// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file defines the map container and its helpers to support protobuf maps. // // The Map and MapIterator types are provided by this header file. // Please avoid using other types defined here, unless they are public // types within Map or MapIterator, such as Map::value_type. #ifndef GOOGLE_PROTOBUF_MAP_H__ #define GOOGLE_PROTOBUF_MAP_H__ #include #include #include #include // To support Visual Studio 2008 #include #include #include #include #if defined(__cpp_lib_string_view) #include #endif // defined(__cpp_lib_string_view) #include #include #include #include #include #ifdef SWIG #error "You cannot SWIG proto headers" #endif #include namespace google { namespace protobuf { template class Map; class MapIterator; template struct is_proto_enum; namespace internal { template class MapFieldLite; template class MapField; template class TypeDefinedMapFieldBase; class DynamicMapField; class GeneratedMessageReflection; // re-implement std::allocator to use arena allocator for memory allocation. // Used for Map implementation. Users should not use this class // directly. template class MapAllocator { public: using value_type = U; using pointer = value_type*; using const_pointer = const value_type*; using reference = value_type&; using const_reference = const value_type&; using size_type = size_t; using difference_type = ptrdiff_t; MapAllocator() : arena_(nullptr) {} explicit MapAllocator(Arena* arena) : arena_(arena) {} template MapAllocator(const MapAllocator& allocator) // NOLINT(runtime/explicit) : arena_(allocator.arena()) {} pointer allocate(size_type n, const void* /* hint */ = nullptr) { // If arena is not given, malloc needs to be called which doesn't // construct element object. if (arena_ == nullptr) { return static_cast(::operator new(n * sizeof(value_type))); } else { return reinterpret_cast( Arena::CreateArray(arena_, n * sizeof(value_type))); } } void deallocate(pointer p, size_type n) { if (arena_ == nullptr) { #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation) ::operator delete(p, n * sizeof(value_type)); #else (void)n; ::operator delete(p); #endif } } #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \ !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN) template void construct(NodeType* p, Args&&... args) { // Clang 3.6 doesn't compile static casting to void* directly. (Issue // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall // not cast away constness". So first the maybe const pointer is casted to // const void* and after the const void* is const casted. new (const_cast(static_cast(p))) NodeType(std::forward(args)...); } template void destroy(NodeType* p) { p->~NodeType(); } #else void construct(pointer p, const_reference t) { new (p) value_type(t); } void destroy(pointer p) { p->~value_type(); } #endif template struct rebind { using other = MapAllocator; }; template bool operator==(const MapAllocator& other) const { return arena_ == other.arena_; } template bool operator!=(const MapAllocator& other) const { return arena_ != other.arena_; } // To support Visual Studio 2008 size_type max_size() const { // parentheses around (std::...:max) prevents macro warning of max() return (std::numeric_limits::max)(); } // To support gcc-4.4, which does not properly // support templated friend classes Arena* arena() const { return arena_; } private: using DestructorSkippable_ = void; Arena* arena_; }; template using KeyForTree = typename std::conditional::value, T, std::reference_wrapper>::type; // Default case: Not transparent. // We use std::hash/std::less and all the lookup functions // only accept `key_type`. template struct TransparentSupport { using hash = std::hash; using less = std::less; static bool Equals(const key_type& a, const key_type& b) { return a == b; } template using key_arg = key_type; }; #if defined(__cpp_lib_string_view) // If std::string_view is available, we add transparent support for std::string // keys. We use std::hash as it supports the input types we // care about. The lookup functions accept arbitrary `K`. This will include any // key type that is convertible to std::string_view. template <> struct TransparentSupport { static std::string_view ImplicitConvert(std::string_view str) { return str; } // If the element is not convertible to std::string_view, try to convert to // std::string first. // The template makes this overload lose resolution when both have the same // rank otherwise. template static std::string_view ImplicitConvert(const std::string& str) { return str; } struct hash : private std::hash { using is_transparent = void; template size_t operator()(const T& str) const { return base()(ImplicitConvert(str)); } private: const std::hash& base() const { return *this; } }; struct less { using is_transparent = void; template bool operator()(const T& t, const U& u) const { return ImplicitConvert(t) < ImplicitConvert(u); } }; template static bool Equals(const T& t, const U& u) { return ImplicitConvert(t) == ImplicitConvert(u); } template using key_arg = K; }; #endif // defined(__cpp_lib_string_view) template using TreeForMap = std::map, void*, typename TransparentSupport::less, MapAllocator, void*>>>; inline bool TableEntryIsEmpty(void* const* table, size_t b) { return table[b] == nullptr; } inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) { return table[b] != nullptr && table[b] != table[b ^ 1]; } inline bool TableEntryIsTree(void* const* table, size_t b) { return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b); } inline bool TableEntryIsList(void* const* table, size_t b) { return !TableEntryIsTree(table, b); } // This captures all numeric types. inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; } inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) { return StringSpaceUsedExcludingSelfLong(str); } template ().SpaceUsedLong())> size_t MapValueSpaceUsedExcludingSelfLong(const T& message) { return message.SpaceUsedLong() - sizeof(T); } constexpr size_t kGlobalEmptyTableSize = 1; PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize]; // Space used for the table, trees, and nodes. // Does not include the indirect space used. Eg the data of a std::string. template PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets, size_t num_elements, size_t sizeof_node) { size_t size = 0; // The size of the table. size += sizeof(void*) * num_buckets; // All the nodes. size += sizeof_node * num_elements; // For each tree, count the overhead of the those nodes. // Two buckets at a time because we only care about trees. for (size_t b = 0; b < num_buckets; b += 2) { if (internal::TableEntryIsTree(table, b)) { using Tree = TreeForMap; Tree* tree = static_cast(table[b]); // Estimated cost of the red-black tree nodes, 3 pointers plus a // bool (plus alignment, so 4 pointers). size += tree->size() * (sizeof(typename Tree::value_type) + sizeof(void*) * 4); } } return size; } template ::value || !std::is_scalar::value>::type> size_t SpaceUsedInValues(const Map* map) { size_t size = 0; for (const auto& v : *map) { size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) + internal::MapValueSpaceUsedExcludingSelfLong(v.second); } return size; } inline size_t SpaceUsedInValues(const void*) { return 0; } } // namespace internal // This is the class for Map's internal value_type. Instead of using // std::pair as value_type, we use this class which provides us more control of // its process of construction and destruction. template struct MapPair { using first_type = const Key; using second_type = T; MapPair(const Key& other_first, const T& other_second) : first(other_first), second(other_second) {} explicit MapPair(const Key& other_first) : first(other_first), second() {} MapPair(const MapPair& other) : first(other.first), second(other.second) {} ~MapPair() {} // Implicitly convertible to std::pair of compatible types. template operator std::pair() const { // NOLINT(runtime/explicit) return std::pair(first, second); } const Key first; T second; private: friend class Arena; friend class Map; }; // Map is an associative container type used to store protobuf map // fields. Each Map instance may or may not use a different hash function, a // different iteration order, and so on. E.g., please don't examine // implementation details to decide if the following would work: // Map m0, m1; // m0[0] = m1[0] = m0[1] = m1[1] = 0; // assert(m0.begin()->first == m1.begin()->first); // Bug! // // Map's interface is similar to std::unordered_map, except that Map is not // designed to play well with exceptions. template class Map { public: using key_type = Key; using mapped_type = T; using value_type = MapPair; using pointer = value_type*; using const_pointer = const value_type*; using reference = value_type&; using const_reference = const value_type&; using size_type = size_t; using hasher = typename internal::TransparentSupport::hash; Map() : elements_(nullptr) {} explicit Map(Arena* arena) : elements_(arena) {} Map(const Map& other) : Map() { insert(other.begin(), other.end()); } Map(Map&& other) noexcept : Map() { if (other.arena() != nullptr) { *this = other; } else { swap(other); } } Map& operator=(Map&& other) noexcept { if (this != &other) { if (arena() != other.arena()) { *this = other; } else { swap(other); } } return *this; } template Map(const InputIt& first, const InputIt& last) : Map() { insert(first, last); } ~Map() {} private: using Allocator = internal::MapAllocator; // InnerMap is a generic hash-based map. It doesn't contain any // protocol-buffer-specific logic. It is a chaining hash map with the // additional feature that some buckets can be converted to use an ordered // container. This ensures O(lg n) bounds on find, insert, and erase, while // avoiding the overheads of ordered containers most of the time. // // The implementation doesn't need the full generality of unordered_map, // and it doesn't have it. More bells and whistles can be added as needed. // Some implementation details: // 1. The hash function has type hasher and the equality function // equal_to. We inherit from hasher to save space // (empty-base-class optimization). // 2. The number of buckets is a power of two. // 3. Buckets are converted to trees in pairs: if we convert bucket b then // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have // the same non-null value iff they are sharing a tree. (An alternative // implementation strategy would be to have a tag bit per bucket.) // 4. As is typical for hash_map and such, the Keys and Values are always // stored in linked list nodes. Pointers to elements are never invalidated // until the element is deleted. // 5. The trees' payload type is pointer to linked-list node. Tree-converting // a bucket doesn't copy Key-Value pairs. // 6. Once we've tree-converted a bucket, it is never converted back. However, // the items a tree contains may wind up assigned to trees or lists upon a // rehash. // 7. The code requires no C++ features from C++14 or later. // 8. Mutations to a map do not invalidate the map's iterators, pointers to // elements, or references to elements. // 9. Except for erase(iterator), any non-const method can reorder iterators. // 10. InnerMap uses KeyForTree when using the Tree representation, which // is either `Key`, if Key is a scalar, or `reference_wrapper` // otherwise. This avoids unnecessary copies of string keys, for example. class InnerMap : private hasher { public: explicit InnerMap(Arena* arena) : hasher(), num_elements_(0), num_buckets_(internal::kGlobalEmptyTableSize), seed_(Seed()), index_of_first_non_null_(num_buckets_), table_(const_cast(internal::kGlobalEmptyTable)), alloc_(arena) {} ~InnerMap() { if (alloc_.arena() == nullptr && num_buckets_ != internal::kGlobalEmptyTableSize) { clear(); Dealloc(table_, num_buckets_); } } private: enum { kMinTableSize = 8 }; // Linked-list nodes, as one would expect for a chaining hash table. struct Node { value_type kv; Node* next; }; // Trees. The payload type is a copy of Key, so that we can query the tree // with Keys that are not in any particular data structure. // The value is a void* pointing to Node. We use void* instead of Node* to // avoid code bloat. That way there is only one instantiation of the tree // class per key type. using Tree = internal::TreeForMap; using TreeIterator = typename Tree::iterator; static Node* NodeFromTreeIterator(TreeIterator it) { return static_cast(it->second); } // iterator and const_iterator are instantiations of iterator_base. template class iterator_base { public: using reference = KeyValueType&; using pointer = KeyValueType*; // Invariants: // node_ is always correct. This is handy because the most common // operations are operator* and operator-> and they only use node_. // When node_ is set to a non-null value, all the other non-const fields // are updated to be correct also, but those fields can become stale // if the underlying map is modified. When those fields are needed they // are rechecked, and updated if necessary. iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {} explicit iterator_base(const InnerMap* m) : m_(m) { SearchFrom(m->index_of_first_non_null_); } // Any iterator_base can convert to any other. This is overkill, and we // rely on the enclosing class to use it wisely. The standard "iterator // can convert to const_iterator" is OK but the reverse direction is not. template explicit iterator_base(const iterator_base& it) : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {} iterator_base(Node* n, const InnerMap* m, size_type index) : node_(n), m_(m), bucket_index_(index) {} iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index) : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) { // Invariant: