foc/v3/main/main.ino

842 lines
26 KiB
Arduino
Raw Normal View History

2023-05-25 09:09:05 +00:00
/**
arduino-FOChttps://gitee.com/ream_d/Deng-s-foc-controller
FOC32, 33, 25
AS5600 SDA-23 SCL-5 MPU6050 SDA-19 SCL-18
LQR使K3K4
wifiTA+
90TA90eeprom0 wifieeprom
使 BLDCMotor(7) /2
12V,
voltage_power_supply , voltage_limit
PID 2715 使PID
*/
#include <SimpleFOC.h>
#include "Command.h"
#include <WiFi.h>
#include <AsyncUDP.h> //引用以使用异步UDP
#include <ArduinoOTA.h>
#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter
#include "EEPROM.h"
#include "tourch.h"
#include <Preferences.h>
/* ----ESP32 IO SET---- */
#define ACTIVE_PIN 4 //状态灯
#define BAT_VOLTAGE_SENSE_PIN 34 //电池电压检测ADC如果旧版PCB无电压检测电路则注释掉此行
const double R1_VOLTAGE = 62000; //62K
const double R2_VOLTAGE = 10000; //10K
const double min_voltage = 9; //电池检测最低电压
double bat_voltage;
unsigned long voltage_last_time;
/* ----IMU Data---- */
Kalman kalmanZ;
#define gyroZ_OFF -0.19
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;
bool stable = 0 , battery_low = 0;
uint32_t last_unstable_time;
uint32_t last_stable_time;
double gyroZangle; // Angle calculate using the gyro only
double compAngleZ; // Calculated angle using a complementary filter
double kalAngleZ; // Calculated angle using a Kalman filter
uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data
/* ----FOC Data---- */
// driver instance
const char *ServerName = "ESP32-Reuleaux-RGB";
char mac_tmp[6];
const char *ssid = mac_tmp;
const char *password = "";
bool wifi_on_off = 0;
bool wifi_flag = 0;
AsyncUDP udp; //创建UDP对象
unsigned int localUdpPort = 2333; //本地端口号
void wifi_print(char * s,double num);
/* ----FOC Data---- */
double acc2rotation(double x, double y);
float constrainAngle(float x);
LowPassFilter lpf_throttle{0.00};
//倒立摆参数
// float LQR_K3_1 = 0.53; //摇摆到平衡
// float LQR_K3_2 = 0.11; //
// float LQR_K3_3 = 0.15; //
// float LQR_K4_1 = 0.43; //平衡到稳定
// float LQR_K4_2 = 0.09; //
// float LQR_K4_3 = 0.12; //
//倒立摆参数
float LQR_K3_1 = 20; //摇摆到平衡
float LQR_K3_2 = 2.1; //
float LQR_K3_3 = 2.1; //
float LQR_K4_1 = 4.4; //平衡到稳定
float LQR_K4_2 = 1.5; //
float LQR_K4_3 = 1.42; //
float target_velocity = 0; //目标速度
float target_angle = 89.5; //平衡角度 例如TA89.3 设置平衡角度89.3
float target_voltage = 0; //目标电压
float swing_up_voltage = 1.2; //摇摆电压 左右摇摆的电压,越大越快到平衡态,但是过大会翻过头
float swing_up_angle = 18; //摇摆角度 离平衡角度还有几度时候,切换到自平衡控制
float v_i_1 = 15; //非稳态速度环I
float v_p_1 = 0.25; //非稳态速度环P
float v_i_2 = 10; //稳态速度环I
float v_p_2 = 0.1; //稳态速度环P
//电机参数
//目标变量
float readMySensorCallback() {
digitalWrite(22, 0); // STATE: HIGH/LOW
digitalWrite(5, 0); // STATE: HIGH/LOW
uint16_t ag = 0;
for(int i= 0;i<16;i++)
{
digitalWrite(5, 1); // STATE: HIGH/LOW
delayMicroseconds(1);
ag = ag <<1;
ag += digitalRead(23);
digitalWrite(5, 0); // STATE: HIGH/LOW
delayMicroseconds(1);
}
digitalWrite(22, 1); // STATE: HIGH/LOW
ag = ag>>2;
digitalWrite(5, 1);
// hspi->endTransaction();
float rad = (float)ag * 2 * PI / 16384;
// Serial.println(rad);
if (rad < 0) {
rad += 2 * PI;
}
return rad;
}
void initMySensorCallback() {
// do the init
pinMode(5, OUTPUT);
pinMode(22, OUTPUT);
pinMode(23, INPUT);
}
BLDCMotor motor = BLDCMotor(7);
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25);
GenericSensor sensor = GenericSensor(readMySensorCallback, initMySensorCallback);
//命令设置
Command comm;
bool Motor_enable_flag = 0;
int test_flag = 0;
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); }
