451 lines
13 KiB
C++
451 lines
13 KiB
C++
/**
|
||
arduino开发环境-灯哥开源FOChttps://gitee.com/ream_d/Deng-s-foc-controller,并安装Kalman。
|
||
FOC引脚32, 33, 25, 22 22为enable
|
||
AS5600霍尔传感器 SDA-23 SCL-5 MPU6050六轴传感器 SDA-19 SCL-18
|
||
本程序有两种平衡方式, FLAG_V为1时使用电压控制,为0时候速度控制。电压控制时LQR参数使用K1和K2,速度控制时LQR参数使用K3和K4
|
||
在wifi上位机窗口中输入:TA+角度,就可以修改平衡角度
|
||
比如让平衡角度为90度,则输入:TA90,并且会存入eeprom的位置0中 注:wifi发送命令不能过快,因为每次都会保存进eeprom
|
||
在使用自己的电机时,请一定记得修改默认极对数,即 BLDCMotor(5) 中的值,设置为自己的极对数数字,磁铁数量/2
|
||
程序默认设置的供电电压为 12V,用其他电压供电请记得修改 voltage_power_supply , voltage_limit 变量中的值
|
||
默认PID针对的电机是 GB2204 ,使用自己的电机需要修改PID参数,才能实现更好效果
|
||
*/
|
||
#include <SimpleFOC.h>
|
||
#include "Command.h"
|
||
#include <WiFi.h>
|
||
#include <AsyncUDP.h> //引用以使用异步UDP
|
||
#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter
|
||
#include "EEPROM.h"
|
||
Kalman kalmanZ;
|
||
#define gyroZ_OFF -0.19
|
||
/* ----IMU Data---- */
|
||
|
||
double accX, accY, accZ;
|
||
double gyroX, gyroY, gyroZ;
|
||
int16_t tempRaw;
|
||
bool stable = 0;
|
||
uint32_t last_unstable_time;
|
||
|
||
double gyroZangle; // Angle calculate using the gyro only
|
||
double compAngleZ; // Calculated angle using a complementary filter
|
||
double kalAngleZ; // Calculated angle using a Kalman filter
|
||
|
||
uint32_t timer;
|
||
uint8_t i2cData[14]; // Buffer for I2C data
|
||
/* ----FOC Data---- */
|
||
|
||
// driver instance
|
||
double acc2rotation(double x, double y);
|
||
float constrainAngle(float x);
|
||
const char *ssid = "esp32";
|
||
const char *password = "12345678";
|
||
|
||
bool wifi_flag = 0;
|
||
AsyncUDP udp; //创建UDP对象
|
||
unsigned int localUdpPort = 2333; //本地端口号
|
||
void wifi_print(char * s,double num);
|
||
|
||
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);
|
||
TwoWire I2Ctwo = TwoWire(1);
|
||
LowPassFilter lpf_throttle{0.00};
|
||
|
||
//倒立摆参数
|
||
float LQR_K3_1 = 10; //摇摆到平衡
|
||
float LQR_K3_2 = 1.7; //
|
||
float LQR_K3_3 = 1.75; //
|
||
|
||
float LQR_K4_1 = 2.4; //摇摆到平衡
|
||
float LQR_K4_2 = 1.5; //
|
||
float LQR_K4_3 = 1.42; //
|
||
|
||
//电机参数
|
||
BLDCMotor motor = BLDCMotor(5);
|
||
BLDCDriver3PWM driver = BLDCDriver3PWM(32, 33, 25, 22);
|
||
float target_velocity = 0;
|
||
float target_angle = 89.3;
|
||
float target_voltage = 0;
|
||
float swing_up_voltage = 1.8;
|
||
float swing_up_angle = 20;
|
||
float v_i_1 = 20;
|
||
float v_p_1 = 0.5;
|
||
float v_i_2 = 10;
|
||
float v_p_2 = 0.2;
|
||
//命令设置
|
||
Command comm;
|
||
bool Motor_enable_flag = 0;
|
||
int test_flag = 0;
|
||
void do_TA(char* cmd) { comm.scalar(&target_angle, cmd);EEPROM.writeFloat(0, target_angle); }
|
||
void do_SV(char* cmd) { comm.scalar(&swing_up_voltage, cmd); EEPROM.writeFloat(4, swing_up_voltage); }
|
||
void do_SA(char* cmd) { comm.scalar(&swing_up_angle, cmd);EEPROM.writeFloat(8, swing_up_angle); }