iterators that use buckets with trees have an even // bucket_index_. GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u); } // Advance through buckets, looking for the first that isn't empty. // If nothing non-empty is found then leave node_ == nullptr. void SearchFrom(size_type start_bucket) { GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || m_->table_[m_->index_of_first_non_null_] != nullptr); node_ = nullptr; for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_; bucket_index_++) { if (m_->TableEntryIsNonEmptyList(bucket_index_)) { node_ = static_cast(m_->table_[bucket_index_]); break; } else if (m_->TableEntryIsTree(bucket_index_)) { Tree* tree = static_cast(m_->table_[bucket_index_]); GOOGLE_DCHECK(!tree->empty()); node_ = NodeFromTreeIterator(tree->begin()); break; } } } reference operator*() const { return node_->kv; } pointer operator->() const { return &(operator*()); } friend bool operator==(const iterator_base& a, const iterator_base& b) { return a.node_ == b.node_; } friend bool operator!=(const iterator_base& a, const iterator_base& b) { return a.node_ != b.node_; } iterator_base& operator++() { if (node_->next == nullptr) { TreeIterator tree_it; const bool is_list = revalidate_if_necessary(&tree_it); if (is_list) { SearchFrom(bucket_index_ + 1); } else { GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u); Tree* tree = static_cast(m_->table_[bucket_index_]); if (++tree_it == tree->end()) { SearchFrom(bucket_index_ + 2); } else { node_ = NodeFromTreeIterator(tree_it); } } } else { node_ = node_->next; } return *this; } iterator_base operator++(int /* unused */) { iterator_base tmp = *this; ++*this; return tmp; } // Assumes node_ and m_ are correct and non-null, but other fields may be // stale. Fix them as needed. Then return true iff node_ points to a // Node in a list. If false is returned then *it is modified to be // a valid iterator for node_. bool revalidate_if_necessary(TreeIterator* it) { GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr); // Force bucket_index_ to be in range. bucket_index_ &= (m_->num_buckets_ - 1); // Common case: the bucket we think is relevant points to node_. if (m_->table_[bucket_index_] == static_cast(node_)) return true; // Less common: the bucket is a linked list with node_ somewhere in it, // but not at the head. if (m_->TableEntryIsNonEmptyList(bucket_index_)) { Node* l = static_cast(m_->table_[bucket_index_]); while ((l = l->next) != nullptr) { if (l == node_) { return true; } } } // Well, bucket_index_ still might be correct, but probably // not. Revalidate just to be sure. This case is rare enough that we // don't worry about potential optimizations, such as having a custom // find-like method that compares Node* instead of the key. iterator_base i(m_->find(node_->kv.first, it)); bucket_index_ = i.bucket_index_; return m_->TableEntryIsList(bucket_index_); } Node* node_; const InnerMap* m_; size_type bucket_index_; }; public: using iterator = iterator_base; using const_iterator = iterator_base; Arena* arena() const { return alloc_.arena(); } void Swap(InnerMap* other) { std::swap(num_elements_, other->num_elements_); std::swap(num_buckets_, other->num_buckets_); std::swap(seed_, other->seed_); std::swap(index_of_first_non_null_, other->index_of_first_non_null_); std::swap(table_, other->table_); std::swap(alloc_, other->alloc_); } iterator begin() { return iterator(this); } iterator end() { return iterator(); } const_iterator begin() const { return const_iterator(this); } const_iterator end() const { return const_iterator(); } void clear() { for (size_type b = 0; b < num_buckets_; b++) { if (TableEntryIsNonEmptyList(b)) { Node* node = static_cast(table_[b]); table_[b] = nullptr; do { Node* next = node->next; DestroyNode(node); node = next; } while (node != nullptr); } else if (TableEntryIsTree(b)) { Tree* tree = static_cast(table_[b]); GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0); table_[b] = table_[b + 1] = nullptr; typename Tree::iterator tree_it = tree->begin(); do { Node* node = NodeFromTreeIterator(tree_it); typename Tree::iterator next = tree_it; ++next; tree->erase(tree_it); DestroyNode(node); tree_it = next; } while (tree_it != tree->end()); DestroyTree(tree); b++; } } num_elements_ = 0; index_of_first_non_null_ = num_buckets_; } const hasher& hash_function() const { return *this; } static size_type max_size() { return static_cast(1) << (sizeof(void**) >= 8 ? 