foc/arduino/main/main.ino

409 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/**
Deng's FOC 闭环速度控制例程 测试库SimpleFOC 2.1.1 测试硬件灯哥开源FOC V1.0
在串口窗口中输入T+速度,就可以使得两个电机闭环转动
比如让两个电机都以 10rad/s 的速度转动则输入T10
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(7) 中的值,设置为自己的极对数数字
程序默认设置的供电电压为 16.8V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
默认PID针对的电机是 GB6010 使用自己的电机需要修改PID参数才能实现更好效果
*/
#include <SimpleFOC.h>
#include "Command.h"
#include <WiFi.h>
#include <AsyncUDP.h> //引用以使用异步UDP
#include <Kalman.h> // Source: https://github.com/TKJElectronics/KalmanFilter
Kalman kalmanZ;
#define gyroZ_OFF -0.19
#define balance_voltage 10 //V
/* ----IMU Data---- */
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;
bool stable = 0;
uint32_t last_unstable_time;
double gyroZangle; // Angle calculate using the gyro only
double compAngleZ; // Calculated angle using a complementary filter
double kalAngleZ; // Calculated angle using a Kalman filter
uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data
/* ----FOC Data---- */
// driver instance
double acc2rotation(double x, double y);
float constrainAngle(float x);
const char *ssid = "esp32";
const char *password = "12345678";
bool wifi_flag = 0;
AsyncUDP udp; //创建UDP对象
unsigned int localUdpPort = 2333; //本地端口号
void wifi_print(char * s,double num);
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
float PID_P = 1; //
float PID_I = 0; //
float PID_D = 0; //
TwoWire I2Ctwo = TwoWire(1);
PIDController angle_pid = PIDController(PID_P, PID_I, PID_D, balance_voltage * 0.7, 20000);
LowPassFilter lpf_throttle{0.00};
#define FLAG_V 0
//倒立摆参数
float LQR_K1_1 = 4; //摇摆到平衡
float LQR_K1_2 = 1.5; //
float LQR_K1_3 = 0.30; //
float LQR_K2_1 = 3.49; //平衡态
float LQR_K2_2 = 0.26; //
float LQR_K2_3 = 0.15; //
float LQR_K3_1 = 5.25; //平衡态
float LQR_K3_2 = 3.18; //
float LQR_K3_3 = 1.86; //
//电机参数
BLDCMotor motor = BLDCMotor(5);
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
float target_velocity = 0;
float target_angle = 90;
float target_voltage = 0;
float swing_up_voltage = 2;
//命令设置
Command comm;
bool Motor_enable_flag = 0;
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd); }
void do_START(char* cmd) { wifi_flag = !wifi_flag; }
void do_MOTOR(char* cmd)
{
if(Motor_enable_flag)
digitalWrite(22,HIGH);
else
digitalWrite(22,LOW);
Motor_enable_flag = !Motor_enable_flag;
}
void do_SW(char* cmd) { comm.scalar(&swing_up_voltage, cmd); }
#if FLAG_V
void do_K11(char* cmd) { comm.scalar(&LQR_K1_1, cmd); }
void do_K12(char* cmd) { comm.scalar(&LQR_K1_2, cmd); }
void do_K13(char* cmd) { comm.scalar(&LQR_K1_3, cmd); }
void do_K21(char* cmd) { comm.scalar(&LQR_K2_1, cmd); }
void do_K22(char* cmd) { comm.scalar(&LQR_K2_2, cmd); }
void do_K23(char* cmd) { comm.scalar(&LQR_K2_3, cmd); }
#else
void do_vp(char* cmd) { comm.scalar(&motor.PID_velocity.P, cmd); }
void do_vi(char* cmd) { comm.scalar(&motor.PID_velocity.I, cmd); }
void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); }
void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); }
void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); }
void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); }
#endif
void onPacketCallBack(AsyncUDPPacket packet)
{
char* da;
da= (char*)(packet.data());
Serial.println(da);
comm.run(da);
// packet.print("reply data");
}
// instantiate the commander
void setup() {
Serial.begin(115200);
//命令设置
comm.add("TA",do_TA);
comm.add("START",do_START);
comm.add("MOTOR",do_MOTOR);
comm.add("SW",do_SW);
#if FLAG_V
comm.add("K11",do_K11);
comm.add("K12",do_K12);
comm.add("K13",do_K13);
comm.add("K21",do_K21);
comm.add("K22",do_K22);
comm.add("K23",do_K23);
#else
comm.add("VP",do_vp);
comm.add("VI",do_vi);
comm.add("TV",do_tv);
comm.add("K31",do_K31);
comm.add("K32",do_K32);
comm.add("K33",do_K33);
#endif
// kalman mpu6050 init
Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
while (i2cWrite(0x19, i2cData, 4, false))
; // Write to all four registers at once
while (i2cWrite(0x6B, 0x01, true))
; // PLL with X axis gyroscope reference and disable sleep mode
while (i2cRead(0x75, i2cData, 1))
;
if (i2cData[0] != 0x68)
{ // Read "WHO_AM_I" register
Serial.print(F("Error reading sensor"));
while (1)
;
}
delay(100); // Wait for sensor to stabilize
/* Set kalman and gyro starting angle */
while (i2cRead(0x3B, i2cData, 6))
;
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
double pitch = acc2rotation(accX, accY);
kalmanZ.setAngle(pitch);
gyroZangle = pitch;
timer = micros();
Serial.println("kalman mpu6050 init");
//wifi初始化
WiFi.mode(WIFI_AP);
while(!WiFi.softAP(ssid, password)){}; //启动AP
Serial.println("AP启动成功");
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
{
}
udp.onPacket(onPacketCallBack); //注册收到数据包事件