void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); }
void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); }
void do_START(char* cmd) { wifi_flag = !wifi_flag; }
void do_MOTOR(char* cmd)
{
if(Motor_enable_flag)
motor.enable();
else
motor.disable();
Motor_enable_flag = !Motor_enable_flag;
}
void do_TVQ(char* cmd)
{
if(test_flag == 1)
test_flag = 0;
else
{
motor.controller = MotionControlType::torque;
test_flag = 1;
}
}
void do_TVV(char* cmd)
{
if(test_flag == 2)
test_flag = 0;
else
{
motor.controller = MotionControlType::velocity;
test_flag = 2;
}
}
void do_VV(char* cmd) { comm.scalar(&target_velocity, cmd); }
void do_VQ(char* cmd) { comm.scalar(&target_voltage, cmd); }
void do_vp1(char* cmd) { comm.scalar(&v_p_1, cmd); EEPROM.writeFloat(12, v_p_1);}
void do_vi1(char* cmd) { comm.scalar(&v_i_1, cmd);EEPROM.writeFloat(16, v_i_1); }
void do_vp2(char* cmd) { comm.scalar(&v_p_2, cmd); EEPROM.writeFloat(20, v_p_2);}
void do_vi2(char* cmd) { comm.scalar(&v_i_2, cmd);EEPROM.writeFloat(24, v_i_2); }
void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); }
void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); }
void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); }
void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); }
void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); }
void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); }
void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); }
void onPacketCallBack(AsyncUDPPacket packet)
{
char* da;
da= (char*)(packet.data());
Serial.println(da);
comm.run(da);
EEPROM.commit();
// packet.print("reply data");
}
// instantiate the commander
void setup() {
Serial.begin(115200);
//状态灯
pinMode(ACTIVE_PIN, OUTPUT);
digitalWrite(ACTIVE_PIN, LOW);
uint32_t chipId = 0;
for (int i = 0; i < 17; i = i + 8) {
chipId |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i;
}
Serial.printf("Chip ID: %d\r\n", chipId);
Serial.printf("ESP32 Chip ID = %04X",(uint16_t)(ESP.getEfuseMac()>>32));//print High 2 bytes
Serial.printf("%08X\r\n",(uint32_t)ESP.getEfuseMac());//print Low 4bytes.
Serial.printf("Chip model = %s Rev %d\r\n", ESP.getChipModel(), ESP.getChipRevision());
Serial.printf("This chip has %d cores CpuFreqMHz = %u\r\n", ESP.getChipCores(),ESP.getCpuFreqMHz());
Serial.printf("get Cycle Count = %u\r\n",ESP.getCycleCount());
Serial.printf("SDK version:%s\r\n", ESP.getSdkVersion()); //获取IDF版本
//获取片内内存 Internal RAM
Serial.printf("Total heap size = %u\t",ESP.getHeapSize());
Serial.printf("Available heap = %u\r\n",ESP.getFreeHeap());
Serial.printf("Lowest level of free heap since boot = %u\r\n",ESP.getMinFreeHeap());
Serial.printf("Largest block of heap that can be allocated at once = %u\r\n",ESP.getMaxAllocHeap());
//SPI RAM
Serial.printf("Total Psram size = %u\t",ESP.getPsramSize());
Serial.printf("Available Psram = %u\r\n",ESP.getFreePsram());
Serial.printf("Lowest level of free Psram since boot = %u\r\n",ESP.getMinFreePsram());
Serial.printf("Largest block of Psram that can be allocated at once = %u\r\n",ESP.getMinFreePsram());
sprintf(mac_tmp, "%02X\r\n", (uint32_t)(ESP.getEfuseMac() >> (24) ));
sprintf(mac_tmp, "ESP32-%c%c%c%c%c%c", mac_tmp[4], mac_tmp[5], mac_tmp[2], mac_tmp[3], mac_tmp[0], mac_tmp[1] );
if (!EEPROM.begin(1000)) {
Serial.println("Failed to initialise EEPROM");
Serial.println("Restarting...");
delay(1000);
