371 lines
10 KiB
C++
371 lines
10 KiB
C++
/**
|
||
Deng's FOC 闭环速度控制例程 测试库:SimpleFOC 2.1.1 测试硬件:灯哥开源FOC V1.0
|
||
在串口窗口中输入:T+速度,就可以使得两个电机闭环转动
|
||
比如让两个电机都以 10rad/s 的速度转动,则输入:T10
|
||
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(7) 中的值,设置为自己的极对数数字
|
||
程序默认设置的供电电压为 16.8V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
|
||
默认PID针对的电机是 GB6010 ,使用自己的电机需要修改PID参数,才能实现更好效果
|
||
*/
|
||
#include <SimpleFOC.h>
|
||
#include "Command.h"
|
||
#include <WiFi.h>
|
||
#include <AsyncUDP.h> //引用以使用异步UDP
|
||
#include <Kalman.h> // Source: https://github.com/TKJElectronics/KalmanFilter
|
||
Kalman kalmanZ;
|
||
#define gyroZ_OFF -0.52
|
||
#define swing_up_voltage 5 //V
|
||
#define balance_voltage 10 //V
|
||
/* ----IMU Data---- */
|
||
|
||
double accX, accY, accZ;
|
||
double gyroX, gyroY, gyroZ;
|
||
int16_t tempRaw;
|
||
bool stable = 0;
|
||
uint32_t last_unstable_time;
|
||
|
||
double gyroZangle; // Angle calculate using the gyro only
|
||
double compAngleZ; // Calculated angle using a complementary filter
|
||
double kalAngleZ; // Calculated angle using a Kalman filter
|
||
|
||
uint32_t timer;
|
||
uint8_t i2cData[14]; // Buffer for I2C data
|
||
/* ----FOC Data---- */
|
||
|
||
// driver instance
|
||
double acc2rotation(double x, double y);
|
||
float constrainAngle(float x);
|
||
const char *ssid = "esp32";
|
||
const char *password = "12345678";
|
||
|
||
bool wifi_flag = 0;
|
||
AsyncUDP udp; //创建UDP对象
|
||
unsigned int localUdpPort = 2333; //本地端口号
|
||
void wifi_print(char * s,double num);
|
||
|
||
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
|
||
float PID_P = 1; //
|
||
float PID_I = 0; //
|
||
float PID_D = 0; //
|
||
TwoWire I2Ctwo = TwoWire(1);
|
||
PIDController angle_pid = PIDController(PID_P, PID_I, PID_D, balance_voltage * 0.7, 20000);
|
||
LowPassFilter lpf_throttle{0.00};
|
||
#define FLAG_V 1
|
||
//倒立摆参数
|
||
float LQR_K1 = 400; //摇摆到平衡
|
||
float LQR_K2 = 80; //
|
||
float LQR_K3 = 0.50; //
|
||
|
||
float LQR_K1_1 = 200; //平衡态
|
||
float LQR_K2_1 = 15; //
|
||
float LQR_K3_1 = 0.15; //
|
||
|
||
|
||
//电机参数
|
||
BLDCMotor motor = BLDCMotor(5);
|
||
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
|
||
|
||
|
||
//命令设置
|
||
Command comm;
|
||
double target_velocity = 0;
|
||
double target_angle = 91;
|
||
double target_voltage = 0;
|
||
void do_K1(char* cmd) { comm.scalar(&LQR_K1, cmd); }
|
||
|
||
void onPacketCallBack(AsyncUDPPacket packet)
|
||
{
|
||
char* da;
|
||
da= (char*)(packet.data());
|
||
Serial.println(da);
|
||
comm.run(da);
|
||
Serial.println(LQR_K1);
|
||
// target_velocity = atoi();
|
||
// Serial.print("数据内容: ");
|
||
// Serial.println(target_velocity);
|
||
wifi_flag = 1;
|
||
// packet.print("reply data");
|
||
}
|
||
// instantiate the commander
|
||
void setup() {
|
||
Serial.begin(115200);
|
||
//命令设置
|
||
comm.add("K1",do_K1);
|
||
|
||
// kalman mpu6050 init
|
||
Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz
|
||
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
|
||
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
|
||
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
|
||
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
|
||
while (i2cWrite(0x19, i2cData, 4, false))
|
||
; // Write to all four registers at once
|
||
while (i2cWrite(0x6B, 0x01, true))
|
||
; // PLL with X axis gyroscope reference and disable sleep mode
|
||
|
||
while (i2cRead(0x75, i2cData, 1))
|
||
;
|
||
if (i2cData[0] != 0x68)
|
||
{ // Read "WHO_AM_I" register
|
||
Serial.print(F("Error reading sensor"));
|
||
while (1)
|
