foc/arduino/main/main.ino

451 lines
13 KiB
Arduino
Raw Normal View History

2021-08-17 17:01:19 +00:00
/**
2021-10-27 07:46:59 +00:00
arduino-FOChttps://gitee.com/ream_d/Deng-s-foc-controller并安装Kalman。
FOC32, 33, 25, 22 22enable
AS5600 SDA-23 SCL-5 MPU6050 SDA-19 SCL-18
FLAG_V1使0LQR使K1K2LQR使K3K4
wifiTA+
90TA90eeprom0 wifieeprom
使 BLDCMotor(5) /2
12V, voltage_power_supply , voltage_limit
PID GB2204 使PID
2021-08-17 17:01:19 +00:00
*/
#include <SimpleFOC.h>
2021-10-09 08:07:38 +00:00
#include "Command.h"
2021-08-17 17:01:19 +00:00
#include <WiFi.h>
#include <AsyncUDP.h> //引用以使用异步UDP
#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter
2021-10-27 07:46:59 +00:00
#include "EEPROM.h"
2021-08-25 08:23:23 +00:00
Kalman kalmanZ;
2021-10-12 08:28:45 +00:00
#define gyroZ_OFF -0.19
2021-08-25 08:23:23 +00:00
/* ----IMU Data---- */
2021-08-27 01:48:34 +00:00
2021-08-25 08:23:23 +00:00
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;
2021-08-25 17:15:13 +00:00
bool stable = 0;
uint32_t last_unstable_time;
2021-08-25 08:23:23 +00:00
double gyroZangle; // Angle calculate using the gyro only
double compAngleZ; // Calculated angle using a complementary filter
double kalAngleZ; // Calculated angle using a Kalman filter
uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data
/* ----FOC Data---- */
// driver instance
double acc2rotation(double x, double y);
2021-08-25 17:15:13 +00:00
float constrainAngle(float x);
2021-08-17 17:01:19 +00:00
const char *ssid = "esp32";
const char *password = "12345678";
bool wifi_flag = 0;
2021-08-17 17:01:19 +00:00
AsyncUDP udp; //创建UDP对象
unsigned int localUdpPort = 2333; //本地端口号
2021-09-15 06:02:01 +00:00
void wifi_print(char * s,double num);
2021-08-17 17:01:19 +00:00
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
2021-08-25 08:23:23 +00:00
TwoWire I2Ctwo = TwoWire(1);
2021-08-25 17:15:13 +00:00
LowPassFilter lpf_throttle{0.00};
2021-08-25 08:23:23 +00:00
//倒立摆参数
2021-11-16 06:35:36 +00:00
float LQR_K3_1 = 10; //摇摆到平衡
float LQR_K3_2 = 1.7; //
float LQR_K3_3 = 1.75; //
2021-10-27 07:46:59 +00:00
float LQR_K4_1 = 2.4; //摇摆到平衡
float LQR_K4_2 = 1.5; //
float LQR_K4_3 = 1.42; //
2021-08-17 17:01:19 +00:00
//电机参数
BLDCMotor motor = BLDCMotor(5);
2021-08-17 17:01:19 +00:00
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
2021-10-13 07:20:52 +00:00
float target_velocity = 0;
2021-10-27 07:46:59 +00:00
float target_angle = 89.3;
2021-10-13 07:20:52 +00:00
float target_voltage = 0;
2021-10-27 07:46:59 +00:00
float swing_up_voltage = 1.8;
2021-11-16 06:35:36 +00:00
float swing_up_angle = 20;
float v_i_1 = 20;
float v_p_1 = 0.5;
float v_i_2 = 10;
float v_p_2 = 0.2;
2021-10-15 01:27:26 +00:00
//命令设置
Command comm;
bool Motor_enable_flag = 0;
int test_flag = 0;
2021-10-27 07:46:59 +00:00
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); }
void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); }
void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); }
void do_START(char* cmd) { wifi_flag = !wifi_flag; }
2021-10-15 01:27:26 +00:00
void do_MOTOR(char* cmd)
{
if(Motor_enable_flag)
motor.enable();
2021-10-15 01:27:26 +00:00
else
motor.disable();
2021-10-15 01:27:26 +00:00
Motor_enable_flag = !Motor_enable_flag;
}
void do_TVQ(char* cmd)
{
if(test_flag == 1)
