the size of the facet
// removed and the time to compute `h.prev()'. Precondition:
// `HDS' supports removal of facets. The degree of both
// vertices incident to h is at least three (no antennas).
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_precondition( circulator_size(h->vertex_begin())
>= size_type(3));
CGAL_precondition( circulator_size(h->opposite()->vertex_begin())
>= size_type(3));
return D.join_face(h);
}
Halfedge_handle split_vertex( Halfedge_handle h, Halfedge_handle g) {
// split the vertex incident to `h' and `g' into two vertices and
// connects them with a new edge. The second (new) vertex is a
// copy of the first vertex. It returns the new edge. The time is
// proportional to the distance from `h' to `g' around the vertex.
// Precondition: `h' and `g' are incident to the same vertex. `h
// != g' (no antennas). `h->next() != g' and `g->next() != h'.
reserve( 1 + size_of_vertices(),
2 + size_of_halfedges(),
size_of_facets());
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_precondition( D.get_vertex(h) == D.get_vertex(g));
CGAL_precondition( h != g);
return D.split_vertex( h, g);
}
Halfedge_handle join_vertex( Halfedge_handle h) {
// join the two vertices incident to h. The vertex denoted by
// `h->opposite()' gets removed. Returns the predecessor of h. The
// invariant `join_vertex( split_vertex( h, g))' returns h and
// keeps the polyhedron unchanged. The time is proportional to
// the degree of the vertex removed and the time to compute
// `h.prev()'.
// Precondition: `HDS' supports removal of vertices. The size of
// both facets incident to h is at least four (no multi-edges)
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_precondition( circulator_size( h->facet_begin())
>= size_type(4));
CGAL_precondition( circulator_size( h->opposite()->facet_begin())
>= size_type(4));
return D.join_vertex(h);
}
Halfedge_handle split_edge( Halfedge_handle h) {
return split_vertex( h->prev(), h->opposite())->opposite();
}
Halfedge_handle flip_edge( Halfedge_handle h) {
HalfedgeDS_items_decorator<HDS> D;
return D.flip_edge(h);
}
Halfedge_handle create_center_vertex( Halfedge_handle h) {
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_assertion( circulator_size( h->facet_begin())
>= size_type(3));
return D.create_center_vertex(h);
}
Halfedge_handle erase_center_vertex( Halfedge_handle h) {
HalfedgeDS_decorator<HDS> D(hds_);
return D.erase_center_vertex(h);
}
// Euler Operators Modifying Genus
Halfedge_handle split_loop( Halfedge_handle h,
Halfedge_handle i,
Halfedge_handle j) {
// cut the polyhedron into two parts along the cycle (h,i,j).
// Three copies of the vertices and two new triangles will be
// created. h,i,j will be incident to the first new triangle. The
// returnvalue will be an halfedge iterator denoting the new
// halfegdes of the second new triangle which was h beforehand.
// Precondition: h,i,j are distinct, consecutive vertices of the
// polyhedron and form a cycle: i.e. `h->vertex() == i->opposite()
// ->vertex()', ..., `j->vertex() == h->opposite()->vertex()'. The
// six facets incident to h,i,j are all distinct.
reserve( 3 + size_of_vertices(),
6 + size_of_halfedges(),
2 + size_of_facets());
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_precondition( h != i);
CGAL_precondition( h != j);
CGAL_precondition( i != j);
CGAL_precondition( D.get_vertex(h) == D.get_vertex(i->opposite()));
CGAL_precondition( D.get_vertex(i) == D.get_vertex(j->opposite()));
CGAL_precondition( D.get_vertex(j) == D.get_vertex(h->opposite()));
CGAL_precondition( D.get_face(h) == Facet_handle() ||
D.get_face(h) != D.get_face(i));
CGAL_precondition( D.get_face(h) == Facet_handle() ||
D.get_face(h) != D.get_face(j));
CGAL_precondition( D.get_face(i) == Facet_handle() ||
D.get_face(i) != D.get_face(j));
CGAL_precondition( D.get_face(h) == Facet_handle() ||
D.get_face(h) != D.get_face(h->opposite()));
CGAL_precondition( D.get_face(h) == Facet_handle() ||
D.get_face(h) != D.get_face(i->opposite()));
CGAL_precondition( D.get_face(h) == Facet_handle() ||
D.get_face(h) != D.get_face(j->opposite()));
CGAL_precondition( D.get_face(i) == Facet_handle() ||
D.get_face(i) != D.get_face(h->opposite()));
CGAL_precondition( D.get_face(i) == Facet_handle() ||
D.get_face(i) != D.get_face(i->opposite()));
CGAL_precondition( D.get_face(i) == Facet_handle() ||
D.get_face(i) != D.get_face(j->opposite()));
CGAL_precondition( D.get_face(j) == Facet_handle() ||
D.get_face(j) != D.get_face(h->opposite()));
CGAL_precondition( D.get_face(j) == Facet_handle() ||
D.get_face(j) != D.get_face(i->opposite()));
CGAL_precondition( D.get_face(j) == Facet_handle() ||
D.get_face(j) != D.get_face(j->opposite()));
CGAL_precondition( D.get_face(h->opposite()) == Facet_handle() ||
D.get_face(h->opposite()) != D.get_face(i->opposite()));
CGAL_precondition( D.get_face(h->opposite()) == Facet_handle() ||
D.get_face(h->opposite()) != D.get_face(j->opposite()));
CGAL_precondition( D.get_face(i->opposite()) == Facet_handle() ||
D.get_face(i->opposite()) != D.get_face(j->opposite()));
return D.split_loop( h, i, j);
}
Halfedge_handle join_loop( Halfedge_handle h, Halfedge_handle g) {
// glues the boundary of two facets together. Both facets and the
// vertices of g gets removed. Returns an halfedge iterator for h.
