335 lines
13 KiB
C++
335 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef API_NETEQ_NETEQ_H_
|
|
#define API_NETEQ_NETEQ_H_
|
|
|
|
#include <stddef.h> // Provide access to size_t.
|
|
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/audio_codecs/audio_codec_pair_id.h"
|
|
#include "api/audio_codecs/audio_decoder.h"
|
|
#include "api/audio_codecs/audio_format.h"
|
|
#include "api/rtp_headers.h"
|
|
#include "api/scoped_refptr.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// Forward declarations.
|
|
class AudioFrame;
|
|
class AudioDecoderFactory;
|
|
class Clock;
|
|
|
|
struct NetEqNetworkStatistics {
|
|
uint16_t current_buffer_size_ms; // Current jitter buffer size in ms.
|
|
uint16_t preferred_buffer_size_ms; // Target buffer size in ms.
|
|
uint16_t jitter_peaks_found; // 1 if adding extra delay due to peaky
|
|
// jitter; 0 otherwise.
|
|
uint16_t expand_rate; // Fraction (of original stream) of synthesized
|
|
// audio inserted through expansion (in Q14).
|
|
uint16_t speech_expand_rate; // Fraction (of original stream) of synthesized
|
|
// speech inserted through expansion (in Q14).
|
|
uint16_t preemptive_rate; // Fraction of data inserted through pre-emptive
|
|
// expansion (in Q14).
|
|
uint16_t accelerate_rate; // Fraction of data removed through acceleration
|
|
// (in Q14).
|
|
uint16_t secondary_decoded_rate; // Fraction of data coming from FEC/RED
|
|
// decoding (in Q14).
|
|
uint16_t secondary_discarded_rate; // Fraction of discarded FEC/RED data (in
|
|
// Q14).
|
|
// Statistics for packet waiting times, i.e., the time between a packet
|
|
// arrives until it is decoded.
|
|
int mean_waiting_time_ms;
|
|
int median_waiting_time_ms;
|
|
int min_waiting_time_ms;
|
|
int max_waiting_time_ms;
|
|
};
|
|
|
|
// NetEq statistics that persist over the lifetime of the class.
|
|
// These metrics are never reset.
|
|
struct NetEqLifetimeStatistics {
|
|
// Stats below correspond to similarly-named fields in the WebRTC stats spec.
|
|
// https://w3c.github.io/webrtc-stats/#dom-rtcmediastreamtrackstats
|
|
uint64_t total_samples_received = 0;
|
|
uint64_t concealed_samples = 0;
|
|
uint64_t concealment_events = 0;
|
|
uint64_t jitter_buffer_delay_ms = 0;
|
|
uint64_t jitter_buffer_emitted_count = 0;
|
|
uint64_t jitter_buffer_target_delay_ms = 0;
|
|
uint64_t inserted_samples_for_deceleration = 0;
|
|
uint64_t removed_samples_for_acceleration = 0;
|
|
uint64_t silent_concealed_samples = 0;
|
|
uint64_t fec_packets_received = 0;
|
|
uint64_t fec_packets_discarded = 0;
|
|
// Below stats are not part of the spec.
|
|
uint64_t delayed_packet_outage_samples = 0;
|
|
// This is sum of relative packet arrival delays of received packets so far.
|
|
// Since end-to-end delay of a packet is difficult to measure and is not
|
|
// necessarily useful for measuring jitter buffer performance, we report a
|
|
// relative packet arrival delay. The relative packet arrival delay of a
|
|
// packet is defined as the arrival delay compared to the first packet
|
|
// received, given that it had zero delay. To avoid clock drift, the "first"
|
|
// packet can be made dynamic.
|
|
uint64_t relative_packet_arrival_delay_ms = 0;
|
|
uint64_t jitter_buffer_packets_received = 0;
|
|
// An interruption is a loss-concealment event lasting at least 150 ms. The
|
|
// two stats below count the number os such events and the total duration of
|
|
// these events.