ESP.restart();
}
// eeprom 读取
int k,j;
j = 0;
for(k=0;k<=24;k=k+4)
{
float nan = EEPROM.readFloat(k);
if(isnan(nan))
{
j = 1;
Serial.println("frist write");
EEPROM.writeFloat(0, target_angle); delay(10);EEPROM.commit();
EEPROM.writeFloat(4, swing_up_voltage); delay(10);EEPROM.commit();
EEPROM.writeFloat(8, swing_up_angle); delay(10);EEPROM.commit();
EEPROM.writeFloat(12, v_p_1); delay(10);EEPROM.commit();
EEPROM.writeFloat(16, v_i_1); delay(10);EEPROM.commit();
EEPROM.writeFloat(20, v_p_2); delay(10);EEPROM.commit();
EEPROM.writeFloat(24, v_i_2); delay(10);EEPROM.commit();
EEPROM.writeUChar(28,brightness); delay(10);EEPROM.commit();
EEPROM.writeUChar(32,rgb_flag); delay(10);EEPROM.commit();
}
}
if(j == 0)
{
target_angle = EEPROM.readFloat(0);
swing_up_voltage = EEPROM.readFloat(4);
swing_up_angle = EEPROM.readFloat(8);
v_p_1 = EEPROM.readFloat(12);
v_i_1 = EEPROM.readFloat(16);
v_p_2 = EEPROM.readFloat(20);
v_i_2 = EEPROM.readFloat(24);
brightness = EEPROM.readUChar(28);
rgb_flag = EEPROM.readUChar(32);
motor.PID_velocity.P = v_p_1;
motor.PID_velocity.I = v_i_1;
}
//命令设置
comm.add("TA",do_TA);
comm.add("START",do_START);
comm.add("MOTOR",do_MOTOR);
comm.add("SV",do_SV);
comm.add("SA",do_SA);
comm.add("TVQ",do_TVQ);
comm.add("TVV",do_TVV);
comm.add("VV",do_VV);
comm.add("VQ",do_VQ);
//速度环参数
comm.add("VP1",do_vp1);
comm.add("VI1",do_vi1);
comm.add("VP2",do_vp2);
comm.add("VI2",do_vi2);
comm.add("TV",do_tv);
comm.add("K31",do_K31);
comm.add("K32",do_K32);
comm.add("K33",do_K33);
comm.add("K41",do_K41);
comm.add("K42",do_K42);
comm.add("K43",do_K43);
//RGB
strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
strip.show(); // Turn OFF all pixels ASAP
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
colorWipe_delay(strip.Color(255, 106, 106),50);
colorWipe_delay(strip.Color(0, 255, 255),50);
colorWipe_delay(strip.Color(148, 0, 211),50);
// kalman mpu6050 init
Wire.begin(19, 18,uint32_t(4000000));// Set I2C frequency to 400kHz
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
while (i2cWrite(0x19, i2cData, 4, false))
; // Write to all four registers at once
while (i2cWrite(0x6B, 0x01, true))
; // PLL with X axis gyroscope reference and disable sleep mode
while (i2cRead(0x75, i2cData, 1))
;
if (i2cData[0] != 0x68)
{ // Read "WHO_AM_I" register
Serial.print(F("Error reading sensor"));
while (1)
;
}
delay(100); // Wait for sensor to stabilize
/* Set kalman and gyro starting angle */
while (i2cRead(0x3B, i2cData, 6))
;
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
double pitch = acc2rotation(accX, accY);
kalmanZ.setAngle(pitch);
gyroZangle = pitch;
timer = micros();
Serial.println("kalman mpu6050 init");
sensor.init();
//连接motor对象与传感器对象
motor.linkSensor(&sensor);
//供电电压设置 [V]
driver.voltage_power_supply = 12;
driver.init();
//连接电机和driver对象
motor.linkDriver(&driver);
//FOC模型选择
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
//运动控制模式设置
motor.controller = MotionControlType::torque;
//速度PI环设置
motor.PID_velocity.P = v_p_1;
motor.PID_velocity.I = v_i_1;
//最大电机限制电机
motor.voltage_limit = 12;
//速度低通滤波时间常数
motor.LPF_velocity.Tf = 0.01;
//设置最大速度限制
motor.velocity_limit = 40;
motor.useMonitoring(Serial);
//初始化电机
motor.init();
//初始化 FOC
// nvs
Preferences prefs; // 声明Preferences对象
prefs.begin("motor"); // 打开命名空间mynamespace
float offset = prefs.getFloat("offset", 0);
Serial.println(offset);
// 获取当前命名空间中的键名为"offset"的值 如果没有该元素则返回默认值0