|
||
void do_START(char* cmd) { wifi_flag = !wifi_flag; }
|
||
void do_MOTOR(char* cmd)
|
||
{
|
||
if(Motor_enable_flag)
|
||
motor.enable();
|
||
else
|
||
motor.disable();
|
||
Motor_enable_flag = !Motor_enable_flag;
|
||
}
|
||
void do_TVQ(char* cmd)
|
||
{
|
||
if(test_flag == 1)
|
||
test_flag = 0;
|
||
else
|
||
test_flag = 1;
|
||
}
|
||
void do_TVV(char* cmd)
|
||
{
|
||
if(test_flag == 2)
|
||
test_flag = 0;
|
||
else
|
||
test_flag = 2;
|
||
}
|
||
void do_VV(char* cmd) { comm.scalar(&target_velocity, cmd); }
|
||
void do_VQ(char* cmd) { comm.scalar(&target_voltage, cmd); }
|
||
void do_vp1(char* cmd) { comm.scalar(&v_p_1, cmd); EEPROM.writeFloat(12, v_p_1);}
|
||
void do_vi1(char* cmd) { comm.scalar(&v_i_1, cmd);EEPROM.writeFloat(16, v_i_1); }
|
||
void do_vp2(char* cmd) { comm.scalar(&v_p_2, cmd); EEPROM.writeFloat(20, v_p_2);}
|
||
void do_vi2(char* cmd) { comm.scalar(&v_i_2, cmd);EEPROM.writeFloat(24, v_i_2); }
|
||
void do_tv(char* cmd) { comm.scalar(&target_velocity, cmd); }
|
||
void do_K31(char* cmd) { comm.scalar(&LQR_K3_1, cmd); }
|
||
void do_K32(char* cmd) { comm.scalar(&LQR_K3_2, cmd); }
|
||
void do_K33(char* cmd) { comm.scalar(&LQR_K3_3, cmd); }
|
||
void do_K41(char* cmd) { comm.scalar(&LQR_K4_1, cmd); }
|
||
void do_K42(char* cmd) { comm.scalar(&LQR_K4_2, cmd); }
|
||
void do_K43(char* cmd) { comm.scalar(&LQR_K4_3, cmd); }
|
||
|
||
void onPacketCallBack(AsyncUDPPacket packet)
|
||
{
|
||
char* da;
|
||
da= (char*)(packet.data());
|
||
Serial.println(da);
|
||
comm.run(da);
|
||
EEPROM.commit();
|
||
// packet.print("reply data");
|
||
}
|
||
// instantiate the commander
|
||
void setup() {
|
||
Serial.begin(115200);
|
||
if (!EEPROM.begin(1000)) {
|
||
Serial.println("Failed to initialise EEPROM");
|
||
Serial.println("Restarting...");
|
||
delay(1000);
|
||
ESP.restart();
|
||
}
|
||
// eeprom 读取
|
||
int k,j;
|
||
j = 0;
|
||
for(k=0;k<=24;k=k+4)
|
||
{
|
||
float nan = EEPROM.readFloat(k);
|
||
if(isnan(nan))
|
||
{
|
||
j = 1;
|
||
Serial.println("frist write");
|
||
EEPROM.writeFloat(0, target_angle); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(4, swing_up_voltage); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(8, swing_up_angle); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(12, v_p_1); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(16, v_i_1); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(20, v_p_2); delay(10);EEPROM.commit();
|
||
EEPROM.writeFloat(24, v_i_2); delay(10);EEPROM.commit();
|
||
}
|
||
}
|
||
if(j == 0)
|
||
{
|
||
target_angle = EEPROM.readFloat(0);
|
||
swing_up_voltage = EEPROM.readFloat(4);
|
||
swing_up_angle = EEPROM.readFloat(8);
|
||
v_p_1 = EEPROM.readFloat(12);
|
||