|
|
int32_t interruption_count = 0;
|
|
int32_t total_interruption_duration_ms = 0;
|
|
};
|
|
|
|
// Metrics that describe the operations performed in NetEq, and the internal
|
|
// state.
|
|
struct NetEqOperationsAndState {
|
|
// These sample counters are cumulative, and don't reset. As a reference, the
|
|
// total number of output samples can be found in
|
|
// NetEqLifetimeStatistics::total_samples_received.
|
|
uint64_t preemptive_samples = 0;
|
|
uint64_t accelerate_samples = 0;
|
|
// Count of the number of buffer flushes.
|
|
uint64_t packet_buffer_flushes = 0;
|
|
// The number of primary packets that were discarded.
|
|
uint64_t discarded_primary_packets = 0;
|
|
// The statistics below are not cumulative.
|
|
// The waiting time of the last decoded packet.
|
|
uint64_t last_waiting_time_ms = 0;
|
|
// The sum of the packet and jitter buffer size in ms.
|
|
uint64_t current_buffer_size_ms = 0;
|
|
// The current frame size in ms.
|
|
uint64_t current_frame_size_ms = 0;
|
|
// Flag to indicate that the next packet is available.
|
|
bool next_packet_available = false;
|
|
};
|
|
|
|
// This is the interface class for NetEq.
|
|
class NetEq {
|
|
public:
|
|
struct Config {
|
|
Config();
|
|
Config(const Config&);
|
|
Config(Config&&);
|
|
~Config();
|
|
Config& operator=(const Config&);
|
|
Config& operator=(Config&&);
|
|
|
|
std::string ToString() const;
|
|
|
|
int sample_rate_hz = 16000; // Initial value. Will change with input data.
|
|
bool enable_post_decode_vad = false;
|
|
size_t max_packets_in_buffer = 200;
|
|
int max_delay_ms = 0;
|
|
int min_delay_ms = 0;
|
|
bool enable_fast_accelerate = false;
|
|
bool enable_muted_state = false;
|
|
bool enable_rtx_handling = false;
|
|
absl::optional<AudioCodecPairId> codec_pair_id;
|
|
bool for_test_no_time_stretching = false; // Use only for testing.
|
|
// Adds extra delay to the output of NetEq, without affecting jitter or
|
|
// loss behavior. This is mainly for testing. Value must be a non-negative
|
|
// multiple of 10 ms.
|
|
int extra_output_delay_ms = 0;
|
|
};
|
|
|
|
enum ReturnCodes { kOK = 0, kFail = -1 };
|
|
|
|
enum class Operation {
|
|
kNormal,
|
|
kMerge,
|
|
kExpand,
|
|
kAccelerate,
|
|
kFastAccelerate,
|
|
kPreemptiveExpand,
|
|
kRfc3389Cng,
|
|
kRfc3389CngNoPacket,
|
|
kCodecInternalCng,
|
|
kDtmf,
|
|
kUndefined,
|
|
};
|
|
|
|
enum class Mode {
|
|
kNormal,
|
|
kExpand,
|
|
kMerge,
|
|
kAccelerateSuccess,
|
|
kAccelerateLowEnergy,
|
|
kAccelerateFail,
|
|
kPreemptiveExpandSuccess,
|
|
kPreemptiveExpandLowEnergy,
|
|
kPreemptiveExpandFail,
|
|
kRfc3389Cng,
|
|
kCodecInternalCng,
|
|
kCodecPlc,
|
|
kDtmf,
|
|
kError,
|
|
kUndefined,
|
|
};
|
|
|
|
// Return type for GetDecoderFormat.
|
|
struct DecoderFormat {
|
|
int sample_rate_hz;
|
|
int num_channels;
|
|
SdpAudioFormat sdp_format;
|
|
};
|
|
|
|
// Creates a new NetEq object, with parameters set in |config|. The |config|
|
|
// object will only have to be valid for the duration of the call to this
|
|
// method.