if(offset > 0)
{
Serial.printf("初始化有值%.2f\n",offset);
Direction foc_direction = Direction::CW;
motor.initFOC(offset, foc_direction);
}
else
{
if(motor.initFOC()) //如果初始化成功写入offset
{
Serial.println(motor.zero_electric_angle);
prefs.putFloat("offset", motor.zero_electric_angle);
}
}
prefs.end(); // 关闭当前命名空间
Serial.println(F("Motor ready."));
Serial.println(F("Set the target velocity using serial terminal:"));
digitalWrite(ACTIVE_PIN, HIGH);
}
char buf[255];
void loop() {
sensor.update();
motor.loopFOC(); //foc循环用来控制电机运动
if(wifi_on_off)
{
ArduinoOTA.handle();
}
// 触摸效果以及RGB灯效
unsigned long currentMillis = millis();
if(currentMillis - voltage_last_time >=1000)
{
voltage_last_time = currentMillis;
voltage_detection();
}
if(currentMillis - touch_last_time >= 10) { // Check for expired time
touch_last_time = currentMillis; // Run current frame
touchAttach(0,T2);
touchAttach(1,T3);
touchAttach(2,T4);
int i;
for(i = 0;i<3;i++)
{
if(touch_STATE[i]&&touch_touched[i])
if(touch_touched[i] == 1)
{
single_event(i);
}
else
long_event(i);
}
}
// Update current time 更新RGB效果
if(currentMillis - pixelPrevious >= pixelInterval) { // Check for expired time
pixelPrevious = currentMillis; // Run current frame
switch(rgb_flag){
case 0 :
rgb_off();
break;
case 1 :
if(motor.shaft_velocity>0)
{
pixelInterval = 150 - motor.shaft_velocity;
strip2();
}
else
{
pixelInterval = 150 + motor.shaft_velocity;
strip3();
}
break;
case 2 :
pixelInterval = 100;
strip2();
break;
case 3 :
pixelInterval = 100;
strip3();
break;
case 4 :
strip1();
break;
case 5 :
rainbow1();
break;
case 6 :
rainbow2();
break;
case 7 :
pulse_rainbow1();
break;
}
}
// 读取MPU6050数据
while (i2cRead(0x3B, i2cData, 14));
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
// tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
timer = micros();
double pitch = acc2rotation(accX, accY);
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
// Reset the gyro angle when it has drifted too much
if (gyroZangle < -180 || gyroZangle > 180)
gyroZangle = kalAngleZ;
float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle);
// pendulum_angle当前角度与期望角度差值在差值大的时候进行摇摆差值小的时候LQR控制电机保持平衡
if(test_flag == 0)//正常控制
{
if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90°
{
target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaft_velocity);
if (abs(target_velocity) > 120)
target_velocity = _sign(target_velocity) * 120;
motor.controller = MotionControlType::velocity;
motor.move(target_velocity);
}
else // else do swing-up
{ // sets swing_up_voltage to the motor in order to swing up
motor.controller = MotionControlType::torque;
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
motor.move(target_voltage);
}
}
else if(test_flag == 1)
{
motor.move(target_voltage);
}
else
{
motor.move(target_velocity);
}
//串口输出数据部分不需要的情况可以改为0
#if 0
Serial.print(pitch);Serial.print("\t");
Serial.print(kalAngleZ);Serial.print("\t");
Serial.print(target_voltage);Serial.print("\t");
Serial.print(motor.shaft_velocity);Serial.print("\t");
Serial.print(motor.voltage.q);Serial.print("\t");
Serial.print(target_angle);Serial.print("\t");
Serial.print(pendulum_angle);Serial.print("\t");
Serial.print(gyroZrate);Serial.print("\t");
Serial.print("\r\n");
#endif
//可以使用该方法wifi发送udp信息
if(wifi_flag)
{
memset(buf, 0, strlen(buf));
wifi_print("v", motor.shaft_velocity);
wifi_print("vq",motor.voltage.q);
wifi_print("p",pendulum_angle);