v_i_1 = EEPROM.readFloat(16);
|
||
v_p_2 = EEPROM.readFloat(20);
|
||
v_i_2 = EEPROM.readFloat(24);
|
||
motor.PID_velocity.P = v_p_1;
|
||
motor.PID_velocity.I = v_i_1;
|
||
}
|
||
//命令设置
|
||
comm.add("TA",do_TA);
|
||
comm.add("START",do_START);
|
||
comm.add("MOTOR",do_MOTOR);
|
||
comm.add("SV",do_SV);
|
||
comm.add("SA",do_SA);
|
||
comm.add("TVQ",do_TVQ);
|
||
comm.add("TVV",do_TVV);
|
||
comm.add("VV",do_VV);
|
||
comm.add("VQ",do_VQ);
|
||
//速度环参数
|
||
comm.add("VP1",do_vp1);
|
||
comm.add("VI1",do_vi1);
|
||
comm.add("VP2",do_vp2);
|
||
comm.add("VI2",do_vi2);
|
||
comm.add("TV",do_tv);
|
||
comm.add("K31",do_K31);
|
||
comm.add("K32",do_K32);
|
||
comm.add("K33",do_K33);
|
||
comm.add("K41",do_K41);
|
||
comm.add("K42",do_K42);
|
||
comm.add("K43",do_K43);
|
||
|
||
// kalman mpu6050 init
|
||
Wire.begin(19, 18,400000);// Set I2C frequency to 400kHz
|
||
i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
|
||
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
|
||
i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
|
||
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
|
||
while (i2cWrite(0x19, i2cData, 4, false))
|
||
; // Write to all four registers at once
|
||
while (i2cWrite(0x6B, 0x01, true))
|
||
; // PLL with X axis gyroscope reference and disable sleep mode
|
||
while (i2cRead(0x75, i2cData, 1))
|
||
;
|
||
if (i2cData[0] != 0x68)
|
||
{ // Read "WHO_AM_I" register
|
||
Serial.print(F("Error reading sensor"));
|
||
while (1)
|
||
;
|
||
}
|
||
delay(100); // Wait for sensor to stabilize
|
||
/* Set kalman and gyro starting angle */
|
||
while (i2cRead(0x3B, i2cData, 6))
|
||
;
|
||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||
double pitch = acc2rotation(accX, accY);
|
||
kalmanZ.setAngle(pitch);
|
||
gyroZangle = pitch;
|
||
timer = micros();
|
||
Serial.println("kalman mpu6050 init");
|
||
|
||
//wifi初始化
|
||
WiFi.mode(WIFI_AP);
|
||
while(!WiFi.softAP(ssid, password)){}; //启动AP
|
||
Serial.println("AP启动成功");
|
||
while (!udp.listen(localUdpPort)) //等待udp监听设置成功
|
||
{
|
||
}
|
||
udp.onPacket(onPacketCallBack); //注册收到数据包事件
|
||
|
||
I2Ctwo.begin(23, 5, 400000); //SDA,SCL
|
||
sensor.init(&I2Ctwo);
|
||
|
||
//连接motor对象与传感器对象
|
||
motor.linkSensor(&sensor);
|
||
|
||
//供电电压设置 [V]
|
||
driver.voltage_power_supply = 12;
|
||
driver.init();
|
||
|
||
//连接电机和driver对象
|
||
motor.linkDriver(&driver);
|
||
|
||
//FOC模型选择
|
||
motor.foc_modulation = FOCModulationType::SpaceVectorPWM;
|
||
|
||
//运动控制模式设置
|
||
motor.controller = MotionControlType::velocity;
|
||
//速度PI环设置
|
||
motor.PID_velocity.P = v_p_1;
|
||
motor.PID_velocity.I = v_i_1;
|
||
|
||
//最大电机限制电机
|
||
motor.voltage_limit = 12;
|
||
|
||
//速度低通滤波时间常数
|
||
motor.LPF_velocity.Tf = 0.02;
|
||
|
||
//设置最大速度限制
|
||
motor.velocity_limit = 40;