60 : 28); } size_type size() const { return num_elements_; } bool empty() const { return size() == 0; } template iterator find(const K& k) { return iterator(FindHelper(k).first); } template const_iterator find(const K& k) const { return FindHelper(k).first; } // Insert the key into the map, if not present. In that case, the value will // be value initialized. std::pair insert(const Key& k) { std::pair p = FindHelper(k); // Case 1: key was already present. if (p.first.node_ != nullptr) return std::make_pair(iterator(p.first), false); // Case 2: insert. if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) { p = FindHelper(k); } const size_type b = p.second; // bucket number Node* node; if (alloc_.arena() == nullptr) { node = new Node{value_type(k), nullptr}; } else { node = Alloc(1); Arena::CreateInArenaStorage(const_cast(&node->kv.first), alloc_.arena(), k); Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena()); } iterator result = InsertUnique(b, node); ++num_elements_; return std::make_pair(result, true); } value_type& operator[](const Key& k) { return *insert(k).first; } void erase(iterator it) { GOOGLE_DCHECK_EQ(it.m_, this); typename Tree::iterator tree_it; const bool is_list = it.revalidate_if_necessary(&tree_it); size_type b = it.bucket_index_; Node* const item = it.node_; if (is_list) { GOOGLE_DCHECK(TableEntryIsNonEmptyList(b)); Node* head = static_cast(table_[b]); head = EraseFromLinkedList(item, head); table_[b] = static_cast(head); } else { GOOGLE_DCHECK(TableEntryIsTree(b)); Tree* tree = static_cast(table_[b]); tree->erase(tree_it); if (tree->empty()) { // Force b to be the minimum of b and b ^ 1. This is important // only because we want index_of_first_non_null_ to be correct. b &= ~static_cast(1); DestroyTree(tree); table_[b] = table_[b + 1] = nullptr; } } DestroyNode(item); --num_elements_; if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) { while (index_of_first_non_null_ < num_buckets_ && table_[index_of_first_non_null_] == nullptr) { ++index_of_first_non_null_; } } } size_t SpaceUsedInternal() const { return internal::SpaceUsedInTable(table_, num_buckets_, num_elements_, sizeof(Node)); } private: const_iterator find(const Key& k, TreeIterator* it) const { return FindHelper(k, it).first; } template std::pair FindHelper(const K& k) const { return FindHelper(k, nullptr); } template std::pair FindHelper(const K& k, TreeIterator* it) const { size_type b = BucketNumber(k); if (TableEntryIsNonEmptyList(b)) { Node* node = static_cast(table_[b]); do { if (internal::TransparentSupport::Equals(node->kv.first, k)) { return std::make_pair(const_iterator(node, this, b), b); } else { node = node->next; } } while (node != nullptr); } else if (TableEntryIsTree(b)) { GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); b &= ~static_cast(1); Tree* tree = static_cast(table_[b]); auto tree_it = tree->find(k); if (tree_it != tree->end()) { if (it != nullptr) *it = tree_it; return std::make_pair(const_iterator(tree_it, this, b), b); } } return std::make_pair(end(), b); } // Insert the given Node in bucket b. If that would make bucket b too big, // and bucket b is not a tree, create a tree for buckets b and b^1 to share. // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct // bucket. num_elements_ is not modified. iterator InsertUnique(size_type b, Node* node) { GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ || table_[index_of_first_non_null_] != nullptr); // In practice, the code that led to this point may have already // determined whether we are inserting into an empty list, a short list, // or whatever. But it's probably cheap enough to recompute that here; // it's likely that we're inserting into an empty or short list. iterator result; GOOGLE_DCHECK(find(node->kv.first) == end()); if (TableEntryIsEmpty(b)) { result = InsertUniqueInList(b, node); } else if (TableEntryIsNonEmptyList(b)) { if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) { TreeConvert(b); result = InsertUniqueInTree(b, node); GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast(1)); } else { // Insert into a pre-existing list. This case cannot modify // index_of_first_non_null_, so we skip the code to update it. return InsertUniqueInList(b, node); } } else { // Insert into a pre-existing tree. This case cannot modify // index_of_first_non_null_, so we skip the code to update it. return InsertUniqueInTree(b, node); } // parentheses around (std::min) prevents macro expansion of min(...) index_of_first_non_null_ = (std::min)(index_of_first_non_null_, result.bucket_index_); return result; } // Returns whether we should insert after the head of the list. For // non-optimized builds, we randomly decide