wifi_print("t",target_angle);
wifi_print("k",kalAngleZ);
wifi_print("g",gyroZrate);
wifi_print("VT",bat_voltage);
udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据
}
}
/* mpu6050加速度转换为角度
acc2rotation(ax, ay)
acc2rotation(az, ay) */
double acc2rotation(double x, double y)
{
double tmp_kalAngleZ = (atan(x / y) / 1.570796 * 90);
if (y < 0)
{
return (tmp_kalAngleZ + 180);
}
else if (x < 0)
{
//将当前值与前值比较当前差值大于100则认为异常
if (!isnan(kalAngleZ) && (tmp_kalAngleZ + 360 - kalAngleZ) > 100) {
//Serial.print("X<0"); Serial.print("\t");
//Serial.print(tmp_kalAngleZ); Serial.print("\t");
//Serial.print(kalAngleZ); Serial.print("\t");
//Serial.print("\r\n");
if (tmp_kalAngleZ < 0 && kalAngleZ < 0) //按键右边角
return tmp_kalAngleZ;
else //按键边异常处理
return tmp_kalAngleZ;
} else
return (tmp_kalAngleZ + 360);
}
else
{
return tmp_kalAngleZ;
}
}
// function constraining the angle in between -60~60
float constrainAngle(float x)
{
float a = 0;
if(x < 0)
{
a = 120+x;
if(a<abs(x))
return a;
}
return x;
}
// LQR stabilization controller functions
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
float controllerLQR(float p_angle, float p_vel, float m_vel)
{
if (abs(p_angle) > 5) //摆角大于5则进入非稳态记录非稳态时间
{
last_unstable_time = millis();
if (stable) //如果是稳态进入非稳态则调整为目标角度
{
//target_angle = EEPROM.readFloat(0) - p_angle;
target_angle = EEPROM.readFloat(0);
stable = 0;
}
}
if ((millis() - last_unstable_time) > 1000 && !stable) //非稳态进入稳态超过500ms检测更新目标角为目标角+摆角,假设进入稳态
{
//target_angle -= _sign(target_velocity) * 0.4;
target_angle = target_angle+p_angle;
stable = 1;
}
if ((millis() - last_stable_time) > 2500 && stable) { //稳态超过2000ms检测更新目标角
if (abs(target_velocity) > 5 ) { //稳态速度偏大校正
last_stable_time = millis();
target_angle -= _sign(target_velocity) * 0.2;
}
}
//Serial.println(stable);
float u;
if (!stable) //非稳态计算
{
motor.PID_velocity.P = v_p_1;
motor.PID_velocity.I = v_i_1;
u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel;
}
else
{
motor.PID_velocity.P = v_p_2;
motor.PID_velocity.I = v_i_2;
u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel;
}
return u;
}
void wifi_print(char * s,double num)
{
char str[255];
char n[255];
sprintf(n, "%.2f",num);
strcpy(str,s);
strcat(str, n);
strcat(buf+strlen(buf), str);
strcat(buf, ",\0");
}
void voltage_detection()
{
#if defined(BAT_VOLTAGE_SENSE_PIN) //电池电压检测
bat_voltage = return_voltage_value(BAT_VOLTAGE_SENSE_PIN);
//driver.voltage_power_supply = bat_voltage;
//Serial.println(driver.voltage_power_supply);
if (bat_voltage < min_voltage && !battery_low)
{
battery_low = 1;
Serial.print(driver.voltage_power_supply);
Serial.println("V ");
Serial.print(bat_voltage);
Serial.println("V battery_low!!");
while (battery_low)
{
rgb_off();
motor.disable();
bat_voltage = return_voltage_value(BAT_VOLTAGE_SENSE_PIN);
if (bat_voltage >= (min_voltage + 0.5)) {
Serial.print(driver.voltage_power_supply);
Serial.print("V--");
Serial.print(bat_voltage);
Serial.println("V battery ok");
digitalWrite(ACTIVE_PIN, 0); //电池电压恢复则常亮需reset重启
//battery_low = 0;
} else { //电池电压低闪灯
if (millis() % 500 < 250)
digitalWrite(ACTIVE_PIN, 0);
else
digitalWrite(ACTIVE_PIN, 1);
}
}
}
#endif
}
double return_voltage_value(int pin_no)
{
double tmp;
double ADCVoltage;
double inputVoltage;
analogSetPinAttenuation(pin_no, ADC_6db);
for (int i = 0; i < 20; i++)
{
ADCVoltage = analogReadMilliVolts(pin_no) / 1000.0;
inputVoltage = (ADCVoltage * R1_VOLTAGE) / R2_VOLTAGE;