||
;
|
||
}
|
||
|
||
delay(100); // Wait for sensor to stabilize
|
||
|
||
/* Set kalman and gyro starting angle */
|
||
while (i2cRead(0x3B, i2cData, 6))
|
||
;
|
||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||
double pitch = acc2rotation(accX, accY);
|
||
|
||
kalmanZ.setAngle(pitch);
|
||
gyroZangle = pitch;
|
||
|
||
timer = micros();
|
||
Serial.println("kalman mpu6050 init");
|
||
|
||
//wifi初始化
|
||
WiFi.mode(WIFI_AP);
|
||
while(!WiFi.softAP(ssid, password)){}; //启动AP
|
||
Serial.println("AP启动成功");
|
||
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
|
||
{
|
||
}
|
||
udp.onPacket(onPacketCallBack); //注册收到数据包事件
|
||
|
||
I2Ctwo.begin(23, 5, 400000); //SDA,SCL
|
||
sensor.init(&I2Ctwo);
|
||
|
||
//连接motor对象与传感器对象
|
||
motor.linkSensor(&sensor);
|
||
|
||
//供电电压设置 [V]
|
||
driver.voltage_power_supply = 12;
|
||
driver.init();
|
||
|
||
//连接电机和driver对象
|
||
motor.linkDriver(&driver);
|
||
|
||
//FOC模型选择
|
||
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
|
||
|
||
//运动控制模式设置
|
||
#if FLAG_V
|
||
motor.controller = MotionControlType::torque;
|
||
#else
|
||
motor.controller = MotionControlType::velocity;
|
||
//速度PI环设置
|
||
motor.PID_velocity.P = 20;
|
||
motor.PID_velocity.I = 20;
|
||
#endif
|
||
|
||
|
||
//最大电机限制电机
|
||
motor.voltage_limit = 12;
|
||
|
||
//速度低通滤波时间常数
|
||
motor.LPF_velocity.Tf = 0.01;
|
||
|
||
//设置最大速度限制
|
||
motor.velocity_limit = 40;
|
||
|
||
motor.useMonitoring(Serial);
|
||
|
||
//初始化电机
|
||
motor.init();
|
||
|
||
//初始化 FOC
|
||
motor.initFOC();
|
||
|
||
Serial.println(F("Motor ready."));
|
||
Serial.println(F("Set the target velocity using serial terminal:"));
|
||
|
||
|
||
}
|
||
char buf[255];
|
||
int t_v;
|
||
int lim_v = 60;
|
||
long loop_count = 0;
|
||
void loop() {
|
||
motor.loopFOC();
|
||
if (loop_count++ == 10)
|
||
{
|
||
loop_count = 0;
|
||
while (i2cRead(0x3B, i2cData, 14));
|
||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||
tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
|
||
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
|
||
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
|
||
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
|
||
|
||
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
|
||
timer = micros();
|
||
|
||
double pitch = acc2rotation(accX, accY);
|
||
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
|
||
|
||
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
|
||
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
|
||
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
|
||
|
||
// Reset the gyro angle when it has drifted too much
|
||
if (gyroZangle < -180 || gyroZangle > 180)
|
||
gyroZangle = kalAngleZ;
|
||
|
||
|
||
float pendulum_angle = constrainAngle((fmod(kalAngleZ * 3, 360.0) / 3.0 - target_angle) / 57.29578);
|
||
#if FLAG_V
|
||
if (abs(pendulum_angle) < 0.6) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||
{
|
||
target_voltage = controllerLQR(angle_pid(pendulum_angle), gyroZrate / 57.29578, motor.shaftVelocity());
|
||
// limit the voltage set to the motor
|
||
if (abs(target_voltage) > motor.voltage_limit * 0.7)
|
||
target_voltage = _sign(target_voltage) * motor.voltage_limit * 0.7;
|
||
}
|
||
else // else do swing-up
|
||
{ // sets 1.5V to the motor in order to swing up
|
||
target_voltage = -_sign(gyroZrate) * 3;
|
||
}
|
||
|
||
// set the target voltage to the motor
|
||
if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000)))
|
||
{
|
||
motor.move(0);
|
||
}
|
||
else
|
||
{
|
||
motor.move(lpf_throttle(target_voltage));