// The invariant `join_loop( h, split_loop( h, i, j))' returns h
// and keeps the polyhedron unchanged. Precondition: `HDS'
// supports removal of vertices and facets. The facets denoted by
// h and g have equal size.
HalfedgeDS_decorator<HDS> D(hds_);
CGAL_precondition( D.get_face(h) == Facet_handle() ||
D.get_face(h) != D.get_face(g));
CGAL_precondition( circulator_size( h->facet_begin())
>= size_type(3));
CGAL_precondition( circulator_size( h->facet_begin())
== circulator_size( g->facet_begin()));
return D.join_loop( h, g);
}
// Modifying Facets and Holes
Halfedge_handle make_hole( Halfedge_handle h) {
// removes incident facet and makes all halfedges incident to the
// facet to border edges. Returns h. Precondition: `HDS'
// supports removal of facets. `! h.is_border()'.
HalfedgeDS_decorator<HDS> D(hds_);
return D.make_hole(h);
}
Halfedge_handle fill_hole( Halfedge_handle h) {
// fill a hole with a new created facet. Makes all border
// halfedges of the hole denoted by h incident to the new facet.
// Returns h. Precondition: `h.is_border()'.
reserve( size_of_vertices(),
size_of_halfedges(),
1 + size_of_facets());
HalfedgeDS_decorator<HDS> D(hds_);
return D.fill_hole(h);
}
Halfedge_handle add_vertex_and_facet_to_border( Halfedge_handle h,
Halfedge_handle g) {
// creates a new facet within the hole incident to h and g by
// connecting the tip of g with the tip of h with two new
// halfedges and a new vertex and filling this separated part of
// the hole with a new facet. Returns the new halfedge incident to
// the new facet and the new vertex. Precondition: `h->is_border(
// )', `g->is_border()', `h != g', and g can be reached along the
// same hole starting with h.
CGAL_precondition( h != g);
reserve( 1 + size_of_vertices(),
4 + size_of_halfedges(),
1 + size_of_facets());
HalfedgeDS_decorator<HDS> D(hds_);
Halfedge_handle hh = D.add_face_to_border( h, g);
CGAL_assertion( hh == g->next());
D.split_vertex( g, hh->opposite());
return g->next();
}
Halfedge_handle add_facet_to_border( Halfedge_handle h,
Halfedge_handle g) {
// creates a new facet within the hole incident to h and g by
// connecting the tip of g with the tip of h with a new halfedge
// and filling this separated part of the hole with a new facet.
// Returns the new halfedge incident to the new facet.
// Precondition: `h->is_border()', `g->is_border()', `h != g',
// `h->next() != g', and g can be reached along the same hole
// starting with h.
CGAL_precondition( h != g);
CGAL_precondition( h->next() != g);
reserve( size_of_vertices(),
2 + size_of_halfedges(),
1 + size_of_facets());
HalfedgeDS_decorator<HDS> D(hds_);
return D.add_face_to_border( h, g);
}
// Erasing
void erase_facet( Halfedge_handle h) {
// removes the incident facet of h and changes all halfedges
// incident to the facet into border edges or removes them from
// the polyhedral surface if they were already border edges. See
// `make_hole(h)' for a more specialized variant. Precondition:
// `Traits' supports removal.
HalfedgeDS_decorator<HDS> D(hds_);
D.erase_face(h);
}
void erase_connected_component( Halfedge_handle h) {
// removes the vertices, halfedges, and facets that belong to the
// connected component of h. Precondition: `Traits' supports
// removal.
HalfedgeDS_decorator<HDS> D(hds_);
D.erase_connected_component(h);
}
/// Erases the small connected components and the isolated vertices.
///
/// @commentheading Preconditions:
/// supports vertices, halfedges, and removal operation.
///
/// @commentheading Template Parameters:
/// @param nb_components_to_keep the number of large connected components to keep.