test_flag = 0;
else
test_flag = 1;
}
void do_TVV(char* cmd)
{
if(test_flag == 2)
test_flag = 0;
else
test_flag = 2;
}
void do_VV(char* cmd) { comm.scalar(&target_velocity, cmd); }
void do_VQ(char* cmd) { comm.scalar(&target_voltage, cmd); }
void do_vp1(char* cmd) { comm.scalar(&v_p_1, cmd); EEPROM.writeFloat(12, v_p_1);}
void do_vi1(char* cmd) { comm.scalar(&v_i_1, cmd);EEPROM.writeFloat(16, v_i_1); }
void do_vp2(char* cmd) { comm.scalar(&v_p_2, cmd); EEPROM.writeFloat(20, v_p_2);}
void do_vi2(char* cmd) { comm.scalar(&v_i_2, cmd);EEPROM.writeFloat(24, v_i_2); }
void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); }
void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); }
void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); }
void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); }
2021-10-27 07:46:59 +00:00
void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); }
void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); }
void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); }
2021-08-17 17:01:19 +00:00
void onPacketCallBack(AsyncUDPPacket packet)
{
char* da;
da= (char*)(packet.data());
Serial.println(da);
2021-10-11 07:07:48 +00:00
comm.run(da);
2021-10-27 07:46:59 +00:00
EEPROM.commit();
2021-08-17 17:01:19 +00:00
// packet.print("reply data");
}
2021-08-25 17:15:13 +00:00
// instantiate the commander
2021-08-17 17:01:19 +00:00
void setup() {
Serial.begin(115200);
2021-10-27 07:46:59 +00:00
if (!EEPROM.begin(1000)) {
Serial.println("Failed to initialise EEPROM");
Serial.println("Restarting...");
delay(1000);
ESP.restart();
}
// eeprom 读取
int k,j;
j = 0;
for(k=0;k<=24;k=k+4)
{
float nan = EEPROM.readFloat(k);
if(isnan(nan))
{
j = 1;
Serial.println("frist write");
2021-12-17 06:39:29 +00:00
EEPROM.writeFloat(0, target_angle); delay(10);EEPROM.commit();
EEPROM.writeFloat(4, swing_up_voltage); delay(10);EEPROM.commit();
EEPROM.writeFloat(8, swing_up_angle); delay(10);EEPROM.commit();
EEPROM.writeFloat(12, v_p_1); delay(10);EEPROM.commit();
EEPROM.writeFloat(16, v_i_1); delay(10);EEPROM.commit();
EEPROM.writeFloat(20, v_p_2); delay(10);EEPROM.commit();
EEPROM.writeFloat(24, v_i_2); delay(10);EEPROM.commit();
}
}
if(j == 0)
{
target_angle = EEPROM.readFloat(0);
swing_up_voltage = EEPROM.readFloat(4);
swing_up_angle = EEPROM.readFloat(8);
v_p_1 = EEPROM.readFloat(12);
v_i_1 = EEPROM.readFloat(16);
v_p_2 = EEPROM.readFloat(20);
v_i_2 = EEPROM.readFloat(24);
motor.PID_velocity.P = v_p_1;
motor.PID_velocity.I = v_i_1;
}
2021-10-11 07:07:48 +00:00
//命令设置
comm.add("TA",do_TA);
comm.add("START",do_START);
comm.add("MOTOR",do_MOTOR);
comm.add("SV",do_SV);
comm.add("SA",do_SA);
comm.add("TVQ",do_TVQ);
comm.add("TVV",do_TVV);
comm.add("VV",do_VV);
comm.add("VQ",do_VQ);
//速度环参数
comm.add("VP1",do_vp1);
comm.add("VI1",do_vi1);
comm.add("VP2",do_vp2);
comm.add("VI2",do_vi2);
comm.add("TV",do_tv);
comm.add("K31",do_K31);
comm.add("K32",do_K32);
comm.add("K33",do_K33);
2021-10-27 07:46:59 +00:00
comm.add("K41",do_K41);
comm.add("K42",do_K42);
comm.add("K43",do_K43);
// kalman mpu6050 init
2021-08-25 08:23:23 +00:00
Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
while (i2cWrite(0x19, i2cData, 4, false))
; // Write to all four registers at once