I2Ctwo.begin(23, 5, 400000); //SDA,SCL
sensor.init(&I2Ctwo);
//连接motor对象与传感器对象
motor.linkSensor(&sensor);
//供电电压设置 [V]
driver.voltage_power_supply = 12;
driver.init();
//连接电机和driver对象
motor.linkDriver(&driver);
//FOC模型选择
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
//运动控制模式设置
#if FLAG_V
motor.controller = MotionControlType::torque;
#else
motor.controller = MotionControlType::velocity;
//速度PI环设置
motor.PID_velocity.P = 0.5;
motor.PID_velocity.I = 10;
#endif
//最大电机限制电机
motor.voltage_limit = 12;
//速度低通滤波时间常数
motor.LPF_velocity.Tf = 0.01;
//设置最大速度限制
motor.velocity_limit = 40;
motor.useMonitoring(Serial);
//初始化电机
motor.init();
//初始化 FOC
motor.initFOC();
Serial.println(F("Motor ready."));
Serial.println(F("Set the target velocity using serial terminal:"));
}
char buf[255];
long loop_count = 0;
void loop() {
motor.loopFOC();
if (1)
{
// loop_count++ == 10
// loop_count = 0;
while (i2cRead(0x3B, i2cData, 14));
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
timer = micros();
double pitch = acc2rotation(accX, accY);
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
// Reset the gyro angle when it has drifted too much
if (gyroZangle < -180 || gyroZangle > 180)
gyroZangle = kalAngleZ;
float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle);
// float pendulum_angle = constrainAngle((fmod(kalAngleZ * 3, 360.0) / 3.0 - target_angle) / 57.29578);
#if FLAG_V
if (abs(pendulum_angle) < 12) // if angle small enough stabilize 0.5~30°,1.5~90°
{
target_voltage = controllerLQR(angle_pid(pendulum_angle), gyroZrate, motor.shaftVelocity());
// limit the voltage set to the motor
if (abs(target_voltage) > motor.voltage_limit * 0.7)
target_voltage = _sign(target_voltage) * motor.voltage_limit * 0.7;
}
else // else do swing-up
{ // sets 1.5V to the motor in order to swing up
target_voltage = -_sign(gyroZrate) * 1.5;
}
// set the target voltage to the motor
if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000)))
{
motor.move(0);
}
else
{
motor.move(lpf_throttle(target_voltage));
}
#else
if (abs(pendulum_angle) < 18) // if angle small enough stabilize 0.5~30°,1.5~90°
{
target_velocity = LQR_K3_1*pendulum_angle+LQR_K3_2*gyroZrate+LQR_K3_3*motor.shaftVelocity();
if (abs(target_velocity) > 140)
target_velocity = _sign(target_velocity) * 140;
motor.controller = MotionControlType::velocity;
motor.move(target_velocity);
}
else // else do swing-up
{ // sets 1.5V to the motor in order to swing up
motor.controller = MotionControlType::torque;
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
motor.move(target_voltage);
}
#endif
#if 0
//Serial.print(gyroZangle);Serial.print("\t");
Serial.print(kalAngleZ);Serial.print("\t");
Serial.print(target_voltage);Serial.print("\t");
// Serial.print(target_velocity);Serial.print("\t");
Serial.print(motor.shaft_velocity);Serial.print("\t");
Serial.print(target_angle);Serial.print("\t");
Serial.print(pendulum_angle);Serial.print("\t");
Serial.print(gyroZrate);Serial.print("\t");
Serial.print("\r\n");
#endif
// motor.move(target_velocity);
//可以使用该方法广播信息
if(wifi_flag)
{
memset(buf, 0, strlen(buf));
wifi_print("v", motor.shaftVelocity());
wifi_print("vq",motor.voltage.q);
wifi_print("p",pendulum_angle);
wifi_print("t",target_angle);
wifi_print("k",kalAngleZ);
wifi_print("g",gyroZrate);
udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据
}
}
}
/* mpu6050加速度转换为角度
acc2rotation(ax, ay)
acc2rotation(az, ay) */
double acc2rotation(double x, double y)
{
if (y < 0)
{
return atan(x / y) / 1.570796 * 90 + 180;
}
else if (x < 0)
{
return (atan(x / y) / 1.570796 * 90 + 360);
}
else
{
return (atan(x / y) / 1.570796 * 90);
}
}
// function constraining the angle in between -pi and pi, in degrees -180 and 180
float constrainAngle(float x)
{
float a = 0;
if(x < 0)
{
a = 120+x;
if(a<abs(x))
return a;
}
return x;
}
// LQR stabilization controller functions
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
float controllerLQR(float p_angle, float p_vel, float m_vel)
{
// if angle controllable
// calculate the control law
// LQR controller u = k*x
// - k = [40, 7, 0.3]
// - k = [13.3, 21, 0.3]
// - x = [pendulum angle, pendulum velocity, motor velocity]'
if (abs(p_angle) > 1.5)
{
last_unstable_time = millis();
stable = 0;
}
if ((millis() - last_unstable_time) > 1000)
{
stable = 1;
}
//Serial.println(stable);
float u;
if (!stable)
{
u = LQR_K1_1 * p_angle + LQR_K1_2 * p_vel + LQR_K1_3 * m_vel;
}
else
{
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
u = LQR_K2_1 * p_angle + LQR_K2_2 * p_vel + LQR_K2_3 * m_vel;
}
return u;
}
void wifi_print(char * s,double num)
{
char str[255];
char n[255];
sprintf(n, "%.2f",num);
strcpy(str,s);
strcat(str, n);
strcat(buf+strlen(buf), str);
strcat(buf, ",\0");
}