|
||
}
|
||
|
||
#else
|
||
if (abs(pendulum_angle) < 0.6) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||
{
|
||
target_velocity = controllerLQR(angle_pid(pendulum_angle), gyroZrate / 57.29578, motor.shaftVelocity());
|
||
// limit the voltage set to the motor
|
||
if (abs(target_velocity) > lim_v)
|
||
target_velocity = _sign(target_velocity) * lim_v;
|
||
}
|
||
else // else do swing-up
|
||
{ // sets 1.5V to the motor in order to swing up
|
||
target_velocity = -_sign(gyroZrate) * 30;
|
||
}
|
||
|
||
// set the target voltage to the motor
|
||
if (accZ < -13000 && ((accX * accX + accY * accY) > (14000 * 14000)))
|
||
{
|
||
motor.move(0);
|
||
}
|
||
else
|
||
{
|
||
motor.move(lpf_throttle(target_velocity));
|
||
}
|
||
|
||
#endif
|
||
#if 0
|
||
|
||
Serial.print(kalAngleZ);Serial.print("\t");
|
||
|
||
Serial.print(target_voltage);Serial.print("\t");
|
||
// Serial.print(target_velocity);Serial.print("\t");
|
||
Serial.print(motor.shaft_velocity);Serial.print("\t");
|
||
Serial.print(target_angle);Serial.print("\t");
|
||
Serial.print(pendulum_angle+target_angle);Serial.print("\t");
|
||
Serial.print(gyroZrate);Serial.print("\t");
|
||
Serial.print("\r\n");
|
||
#endif
|
||
// motor.move(target_velocity);
|
||
//可以使用该方法广播信息
|
||
if(wifi_flag)
|
||
{
|
||
memset(buf, 0, strlen(buf));
|
||
wifi_print("p",pendulum_angle+target_angle);
|
||
wifi_print("t",target_angle);
|
||
wifi_print("k",kalAngleZ);
|
||
wifi_print("g",gyroZrate);
|
||
// IPAddress broadcastAddr("192.168.4.255")
|
||
//IPAddress broadcastAddr(((uint32_t)"192.168.4.2")); //计算广播地址
|
||
// IPAddress broadcastAddr((~(uint32_t)WiFi.subnetMask())|((uint32_t)WiFi.localIP())); //计算广播地址
|
||
// Serial.println(buf);
|
||
//const char * udpAddress = "192.168.4.255";
|
||
udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据
|
||
}
|
||
}
|
||
}
|
||
/* mpu6050加速度转换为角度
|
||
acc2rotation(ax, ay)
|
||
acc2rotation(az, ay) */
|
||
double acc2rotation(double x, double y)
|
||
{
|
||
if (y < 0)
|
||
{
|
||
return atan(x / y) / 1.570796 * 90 + 180;
|
||
}
|
||
else if (x < 0)
|
||
{
|
||
return (atan(x / y) / 1.570796 * 90 + 360);
|
||
}
|
||
else
|
||
{
|
||
return (atan(x / y) / 1.570796 * 90);
|
||
}
|
||
}
|
||
// function constraining the angle in between -pi and pi, in degrees -180 and 180
|
||
float constrainAngle(float x)
|
||
{
|
||
x = fmod(x + M_PI, _2PI);
|
||
if (x < 0)
|
||
x += _2PI;
|
||
return x - M_PI;
|
||
}
|
||
// LQR stabilization controller functions
|
||
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
|
||
float controllerLQR(float p_angle, float p_vel, float m_vel)
|
||
{
|
||
// if angle controllable
|
||
// calculate the control law
|
||
// LQR controller u = k*x
|
||
// - k = [40, 7, 0.3]
|
||
// - k = [13.3, 21, 0.3]
|
||
// - x = [pendulum angle, pendulum velocity, motor velocity]'
|
||
if (abs(p_angle) > 0.05)
|
||
{
|
||
last_unstable_time = millis();
|
||
stable = 0;
|
||
}
|
||
if ((millis() - last_unstable_time) > 1000)
|
||
{
|
||
stable = 1;
|
||
}
|
||
|
||
//Serial.println(stable);
|
||
float u;
|
||
if (!stable)
|
||
{
|
||
u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||
}
|
||
else
|
||
{
|
||
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||
u = LQR_K1_1 * p_angle + LQR_K2_1 * p_vel + LQR_K3_1 * m_vel;
|
||
}
|
||
|
||
|
||
return u;
|
||
}
|
||
void wifi_print(char * s,double num)
|
||
{
|
||
char str[255];
|
||
char n[255];
|
||
sprintf(n, "%.2f",num);
|
||
strcpy(str,s);
|
||
strcat(str, n);
|
||
strcat(buf+strlen(buf), str);
|
||
strcat(buf, ",");
|
||
|
||
}
|