|
|
static NetEq* Create(
|
|
const NetEq::Config& config,
|
|
Clock* clock,
|
|
const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory);
|
|
|
|
virtual ~NetEq() {}
|
|
|
|
// Inserts a new packet into NetEq.
|
|
// Returns 0 on success, -1 on failure.
|
|
virtual int InsertPacket(const RTPHeader& rtp_header,
|
|
rtc::ArrayView<const uint8_t> payload) = 0;
|
|
|
|
// Lets NetEq know that a packet arrived with an empty payload. This typically
|
|
// happens when empty packets are used for probing the network channel, and
|
|
// these packets use RTP sequence numbers from the same series as the actual
|
|
// audio packets.
|
|
virtual void InsertEmptyPacket(const RTPHeader& rtp_header) = 0;
|
|
|
|
// Instructs NetEq to deliver 10 ms of audio data. The data is written to
|
|
// |audio_frame|. All data in |audio_frame| is wiped; |data_|, |speech_type_|,
|
|
// |num_channels_|, |sample_rate_hz_|, |samples_per_channel_|, and
|
|
// |vad_activity_| are updated upon success. If an error is returned, some
|
|
// fields may not have been updated, or may contain inconsistent values.
|
|
// If muted state is enabled (through Config::enable_muted_state), |muted|
|
|
// may be set to true after a prolonged expand period. When this happens, the
|
|
// |data_| in |audio_frame| is not written, but should be interpreted as being
|
|
// all zeros. For testing purposes, an override can be supplied in the
|
|
// |action_override| argument, which will cause NetEq to take this action
|
|
// next, instead of the action it would normally choose.
|
|
// Returns kOK on success, or kFail in case of an error.
|
|
virtual int GetAudio(
|
|
AudioFrame* audio_frame,
|
|
bool* muted,
|
|
absl::optional<Operation> action_override = absl::nullopt) = 0;
|
|
|
|
// Replaces the current set of decoders with the given one.
|
|
virtual void SetCodecs(const std::map<int, SdpAudioFormat>& codecs) = 0;
|
|
|
|
// Associates |rtp_payload_type| with the given codec, which NetEq will
|
|
// instantiate when it needs it. Returns true iff successful.
|
|
virtual bool RegisterPayloadType(int rtp_payload_type,
|
|
const SdpAudioFormat& audio_format) = 0;
|
|
|
|
// Removes |rtp_payload_type| from the codec database. Returns 0 on success,
|
|
// -1 on failure. Removing a payload type that is not registered is ok and
|
|
// will not result in an error.
|
|
virtual int RemovePayloadType(uint8_t rtp_payload_type) = 0;
|
|
|
|
// Removes all payload types from the codec database.
|
|
virtual void RemoveAllPayloadTypes() = 0;
|
|
|
|
// Sets a minimum delay in millisecond for packet buffer. The minimum is
|
|
// maintained unless a higher latency is dictated by channel condition.
|
|
// Returns true if the minimum is successfully applied, otherwise false is
|
|
// returned.
|
|
virtual bool SetMinimumDelay(int delay_ms) = 0;
|
|
|
|
// Sets a maximum delay in milliseconds for packet buffer. The latency will
|
|
// not exceed the given value, even required delay (given the channel
|
|
// conditions) is higher. Calling this method has the same effect as setting
|
|
// the |max_delay_ms| value in the NetEq::Config struct.
|
|
virtual bool SetMaximumDelay(int delay_ms) = 0;
|
|
|
|
// Sets a base minimum delay in milliseconds for packet buffer. The minimum
|
|
// delay which is set via |SetMinimumDelay| can't be lower than base minimum
|
|
// delay. Calling this method is similar to setting the |min_delay_ms| value
|
|
// in the NetEq::Config struct. Returns true if the base minimum is
|
|
// successfully applied, otherwise false is returned.