whether to insert right at the // head of the list or just after the head. This helps add a little bit of // non-determinism to the map ordering. bool ShouldInsertAfterHead(void* node) { #ifdef NDEBUG (void) node; return false; #else // Doing modulo with a prime mixes the bits more. return (reinterpret_cast(node) ^ seed_) % 13 > 6; #endif } // Helper for InsertUnique. Handles the case where bucket b is a // not-too-long linked list. iterator InsertUniqueInList(size_type b, Node* node) { if (table_[b] != nullptr && ShouldInsertAfterHead(node)) { Node* first = static_cast(table_[b]); node->next = first->next; first->next = node; return iterator(node, this, b); } node->next = static_cast(table_[b]); table_[b] = static_cast(node); return iterator(node, this, b); } // Helper for InsertUnique. Handles the case where bucket b points to a // Tree. iterator InsertUniqueInTree(size_type b, Node* node) { GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); // Maintain the invariant that node->next is null for all Nodes in Trees. node->next = nullptr; return iterator( static_cast(table_[b])->insert({node->kv.first, node}).first, this, b & ~static_cast(1)); } // Returns whether it did resize. Currently this is only used when // num_elements_ increases, though it could be used in other situations. // It checks for load too low as well as load too high: because any number // of erases can occur between inserts, the load could be as low as 0 here. // Resizing to a lower size is not always helpful, but failing to do so can // destroy the expected big-O bounds for some operations. By having the // policy that sometimes we resize down as well as up, clients can easily // keep O(size()) = O(number of buckets) if they want that. bool ResizeIfLoadIsOutOfRange(size_type new_size) { const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16; const size_type lo_cutoff = hi_cutoff / 4; // We don't care how many elements are in trees. If a lot are, // we may resize even though there are many empty buckets. In // practice, this seems fine. if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) { if (num_buckets_ <= max_size() / 2) { Resize(num_buckets_ * 2); return true; } } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff && num_buckets_ > kMinTableSize)) { size_type lg2_of_size_reduction_factor = 1; // It's possible we want to shrink a lot here... size() could even be 0. // So, estimate how much to shrink by making sure we don't shrink so // much that we would need to grow the table after a few inserts. const size_type hypothetical_size = new_size * 5 / 4 + 1; while ((hypothetical_size << lg2_of_size_reduction_factor) < hi_cutoff) { ++lg2_of_size_reduction_factor; } size_type new_num_buckets = std::max( kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); if (new_num_buckets != num_buckets_) { Resize(new_num_buckets); return true; } } return false; } // Resize to the given number of buckets. void Resize(size_t new_num_buckets) { if (num_buckets_ == internal::kGlobalEmptyTableSize) { // This is the global empty array. // Just overwrite with a new one. No need to transfer or free anything. num_buckets_ = index_of_first_non_null_ = kMinTableSize; table_ = CreateEmptyTable(num_buckets_); return; } GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize); void** const old_table = table_; const size_type old_table_size = num_buckets_; num_buckets_ = new_num_buckets; table_ = CreateEmptyTable(num_buckets_); const size_type start = index_of_first_non_null_; index_of_first_non_null_ = num_buckets_; for (size_type i = start; i < old_table_size; i++) { if (internal::TableEntryIsNonEmptyList(old_table, i)) { TransferList(old_table, i); } else if (internal::TableEntryIsTree(old_table, i)) { TransferTree(old_table, i++); } } Dealloc(old_table, old_table_size); } void TransferList(void* const* table, size_type index) { Node* node = static_cast(table[index]); do { Node* next = node->next; InsertUnique(BucketNumber(node->kv.first), node); node = next; } while (node != nullptr); } void TransferTree(void* const* table, size_type index) { Tree* tree = static_cast(table[index]); typename Tree::iterator tree_it = tree->begin(); do { InsertUnique(BucketNumber(std::cref(tree_it->first).get()), NodeFromTreeIterator(tree_it)); } while (++tree_it != tree->end()); DestroyTree(tree); } Node* EraseFromLinkedList(Node* item, Node* head) { if (head == item) { return head->next; } else { head->next = EraseFromLinkedList(item, head->next); return head; } } bool TableEntryIsEmpty(size_type b) const { return