///
/// @return the number of connected components erased (ignoring isolated vertices).
unsigned int keep_largest_connected_components(unsigned int nb_components_to_keep)
{
HalfedgeDS_decorator<HDS> D(hds_);
return D.keep_largest_connected_components(nb_components_to_keep);
}
void clear() { hds_.clear(); }
// removes all vertices, halfedges, and facets.
void erase_all() { clear(); }
// equivalent to `clear()'. Depricated.
// Special Operations on Polyhedral Surfaces
void delegate( Modifier_base<HDS>& modifier) {
// calls the `operator()' of the `modifier'. Precondition: The
// `modifier' returns a consistent representation.
modifier( hds_);
CGAL_expensive_postcondition( is_valid());
}
// Operations with Border Halfedges
size_type size_of_border_halfedges() const {
// number of border halfedges. An edge with no incident facet
// counts as two border halfedges. Precondition: `normalize_border
// ()' has been called and no halfedge insertion or removal and no
// change in border status of the halfedges have occured since
// then.
return hds_.size_of_border_halfedges();
}
size_type size_of_border_edges() const {
// number of border edges. If `size_of_border_edges() ==
// size_of_border_halfedges()' all border edges are incident to a
// facet on one side and to a hole on the other side.
// Precondition: `normalize_border()' has been called and no
// halfedge insertion or removal and no change in border status of
// the halfedges have occured since then.
return hds_.size_of_border_edges();
}
Halfedge_iterator border_halfedges_begin() {
// halfedge iterator starting with the border edges. The range [
// `halfedges_begin(), border_halfedges_begin()') denotes all
// non-border edges. The range [`border_halfedges_begin(),
// halfedges_end()') denotes all border edges. Precondition:
// `normalize_border()' has been called and no halfedge insertion
// or removal and no change in border status of the halfedges have
// occured since then.
return hds_.border_halfedges_begin();
}
Halfedge_const_iterator border_halfedges_begin() const {
return hds_.border_halfedges_begin();
}
// Convenient edge iterator
Edge_iterator border_edges_begin() { return border_halfedges_begin(); }
Edge_const_iterator border_edges_begin() const {
return border_halfedges_begin();
}
bool normalized_border_is_valid( bool verbose = false) const {
// checks whether all non-border edges precedes the border edges.
HalfedgeDS_const_decorator<HDS> decorator(hds_);
bool valid = decorator.normalized_border_is_valid( verbose);
for ( Halfedge_const_iterator i = border_halfedges_begin();
valid && (i != halfedges_end()); (++i, ++i)) {
if ( i->is_border()) {
Verbose_ostream verr(verbose);
verr << " both halfedges of an edge are border "
"halfedges." << std::endl;
valid = false;
}
}
return valid;
}
void normalize_border() {
// sorts halfedges such that the non-border edges precedes the
// border edges.
hds_.normalize_border();
CGAL_postcondition( normalized_border_is_valid());
}
protected: // Supports_face_plane
void inside_out_geometry( Tag_false) {}
void inside_out_geometry( Tag_true) {
typename Traits::Construct_opposite_plane_3 opp
= traits().construct_opposite_plane_3_object();
std::transform( planes_begin(), planes_end(), planes_begin(), opp);
}
public:
void inside_out() {
// reverse facet orientation.
HalfedgeDS_decorator<HDS> decorator(hds_);
decorator.inside_out();
inside_out_geometry( Supports_face_plane());
}
bool is_valid( bool verb = false, int level = 0) const {
// checks the combinatorial consistency.
Verbose_ostream verr(verb);
verr << "begin CGAL::Polyhedron_3<...>::is_valid( verb=true, "
"level = " << level << "):" << std::endl;
HalfedgeDS_const_decorator<HDS> D(hds_);
bool valid = D.is_valid( verb, level + 3);
// All halfedges.
Halfedge_const_iterator i = halfedges_begin();
Halfedge_const_iterator end = halfedges_end();
size_type n = 0;
for( ; valid && (i != end); ++i) {
verr << "halfedge " << n << std::endl;
// At least triangular facets and distinct geometry.
valid = valid && ( i->next() != i);
valid = valid && ( i->next()->next() != i);
valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(i) != D.get_vertex(i->opposite()));
valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(i) != D.get_vertex(i->next()));
valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
D.get_vertex(i) != D.get_vertex(i->next()->next()));
if ( ! valid) {
verr << " incident facet is not at least a triangle."
<< std::endl;
break;
}
// Distinct facets on each side of an halfegde.
valid = valid && ( ! check_tag( Supports_halfedge_face()) ||
D.get_face(i) != D.get_face(i->opposite()));
if ( ! valid) {
verr << " both incident facets are equal." << std::endl;
break;
}
++n;
}
valid = valid && (n == size_of_halfedges());
if ( n != size_of_halfedges())
verr << "counting halfedges failed." << std::endl;
verr << "end of CGAL::Polyhedron_3<...>::is_valid(): structure is "
<< ( valid ? "valid." : "NOT VALID.") << std::endl;
return valid;
}
};
} //namespace CGAL
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#endif // CGAL_POLYHEDRON_3_H //