tmp = tmp + inputVoltage + ADCVoltage; // formula for calculating voltage in i.e. GND
}
inputVoltage = tmp / 20;
if(inputVoltage!=0)
inputVoltage = inputVoltage + 0.001;
/*
for (int i = 0; i < 20; i++)
{
tmp = tmp + analogRead(pin_no);
}
tmp = tmp / 20;
ADCVoltage = ((tmp * 3.3) / 4095.0) + 0.165;
inputVoltage = ADCVoltage / (R2_VOLTAGE / (R1_VOLTAGE + R2_VOLTAGE)); // formula for calculating voltage in i.e. GND
*/
return inputVoltage;
}
void AutoWifiConfig()
{
//wifi初始化
sprintf(mac_tmp, "%02X\r\n", (uint32_t)(ESP.getEfuseMac() >> (24) ));
sprintf(mac_tmp, "ESP32-%c%c%c%c%c%c", mac_tmp[4], mac_tmp[5], mac_tmp[2], mac_tmp[3], mac_tmp[0], mac_tmp[1] );
WiFi.mode(WIFI_AP);
while (!WiFi.softAP(ssid, password)) {}; //启动AP
Serial.println("AP启动成功");
Serial.println("Ready");
Serial.print("IP address: ");
Serial.println(WiFi.softAPIP());
byte mac[6];
WiFi.macAddress(mac);
WiFi.setHostname(ServerName);
Serial.printf("macAddress 0x%02X:0x%02X:0x%02X:0x%02X:0x%02X:0x%02X\r\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
{
}
udp.onPacket(onPacketCallBack); //注册收到数据包事件
ArduinoOTA.setHostname(ServerName);
//以下是启动OTA可以通过WiFi刷新固件
ArduinoOTA.onStart([]() {
String type;
if (ArduinoOTA.getCommand() == U_FLASH) {
type = "sketch";
} else { // U_SPIFFS
type = "filesystem";
}
// NOTE: if updating SPIFFS this would be the place to unmount SPIFFS using SPIFFS.end()
Serial.println("Start updating " + type);
});
ArduinoOTA.onEnd([]() {
Serial.println("\nEnd");
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) {
Serial.printf("Progress: %u%%\r", (progress / (total / 100)));
});
ArduinoOTA.onError([](ota_error_t error) {
Serial.printf("Error[%u]: ", error);
if (error == OTA_AUTH_ERROR) {
Serial.println("Auth Failed");
} else if (error == OTA_BEGIN_ERROR) {
Serial.println("Begin Failed");
} else if (error == OTA_CONNECT_ERROR) {
Serial.println("Connect Failed");
} else if (error == OTA_RECEIVE_ERROR) {
Serial.println("Receive Failed");
} else if (error == OTA_END_ERROR) {
Serial.println("End Failed");
}
});
ArduinoOTA.begin();
}
//触摸单击函数处理
void single_event(int touchID)
{
switch(touchID){
case 0 :
if(brightness<=15)
brightness = 15;
brightness-=15;
EEPROM.writeUChar(28, brightness); EEPROM.commit();
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
break;
case 1 :
if(brightness>=240)
brightness = 240;
brightness+=15;
EEPROM.writeUChar(28, brightness); EEPROM.commit();
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
break;
case 2 :
if(rgb_flag)
rgb_flag = 0;
else
rgb_flag = EEPROM.readUChar(32);
break;
}
}
//触摸长按函数处理
void long_event(int touchID)
{
switch(touchID){
case 0 : //长按投币
if(rgb_flag == 0)
rgb_flag = rgb_modle;
rgb_flag--;
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
EEPROM.writeUChar(32, rgb_flag); EEPROM.commit();
break;
case 1 : //长按收藏
rgb_flag++;
if(rgb_flag>=rgb_modle)
rgb_flag = 0;
strip.setBrightness(brightness); // Set BRIGHTNESS to about 1/5 (max = 255)
EEPROM.writeUChar(32, rgb_flag); EEPROM.commit();
break;
case 2 : //长按点赞
if(wifi_on_off)
{
motor.enable();
WiFi.disconnect();
WiFi.mode(WIFI_OFF);
Serial.println("WIFI_OFF");
}
else
{
motor.disable();
AutoWifiConfig();//打开wifi
Serial.println("WIFI_ON");
Preferences prefs; // 声明Preferences对象
prefs.begin("motor"); // 打开命名空间mynamespace
prefs.putFloat("offset", 0);
prefs.end(); // 关闭当前命名空间
}
wifi_on_off = !wifi_on_off;
Motor_enable_flag = !Motor_enable_flag;
break;
}
}