|
||
|
||
motor.useMonitoring(Serial);
|
||
|
||
//初始化电机
|
||
motor.init();
|
||
|
||
//初始化 FOC
|
||
motor.initFOC();
|
||
|
||
Serial.println(F("Motor ready."));
|
||
Serial.println(F("Set the target velocity using serial terminal:"));
|
||
|
||
}
|
||
char buf[255];
|
||
long loop_count = 0;
|
||
double last_pitch;
|
||
void loop() {
|
||
motor.loopFOC();
|
||
if (1)
|
||
{
|
||
// loop_count++ == 10
|
||
// loop_count = 0;
|
||
while (i2cRead(0x3B, i2cData, 14));
|
||
accX = (int16_t)((i2cData[0] << 8) | i2cData[1]);
|
||
accY = (int16_t)((i2cData[2] << 8) | i2cData[3]);
|
||
accZ = (int16_t)((i2cData[4] << 8) | i2cData[5]);
|
||
tempRaw = (int16_t)((i2cData[6] << 8) | i2cData[7]);
|
||
gyroX = (int16_t)((i2cData[8] << 8) | i2cData[9]);
|
||
gyroY = (int16_t)((i2cData[10] << 8) | i2cData[11]);
|
||
gyroZ = (int16_t)((i2cData[12] << 8) | i2cData[13]);
|
||
|
||
double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
|
||
timer = micros();
|
||
|
||
double pitch = acc2rotation(accX, accY);
|
||
double gyroZrate = gyroZ / 131.0; // Convert to deg/s
|
||
if(abs(pitch-last_pitch)>100)
|
||
kalmanZ.setAngle(pitch);
|
||
|
||
kalAngleZ = kalmanZ.getAngle(pitch, gyroZrate + gyroZ_OFF, dt);
|
||
last_pitch = pitch;
|
||
gyroZangle += (gyroZrate + gyroZ_OFF) * dt;
|
||
compAngleZ = 0.93 * (compAngleZ + (gyroZrate + gyroZ_OFF) * dt) + 0.07 * pitch;
|
||
|
||
// Reset the gyro angle when it has drifted too much
|
||
if (gyroZangle < -180 || gyroZangle > 180)
|
||
gyroZangle = kalAngleZ;
|
||
|
||
float pendulum_angle = constrainAngle(fmod(kalAngleZ,120)-target_angle);
|
||
|
||
// pendulum_angle当前角度与期望角度差值,在差值大的时候进行摇摆,差值小的时候LQR控制电机保持平衡
|
||
if(test_flag == 0)//正常控制
|
||
{
|
||
if (abs(pendulum_angle) < swing_up_angle) // if angle small enough stabilize 0.5~30°,1.5~90°
|
||
{
|
||
target_velocity = controllerLQR(pendulum_angle, gyroZrate, motor.shaftVelocity());
|
||
if (abs(target_velocity) > 140)
|
||
target_velocity = _sign(target_velocity) * 140;
|
||
|
||
motor.controller = MotionControlType::velocity;
|
||
motor.move(target_velocity);
|
||
}
|
||
else // else do swing-up
|
||
{ // sets swing_up_voltage to the motor in order to swing up
|
||
motor.controller = MotionControlType::torque;
|
||
target_voltage = -_sign(gyroZrate) * swing_up_voltage;
|
||
motor.move(target_voltage);
|
||
}
|
||
}
|
||
else if(test_flag == 1)
|
||
{
|
||
motor.controller = MotionControlType::torque;
|
||
motor.move(target_voltage);
|
||
}
|
||
else
|
||
{
|
||
motor.controller = MotionControlType::velocity;
|
||
motor.move(target_velocity);
|
||
}
|
||
//串口输出数据部分,不需要的情况可以改为0
|
||
#if 1
|
||
|
||
Serial.print(pitch);Serial.print("\t");
|
||
Serial.print(kalAngleZ);Serial.print("\t");
|
||
Serial.print(target_voltage);Serial.print("\t");
