/** Deng's FOC 闭环速度控制例程 测试库:SimpleFOC 2.1.1 测试硬件:灯哥开源FOC V1.0 在串口窗口中输入:T+速度,就可以使得两个电机闭环转动 比如让两个电机都以 10rad/s 的速度转动,则输入:T10 在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(7) 中的值,设置为自己的极对数数字 程序默认设置的供电电压为 16.8V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值 默认PID针对的电机是 GB6010 ,使用自己的电机需要修改PID参数,才能实现更好效果 */ #include #include "Command.h" #include #include //引用以使用异步UDP #include // Source: https://github.com/TKJElectronics/KalmanFilter Kalman kalmanZ; #define gyroZ_OFF -0.19 #define balance_voltage 10 //V /* ----IMU Data---- */ double accX, accY, accZ; double gyroX, gyroY, gyroZ; int16_t tempRaw; bool stable = 0; uint32_t last_unstable_time; double gyroZangle; // Angle calculate using the gyro only double compAngleZ; // Calculated angle using a complementary filter double kalAngleZ; // Calculated angle using a Kalman filter uint32_t timer; uint8_t i2cData[14]; // Buffer for I2C data /* ----FOC Data---- */ // driver instance double acc2rotation(double x, double y); float constrainAngle(float x); const char *ssid = "esp32"; const char *password = "12345678"; bool wifi_flag = 0; AsyncUDP udp; //创建UDP对象 unsigned int localUdpPort = 2333; //本地端口号 void wifi_print(char * s,double num); MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C); float PID_P = 1; // float PID_I = 0; // float PID_D = 0; // TwoWire I2Ctwo = TwoWire(1); PIDController angle_pid = PIDController(PID_P, PID_I, PID_D, balance_voltage * 0.7, 20000); LowPassFilter lpf_throttle{0.00}; #define FLAG_V 0 //倒立摆参数 float LQR_K1_1 = 4; //摇摆到平衡 float LQR_K1_2 = 1.5; // float LQR_K1_3 = 0.30; // float LQR_K2_1 = 3.49; //平衡态 float LQR_K2_2 = 0.26; // float LQR_K2_3 = 0.15; // float LQR_K3_1 = 5.25; //平衡态 float LQR_K3_2 = 3.18; // float LQR_K3_3 = 1.86; // //电机参数 BLDCMotor motor = BLDCMotor(5); BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22); float target_velocity = 0; float target_angle = 90; float target_voltage = 0; float swing_up_voltage = 2; //命令设置 Command comm; bool Motor_enable_flag = 0; void do_TA(char* cmd) { comm.scalar(&target_angle, cmd); } void do_START(char* cmd) { wifi_flag = !wifi_flag; } void do_MOTOR(char* cmd) { if(Motor_enable_flag) digitalWrite(22,HIGH); else digitalWrite(22,LOW); Motor_enable_flag = !Motor_enable_flag; } void do_SW(char* cmd) { comm.scalar(&swing_up_voltage, cmd); } #if FLAG_V void do_K11(char* cmd) { comm.scalar(&LQR_K1_1, cmd); } void do_K12(char* cmd) { comm.scalar(&LQR_K1_2, cmd); } void do_K13(char* cmd) { comm.scalar(&LQR_K1_3, cmd); } void do_K21(char* cmd) { comm.scalar(&LQR_K2_1, cmd); } void do_K22(char* cmd) { comm.scalar(&LQR_K2_2, cmd); } void do_K23(char* cmd) { comm.scalar(&LQR_K2_3, cmd); } #else void do_vp(char* cmd) { comm.scalar(&motor.PID_velocity.P, cmd); } void do_vi(char* cmd) { comm.scalar(&motor.PID_velocity.I, cmd); } void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); } void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); } void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); } void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); } #endif void onPacketCallBack(AsyncUDPPacket packet) { char* da; da= (char*)(packet.data()); Serial.println(da); comm.run(da); // packet.print("reply data"); } // instantiate the commander void setup() { Serial.begin(115200); //命令设置 comm.add("TA",do_TA); comm.add("START",do_START); comm.add("MOTOR",do_MOTOR); comm.add("SW",do_SW); #if FLAG_V comm.add("K11",do_K11); comm.add("K12",do_K12); comm.add("K13",do_K13); comm.add("K21",do_K21); comm.add("K22",do_K22); comm.add("K23",do_K23); #else comm.add("VP",do_vp); comm.add("VI",do_vi); comm.add("TV",do_tv); comm.add("K31",do_K31); comm.add("K32",do_K32); comm.add("K33",do_K33); #endif // kalman mpu6050 init Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g while (i2cWrite(0x19, i2cData, 4, false)) ; // Write to all four registers at once while (i2cWrite(0x6B, 0x01, true)) ; // PLL with X axis gyroscope reference and disable sleep mode while (i2cRead(0x75, i2cData, 1)) ; if (i2cData[0] != 0x68) { // Read "WHO_AM_I" register Serial.print(F("Error reading sensor")); while (1) ; } delay(100); // Wait for sensor to stabilize /* Set kalman and gyro starting angle */ while (i2cRead(0x3B, i2cData, 6)) ; accX = (int16_t)((i2cData[0] << 8) | i2cData[1]); accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); double pitch = acc2rotation(accX, accY); kalmanZ.setAngle(pitch); gyroZangle = pitch; timer = micros(); Serial.println("kalman mpu6050 init"); //wifi初始化 WiFi.mode(WIFI_AP); while(!WiFi.softAP(ssid, password)){}; //启动AP Serial.println("AP启动成功"); while (!udp.listen(localUdpPort)) //等待udp监听设置成功 { } udp.onPacket(onPacketCallBack); //注册收到数据包事件 I2Ctwo.begin(23, 5, 400000); //SDA,SCL sensor.init(&I2Ctwo); //连接motor对象与传感器对象 motor.linkSensor(&sensor); //供电电压设置 [V] driver.voltage_power_supply = 12; driver.init(); //连接电机和driver对象 motor.linkDriver(&driver); //FOC模型选择 motor.foc_modulation = FOCModulationType::SpaceVectorPWM; //运动控制模式设置 #if FLAG_V motor.controller = MotionControlType::torque; #else motor.controller = MotionControlType::velocity; //速度PI环设置 motor.PID_velocity.P = 0.5; motor.PID_velocity.I = 10; #endif //最大电机限制电机 motor.voltage_limit = 12; //速度低通滤波时间常数 motor.LPF_velocity.Tf = 0.01; //设置最大速度限制 motor.velocity_limit = 40; motor.useMonitoring(Serial); //初始化电机 motor.init(); //初始化 FOC motor.initFOC(); Serial.println(F("Motor ready.")); Serial.println(F("Set the target velocity using serial terminal:")); } char buf[255]; long loop_count = 0; void loop() { motor.loopFOC(); if (1) { // loop_count++ == 10 // loop_count = 0; while (i2cRead(0x3B, i2cData, 14)); accX = (int16_t)((i2cData[0] << 8) | i2cData[1]); accY = (int16_t)((i2cData[2] << 8) | i2cData[3]); accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]); tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]); gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]); gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]); gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]); double dt = (double)(micros() - timer) / 1000000; // Calculate delta time timer = micros(); double pitch = acc2rotation(accX, accY); double gyroZrate = gyroZ / 131.0; // Convert to deg/s kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt); gyroZangle += (gyroZrate + gyroZ_OFF) * dt; compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch; // Reset the gyro angle when it has drifted too much if (gyroZangle < -180 || gyroZangle > 180) gyroZangle = kalAngleZ; float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle); // float pendulum_angle = constrainAngle((fmod(kalAngleZ * 3, 360.0) / 3.0 - target_angle) / 57.29578); #if FLAG_V if (abs(pendulum_angle) < 12) // if angle small enough stabilize 0.5~30°,1.5~90° { target_voltage = controllerLQR(angle_pid(pendulum_angle), gyroZrate, motor.shaftVelocity()); // limit the voltage set to the motor if (abs(target_voltage) > motor.voltage_limit * 0.7) target_voltage = _sign(target_voltage) * motor.voltage_limit * 0.7; } else // else do swing-up { // sets 1.5V to the motor in order to swing up target_voltage = -_sign(gyroZrate) * 1.5; } // set the target voltage to the motor if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000))) { motor.move(0); } else { motor.move(lpf_throttle(target_voltage)); } #else if (abs(pendulum_angle) < 18) // if angle small enough stabilize 0.5~30°,1.5~90° { target_velocity = LQR_K3_1*pendulum_angle+LQR_K3_2*gyroZrate+LQR_K3_3*motor.shaftVelocity(); if (abs(target_velocity) > 140) target_velocity = _sign(target_velocity) * 140; motor.controller = MotionControlType::velocity; motor.move(target_velocity); } else // else do swing-up { // sets 1.5V to the motor in order to swing up motor.controller = MotionControlType::torque; target_voltage = -_sign(gyroZrate) * swing_up_voltage; motor.move(target_voltage); } #endif #if 0 //Serial.print(gyroZangle);Serial.print("\t"); Serial.print(kalAngleZ);Serial.print("\t"); Serial.print(target_voltage);Serial.print("\t"); // Serial.print(target_velocity);Serial.print("\t"); Serial.print(motor.shaft_velocity);Serial.print("\t"); Serial.print(target_angle);Serial.print("\t"); Serial.print(pendulum_angle);Serial.print("\t"); Serial.print(gyroZrate);Serial.print("\t"); Serial.print("\r\n"); #endif // motor.move(target_velocity); //可以使用该方法广播信息 if(wifi_flag) { memset(buf, 0, strlen(buf)); wifi_print("v", motor.shaftVelocity()); wifi_print("vq",motor.voltage.q); wifi_print("p",pendulum_angle); wifi_print("t",target_angle); wifi_print("k",kalAngleZ); wifi_print("g",gyroZrate); udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据 } } } /* mpu6050加速度转换为角度 acc2rotation(ax, ay) acc2rotation(az, ay) */ double acc2rotation(double x, double y) { if (y < 0) { return atan(x / y) / 1.570796 * 90 + 180; } else if (x < 0) { return (atan(x / y) / 1.570796 * 90 + 360); } else { return (atan(x / y) / 1.570796 * 90); } } // function constraining the angle in between -pi and pi, in degrees -180 and 180 float constrainAngle(float x) { float a = 0; if(x < 0) { a = 120+x; if(a 1.5) { last_unstable_time = millis(); stable = 0; } if ((millis() - last_unstable_time) > 1000) { stable = 1; } //Serial.println(stable); float u; if (!stable) { u = LQR_K1_1 * p_angle + LQR_K1_2 * p_vel + LQR_K1_3 * m_vel; } else { //u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel; u = LQR_K2_1 * p_angle + LQR_K2_2 * p_vel + LQR_K2_3 * m_vel; } return u; } void wifi_print(char * s,double num) { char str[255]; char n[255]; sprintf(n, "%.2f",num); strcpy(str,s); strcat(str, n); strcat(buf+strlen(buf), str); strcat(buf, ",\0"); }