while (i2cWrite(0x6B, 0x01, true))
; // PLL with X axis gyroscope reference and disable sleep mode
while (i2cRead(0x75, i2cData, 1))
;
if (i2cData[0] != 0x68)
{ // Read "WHO_AM_I" register
Serial.print(F("Error reading sensor"));
while (1)
;
}
delay(100); // Wait for sensor to stabilize
/* Set kalman and gyro starting angle */
while (i2cRead(0x3B, i2cData, 6))
;
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
double pitch = acc2rotation(accX, accY);
kalmanZ.setAngle(pitch);
gyroZangle = pitch;
timer = micros();
Serial.println("kalman mpu6050 init");
//wifi初始化
2021-08-17 17:01:19 +00:00
WiFi.mode(WIFI_AP);
while(!WiFi.softAP(ssid, password)){}; //启动AP
Serial.println("AP启动成功");
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
{
}
udp.onPacket(onPacketCallBack); //注册收到数据包事件
2021-08-25 08:23:23 +00:00
I2Ctwo.begin(23, 5, 400000); //SDA,SCL
sensor.init(&I2Ctwo);
2021-08-17 17:01:19 +00:00
//连接motor对象与传感器对象
motor.linkSensor(&sensor);
//供电电压设置 [V]
driver.voltage_power_supply = 12;
driver.init();
//连接电机和driver对象
motor.linkDriver(&driver);
//FOC模型选择
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
//运动控制模式设置
2021-08-27 01:48:34 +00:00
motor.controller = MotionControlType::velocity;
//速度PI环设置
motor.PID_velocity.P = v_p_1;
motor.PID_velocity.I = v_i_1;
2021-08-17 17:01:19 +00:00
//最大电机限制电机
motor.voltage_limit = 12;
//速度低通滤波时间常数
motor.LPF_velocity.Tf = 0.02;
2021-08-17 17:01:19 +00:00
//设置最大速度限制
motor.velocity_limit = 40;
motor.useMonitoring(Serial);
//初始化电机
motor.init();
//初始化 FOC
motor.initFOC();
Serial.println(F("Motor ready."));
Serial.println(F("Set the target velocity using serial terminal:"));
2021-10-15 01:27:26 +00:00
2021-08-25 08:23:23 +00:00
}
2021-09-15 06:02:01 +00:00
char buf[255];
2021-08-25 17:15:13 +00:00
long loop_count = 0;
double last_pitch;
2021-08-17 17:01:19 +00:00
void loop() {
2021-08-25 17:15:13 +00:00
motor.loopFOC();
2021-10-13 14:57:39 +00:00
if (1)
2021-08-25 17:15:13 +00:00
{
2021-10-13 14:57:39 +00:00
// loop_count++ == 10
// loop_count = 0;
2021-08-25 08:23:23 +00:00
while (i2cRead(0x3B, i2cData, 14));
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
timer = micros();
double pitch = acc2rotation(accX, accY);
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
if(abs(pitch-last_pitch)>100)
kalmanZ.setAngle(pitch);
2021-08-25 08:23:23 +00:00
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
last_pitch = pitch;
2021-08-25 08:23:23 +00:00
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
// Reset the gyro angle when it has drifted too much
if (gyroZangle < -180 || gyroZangle > 180)
gyroZangle = kalAngleZ;
2021-10-13 07:20:52 +00:00
float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle);
// pendulum_angle当前角度与期望角度差值在差值大的时候进行摇摆差值小的时候LQR控制电机保持平衡
if(test_flag == 0)//正常控制
{
if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90°
{
target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity());
if (abs(target_velocity) > 140)
target_velocity = _sign(target_velocity) * 140;
motor.controller = MotionControlType::velocity;
motor.move(target_velocity);
}
else // else do swing-up
{ // sets swing_up_voltage to the motor in order to swing up
motor.controller = MotionControlType::torque;
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