|
||
Serial.print(motor.shaft_velocity);Serial.print("\t");
|
||
Serial.print(motor.voltage.q);Serial.print("\t");
|
||
Serial.print(target_angle);Serial.print("\t");
|
||
Serial.print(pendulum_angle);Serial.print("\t");
|
||
Serial.print(gyroZrate);Serial.print("\t");
|
||
Serial.print("\r\n");
|
||
#endif
|
||
//可以使用该方法wifi发送udp信息
|
||
if(wifi_flag)
|
||
{
|
||
memset(buf, 0, strlen(buf));
|
||
|
||
wifi_print("v", motor.shaftVelocity());
|
||
wifi_print("vq",motor.voltage.q);
|
||
wifi_print("p",pendulum_angle);
|
||
wifi_print("t",target_angle);
|
||
wifi_print("k",kalAngleZ);
|
||
wifi_print("g",gyroZrate);
|
||
|
||
udp.writeTo((const unsigned char*)buf, strlen(buf), IPAddress(192,168,4,2), localUdpPort); //广播数据
|
||
}
|
||
}
|
||
}
|
||
/* mpu6050加速度转换为角度
|
||
acc2rotation(ax, ay)
|
||
acc2rotation(az, ay) */
|
||
double acc2rotation(double x, double y)
|
||
{
|
||
if (y < 0)
|
||
{
|
||
return atan(x / y) / 1.570796 * 90 + 180;
|
||
}
|
||
else if (x < 0)
|
||
{
|
||
return (atan(x / y) / 1.570796 * 90 + 360);
|
||
}
|
||
else
|
||
{
|
||
return (atan(x / y) / 1.570796 * 90);
|
||
}
|
||
}
|
||
|
||
// function constraining the angle in between -60~60
|
||
float constrainAngle(float x)
|
||
{
|
||
float a = 0;
|
||
if(x < 0)
|
||
{
|
||
a = 120+x;
|
||
if(a<abs(x))
|
||
return a;
|
||
}
|
||
return x;
|
||
}
|
||
// LQR stabilization controller functions
|
||
// calculating the voltage that needs to be set to the motor in order to stabilize the pendulum
|
||
float controllerLQR(float p_angle, float p_vel, float m_vel)
|
||
{
|
||
// if angle controllable
|
||
// calculate the control law
|
||
// LQR controller u = k*x
|
||
// - k = [40, 7, 0.3]
|
||
// - k = [13.3, 21, 0.3]
|
||
// - x = [pendulum angle, pendulum velocity, motor velocity]'
|
||
|
||
if (abs(p_angle) > 2.5)
|
||
{
|
||
last_unstable_time = millis();
|
||
if(stable)
|
||
{
|
||
target_angle = EEPROM.readFloat(0);
|
||
stable = 0;
|
||
}
|
||
}
|
||
if ((millis() - last_unstable_time) > 1000&&!stable)
|
||
{
|
||
target_angle = target_angle+p_angle;
|
||
stable = 1;
|
||
}
|
||
|
||
float u;
|
||
if (!stable)
|
||
{
|
||
motor.PID_velocity.P = v_p_1;
|
||
motor.PID_velocity.I = v_i_1;
|
||
u = LQR_K3_1 * p_angle + LQR_K3_2 * p_vel + LQR_K3_3 * m_vel;
|
||
}
|
||
else
|
||
{
|
||
motor.PID_velocity.P = v_p_2;
|
||
motor.PID_velocity.I = v_i_2;
|
||
//u = LQR_K1 * p_angle + LQR_K2 * p_vel + LQR_K3 * m_vel;
|
||
u = LQR_K4_1 * p_angle + LQR_K4_2 * p_vel + LQR_K4_3 * m_vel;
|
||
}
|
||
|
||
return u;
|
||
}
|
||
void wifi_print(char * s,double num)
|
||
{
|
||
char str[255];
|
||
char n[255];
|
||
sprintf(n, "%.2f",num);
|
||
strcpy(str,s);
|
||
strcat(str, n);
|
||
strcat(buf+strlen(buf), str);
|
||
strcat(buf, ",\0");
|
||
|
||
}
|