internal::TableEntryIsEmpty(table_, b); } bool TableEntryIsNonEmptyList(size_type b) const { return internal::TableEntryIsNonEmptyList(table_, b); } bool TableEntryIsTree(size_type b) const { return internal::TableEntryIsTree(table_, b); } bool TableEntryIsList(size_type b) const { return internal::TableEntryIsList(table_, b); } void TreeConvert(size_type b) { GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1)); Tree* tree = Arena::Create(alloc_.arena(), typename Tree::key_compare(), typename Tree::allocator_type(alloc_)); size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree); GOOGLE_DCHECK_EQ(count, tree->size()); table_[b] = table_[b ^ 1] = static_cast(tree); } // Copy a linked list in the given bucket to a tree. // Returns the number of things it copied. size_type CopyListToTree(size_type b, Tree* tree) { size_type count = 0; Node* node = static_cast(table_[b]); while (node != nullptr) { tree->insert({node->kv.first, node}); ++count; Node* next = node->next; node->next = nullptr; node = next; } return count; } // Return whether table_[b] is a linked list that seems awfully long. // Requires table_[b] to point to a non-empty linked list. bool TableEntryIsTooLong(size_type b) { const size_type kMaxLength = 8; size_type count = 0; Node* node = static_cast(table_[b]); do { ++count; node = node->next; } while (node != nullptr); // Invariant: no linked list ever is more than kMaxLength in length. GOOGLE_DCHECK_LE(count, kMaxLength); return count >= kMaxLength; } template size_type BucketNumber(const K& k) const { // We xor the hash value against the random seed so that we effectively // have a random hash function. uint64 h = hash_function()(k) ^ seed_; // We use the multiplication method to determine the bucket number from // the hash value. The constant kPhi (suggested by Knuth) is roughly // (sqrt(5) - 1) / 2 * 2^64. constexpr uint64 kPhi = uint64{0x9e3779b97f4a7c15}; return ((kPhi * h) >> 32) & (num_buckets_ - 1); } // Return a power of two no less than max(kMinTableSize, n). // Assumes either n < kMinTableSize or n is a power of two. size_type TableSize(size_type n) { return n < static_cast(kMinTableSize) ? static_cast(kMinTableSize) : n; } // Use alloc_ to allocate an array of n objects of type U. template U* Alloc(size_type n) { using alloc_type = typename Allocator::template rebind::other; return alloc_type(alloc_).allocate(n); } // Use alloc_ to deallocate an array of n objects of type U. template void Dealloc(U* t, size_type n) { using alloc_type = typename Allocator::template rebind::other; alloc_type(alloc_).deallocate(t, n); } void DestroyNode(Node* node) { if (alloc_.arena() == nullptr) { delete node; } } void DestroyTree(Tree* tree) { if (alloc_.arena() == nullptr) { delete tree; } } void** CreateEmptyTable(size_type n) { GOOGLE_DCHECK(n >= kMinTableSize); GOOGLE_DCHECK_EQ(n & (n - 1), 0); void** result = Alloc(n); memset(result, 0, n * sizeof(result[0])); return result; } // Return a randomish value. size_type Seed() const { // We get a little bit of randomness from the address of the map. The // lower bits are not very random, due to alignment, so we discard them // and shift the higher bits into their place. size_type s = reinterpret_cast(this) >> 12; #if defined(__x86_64__) && defined(__GNUC__) && \ !defined(GOOGLE_PROTOBUF_NO_RDTSC) uint32 hi, lo; asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); s += ((static_cast(hi) << 32) | lo); #endif return s; } friend class Arena; using InternalArenaConstructable_ = void; using DestructorSkippable_ = void; size_type num_elements_; size_type num_buckets_; size_type seed_; size_type index_of_first_non_null_; void** table_; // an array with num_buckets_ entries Allocator alloc_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap); }; // end of class InnerMap template using key_arg = typename internal::TransparentSupport< key_type>::template key_arg; public: // Iterators class const_iterator { using InnerIt = typename InnerMap::const_iterator; public: using iterator_category = std::forward_iterator_tag; using value_type = typename Map::value_type; using difference_type = ptrdiff_t; using pointer = const value_type*; using reference = const value_type&; const_iterator() {} explicit const_iterator(const InnerIt& it) : it_(it) {} const_reference operator*() const { return *it_; } const_pointer operator->() const { return &(operator*()); } const_iterator& operator++() { ++it_; return *this; } const_iterator operator++(int) { return const_iterator(it_++); } friend bool operator==(const const_iterator& a, const const_iterator& b) { return a.it_ == b.it_; } friend bool operator!