motor.move(target_voltage);
}
}
else if(test_flag == 1)
{
motor.controller = MotionControlType::torque;
motor.move(target_voltage);
}
else
{
motor.controller = MotionControlType::velocity;
motor.move(target_velocity);
}
//串口输出数据部分不需要的情况可以改为0
#if 1
Serial.print(pitch);Serial.print("\t");
Serial.print(kalAngleZ);Serial.print("\t");
Serial.print(target_voltage);Serial.print("\t");
Serial.print(motor.shaft_velocity);Serial.print("\t");
Serial.print(motor.voltage.q);Serial.print("\t");
Serial.print(target_angle);Serial.print("\t");
Serial.print(pendulum_angle);Serial.print("\t");
Serial.print(gyroZrate);Serial.print("\t");
2021-08-25 08:23:23 +00:00
Serial.print("\r\n");
2021-08-27 01:48:34 +00:00
#endif
//可以使用该方法wifi发送udp信息
if(wifi_flag)
{
2021-09-15 06:02:01 +00:00
memset(buf, 0, strlen(buf));
wifi_print("v", motor.shaftVelocity());
wifi_print("vq",motor.voltage.q);
2021-10-13 07:20:52 +00:00
wifi_print("p",pendulum_angle);
2021-09-15 06:02:01 +00:00
wifi_print("t",target_angle);
wifi_print("k",kalAngleZ);
wifi_print("g",gyroZrate);
udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据
2021-08-25 17:15:13 +00:00
}
}
2021-08-25 08:23:23 +00:00
}
/* mpu6050加速度转换为角度
acc2rotation(ax, ay)
acc2rotation(az, ay) */
double acc2rotation(double x, double y)
{
if (y < 0)
{
return atan(x / y) / 1.570796 * 90 + 180;
}
else if (x < 0)
{
return (atan(x / y) / 1.570796 * 90 + 360);
}
else
{
return (atan(x / y) / 1.570796 * 90);
}
}
2021-10-13 07:20:52 +00:00
2021-10-27 07:46:59 +00:00
// function constraining the angle in between -60~60
2021-08-25 17:15:13 +00:00
float constrainAngle(float x)
2021-08-25 08:23:23 +00:00
{
2021-10-13 07:20:52 +00:00
float a = 0;
if(x < 0)
{
a = 120+x;
if(a<abs(x))
return a;
}
return x;
2021-08-25 17:15:13 +00:00
}
// LQR stabilization controller functions
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
float controllerLQR(float p_angle, float p_vel, float m_vel)
{
// if angle controllable
// calculate the control law
// LQR controller u = k*x
// - k = [40, 7, 0.3]
// - k = [13.3, 21, 0.3]
// - x = [pendulum angle, pendulum velocity, motor velocity]'
2021-11-16 06:35:36 +00:00
2021-10-27 07:46:59 +00:00
if (abs(p_angle) > 2.5)
2021-08-25 17:15:13 +00:00
{
last_unstable_time = millis();
2021-11-16 06:35:36 +00:00
if(stable)
{
target_angle = EEPROM.readFloat(0);
stable = 0;
}
2021-08-25 17:15:13 +00:00
}
2021-11-16 06:35:36 +00:00
if ((millis() - last_unstable_time) > 1000&&!stable)
2021-08-25 17:15:13 +00:00
{
2021-11-16 06:35:36 +00:00
target_angle = target_angle+p_angle;
2021-08-25 17:15:13 +00:00
stable = 1;
}
float u;
2021-10-27 07:46:59 +00:00
if (!stable)
{
motor.PID_velocity.P = v_p_1;
motor.PID_velocity.I = v_i_1;
2021-10-27 07:46:59 +00:00
u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel;
}
else
{
motor.PID_velocity.P = v_p_2;
motor.PID_velocity.I = v_i_2;
2021-10-27 07:46:59 +00:00
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel;
}
2021-08-25 17:15:13 +00:00
return u;
2021-08-17 17:01:19 +00:00
}
2021-09-15 06:02:01 +00:00
void wifi_print(char * s,double num)
{
char str[255];
char n[255];
sprintf(n, "%.2f",num);
strcpy(str,s);
strcat(str, n);
strcat(buf+strlen(buf), str);
2021-10-13 07:20:52 +00:00
strcat(buf, ",\0");
2021-09-15 06:02:01 +00:00
}