|
|
virtual bool SetBaseMinimumDelayMs(int delay_ms) = 0;
|
|
|
|
// Returns current value of base minimum delay in milliseconds.
|
|
virtual int GetBaseMinimumDelayMs() const = 0;
|
|
|
|
// Returns the current target delay in ms. This includes any extra delay
|
|
// requested through SetMinimumDelay.
|
|
virtual int TargetDelayMs() const = 0;
|
|
|
|
// Returns the current total delay (packet buffer and sync buffer) in ms,
|
|
// with smoothing applied to even out short-time fluctuations due to jitter.
|
|
// The packet buffer part of the delay is not updated during DTX/CNG periods.
|
|
virtual int FilteredCurrentDelayMs() const = 0;
|
|
|
|
// Writes the current network statistics to |stats|. The statistics are reset
|
|
// after the call.
|
|
virtual int NetworkStatistics(NetEqNetworkStatistics* stats) = 0;
|
|
|
|
// Current values only, not resetting any state.
|
|
virtual NetEqNetworkStatistics CurrentNetworkStatistics() const = 0;
|
|
|
|
// Returns a copy of this class's lifetime statistics. These statistics are
|
|
// never reset.
|
|
virtual NetEqLifetimeStatistics GetLifetimeStatistics() const = 0;
|
|
|
|
// Returns statistics about the performed operations and internal state. These
|
|
// statistics are never reset.
|
|
virtual NetEqOperationsAndState GetOperationsAndState() const = 0;
|
|
|
|
// Enables post-decode VAD. When enabled, GetAudio() will return
|
|
// kOutputVADPassive when the signal contains no speech.
|
|
virtual void EnableVad() = 0;
|
|
|
|
// Disables post-decode VAD.
|
|
virtual void DisableVad() = 0;
|
|
|
|
// Returns the RTP timestamp for the last sample delivered by GetAudio().
|
|
// The return value will be empty if no valid timestamp is available.
|
|
virtual absl::optional<uint32_t> GetPlayoutTimestamp() const = 0;
|
|
|
|
// Returns the sample rate in Hz of the audio produced in the last GetAudio
|
|
// call. If GetAudio has not been called yet, the configured sample rate
|
|
// (Config::sample_rate_hz) is returned.
|
|
virtual int last_output_sample_rate_hz() const = 0;
|
|
|
|
// Returns the decoder info for the given payload type. Returns empty if no
|
|
// such payload type was registered.
|
|
virtual absl::optional<DecoderFormat> GetDecoderFormat(
|
|
int payload_type) const = 0;
|
|
|
|
// Flushes both the packet buffer and the sync buffer.
|
|
virtual void FlushBuffers() = 0;
|
|
|
|
// Enables NACK and sets the maximum size of the NACK list, which should be
|
|
// positive and no larger than Nack::kNackListSizeLimit. If NACK is already
|
|
// enabled then the maximum NACK list size is modified accordingly.
|
|
virtual void EnableNack(size_t max_nack_list_size) = 0;
|
|
|
|
virtual void DisableNack() = 0;
|
|
|
|
// Returns a list of RTP sequence numbers corresponding to packets to be
|
|
// retransmitted, given an estimate of the round-trip time in milliseconds.
|
|
virtual std::vector<uint16_t> GetNackList(
|
|
int64_t round_trip_time_ms) const = 0;
|
|
|
|
// Returns a vector containing the timestamps of the packets that were decoded
|
|
// in the last GetAudio call. If no packets were decoded in the last call, the
|
|
// vector is empty.
|
|
// Mainly intended for testing.
|
|
virtual std::vector<uint32_t> LastDecodedTimestamps() const = 0;
|
|
|
|
// Returns the length of the audio yet to play in the sync buffer.
|
|
// Mainly intended for testing.
|
|
virtual int SyncBufferSizeMs() const = 0;
|
|
};
|
|
|
|
} // namespace webrtc
|
|
#endif // API_NETEQ_NETEQ_H_
|