=(const const_iterator& a, const const_iterator& b) { return !(a == b); } private: InnerIt it_; }; class iterator { using InnerIt = typename InnerMap::iterator; public: using iterator_category = std::forward_iterator_tag; using value_type = typename Map::value_type; using difference_type = ptrdiff_t; using pointer = value_type*; using reference = value_type&; iterator() {} explicit iterator(const InnerIt& it) : it_(it) {} reference operator*() const { return *it_; } pointer operator->() const { return &(operator*()); } iterator& operator++() { ++it_; return *this; } iterator operator++(int) { return iterator(it_++); } // Allow implicit conversion to const_iterator. operator const_iterator() const { // NOLINT(runtime/explicit) return const_iterator(typename InnerMap::const_iterator(it_)); } friend bool operator==(const iterator& a, const iterator& b) { return a.it_ == b.it_; } friend bool operator!=(const iterator& a, const iterator& b) { return !(a == b); } private: friend class Map; InnerIt it_; }; iterator begin() { return iterator(elements_.begin()); } iterator end() { return iterator(elements_.end()); } const_iterator begin() const { return const_iterator(elements_.begin()); } const_iterator end() const { return const_iterator(elements_.end()); } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } // Capacity size_type size() const { return elements_.size(); } bool empty() const { return size() == 0; } // Element access T& operator[](const key_type& key) { return elements_[key].second; } template const T& at(const key_arg& key) const { const_iterator it = find(key); GOOGLE_CHECK(it != end()) << "key not found: " << static_cast(key); return it->second; } template T& at(const key_arg& key) { iterator it = find(key); GOOGLE_CHECK(it != end()) << "key not found: " << static_cast(key); return it->second; } // Lookup template size_type count(const key_arg& key) const { return find(key) == end() ? 0 : 1; } template const_iterator find(const key_arg& key) const { return const_iterator(elements_.find(key)); } template iterator find(const key_arg& key) { return iterator(elements_.find(key)); } template bool contains(const key_arg& key) const { return find(key) != end(); } template std::pair equal_range( const key_arg& key) const { const_iterator it = find(key); if (it == end()) { return std::pair(it, it); } else { const_iterator begin = it++; return std::pair(begin, it); } } template std::pair equal_range(const key_arg& key) { iterator it = find(key); if (it == end()) { return std::pair(it, it); } else { iterator begin = it++; return std::pair(begin, it); } } // insert std::pair insert(const value_type& value) { std::pair p = elements_.insert(value.first); if (p.second) { p.first->second = value.second; } return std::pair(iterator(p.first), p.second); } template void insert(InputIt first, InputIt last) { for (InputIt it = first; it != last; ++it) { iterator exist_it = find(it->first); if (exist_it == end()) { operator[](it->first) = it->second; } } } void insert(std::initializer_list values) { insert(values.begin(), values.end()); } // Erase and clear template size_type erase(const key_arg& key) { iterator it = find(key); if (it == end()) { return 0; } else { erase(it); return 1; } } iterator erase(iterator pos) { iterator i = pos++; elements_.erase(i.it_); return pos; } void erase(iterator first, iterator last) { while (first != last) { first = erase(first); } } void clear() { elements_.clear(); } // Assign Map& operator=(const Map& other) { if (this != &other) { clear(); insert(other.begin(), other.end()); } return *this; } void swap(Map& other) { if (arena() == other.arena()) { elements_.Swap(&other.elements_); } else { // TODO(zuguang): optimize this. The temporary copy can be allocated // in the same arena as the other message, and the "other = copy" can // be replaced with the fast-path swap above. Map copy = *this; *this = other; other = copy; } } // Access to hasher. Currently this returns a copy, but it may // be modified to return a const reference in the future. hasher hash_function() const { return elements_.hash_function(); } size_t SpaceUsedExcludingSelfLong() const { if (empty()) return 0; return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this); } private: Arena* arena() const { return elements_.arena(); } InnerMap elements_; friend class Arena; using InternalArenaConstructable_ = void; using DestructorSkippable_ = void; template friend class internal::MapFieldLite; }; } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_MAP_H__