1359 lines
62 KiB
C++
1359 lines
62 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// Defines Message, the abstract interface implemented by non-lite
|
|
// protocol message objects. Although it's possible to implement this
|
|
// interface manually, most users will use the protocol compiler to
|
|
// generate implementations.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// Say you have a message defined as:
|
|
//
|
|
// message Foo {
|
|
// optional string text = 1;
|
|
// repeated int32 numbers = 2;
|
|
// }
|
|
//
|
|
// Then, if you used the protocol compiler to generate a class from the above
|
|
// definition, you could use it like so:
|
|
//
|
|
// std::string data; // Will store a serialized version of the message.
|
|
//
|
|
// {
|
|
// // Create a message and serialize it.
|
|
// Foo foo;
|
|
// foo.set_text("Hello World!");
|
|
// foo.add_numbers(1);
|
|
// foo.add_numbers(5);
|
|
// foo.add_numbers(42);
|
|
//
|
|
// foo.SerializeToString(&data);
|
|
// }
|
|
//
|
|
// {
|
|
// // Parse the serialized message and check that it contains the
|
|
// // correct data.
|
|
// Foo foo;
|
|
// foo.ParseFromString(data);
|
|
//
|
|
// assert(foo.text() == "Hello World!");
|
|
// assert(foo.numbers_size() == 3);
|
|
// assert(foo.numbers(0) == 1);
|
|
// assert(foo.numbers(1) == 5);
|
|
// assert(foo.numbers(2) == 42);
|
|
// }
|
|
//
|
|
// {
|
|
// // Same as the last block, but do it dynamically via the Message
|
|
// // reflection interface.
|
|
// Message* foo = new Foo;
|
|
// const Descriptor* descriptor = foo->GetDescriptor();
|
|
//
|
|
// // Get the descriptors for the fields we're interested in and verify
|
|
// // their types.
|
|
// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
|
|
// assert(text_field != nullptr);
|
|
// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
|
|
// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
|
|
// const FieldDescriptor* numbers_field = descriptor->
|
|
// FindFieldByName("numbers");
|
|
// assert(numbers_field != nullptr);
|
|
// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
|
|
// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
|
|
//
|
|
// // Parse the message.
|
|
// foo->ParseFromString(data);
|
|
//
|
|
// // Use the reflection interface to examine the contents.
|
|
// const Reflection* reflection = foo->GetReflection();
|
|
// assert(reflection->GetString(*foo, text_field) == "Hello World!");
|
|
// assert(reflection->FieldSize(*foo, numbers_field) == 3);
|
|
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
|
|
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
|
|
// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
|
|
//
|
|
// delete foo;
|
|
// }
|
|
|
|
#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
|
|
#define GOOGLE_PROTOBUF_MESSAGE_H__
|
|
|
|
#include <iosfwd>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include <google/protobuf/stubs/casts.h>
|
|
#include <google/protobuf/stubs/common.h>
|
|
#include <google/protobuf/arena.h>
|
|
#include <google/protobuf/descriptor.h>
|
|
#include <google/protobuf/generated_message_reflection.h>
|
|
#include <google/protobuf/message_lite.h>
|
|
#include <google/protobuf/port.h>
|
|
|
|
|
|
#define GOOGLE_PROTOBUF_HAS_ONEOF
|
|
#define GOOGLE_PROTOBUF_HAS_ARENAS
|
|
|
|
#include <google/protobuf/port_def.inc>
|
|
|
|
#ifdef SWIG
|
|
#error "You cannot SWIG proto headers"
|
|
#endif
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
|
|
// Defined in this file.
|
|
class Message;
|
|
class Reflection;
|
|
class MessageFactory;
|
|
|
|
// Defined in other files.
|
|
class AssignDescriptorsHelper;
|
|
class DynamicMessageFactory;
|
|
class MapKey;
|
|
class MapValueConstRef;
|
|
class MapValueRef;
|
|
class MapIterator;
|
|
class MapReflectionTester;
|
|
|
|
namespace internal {
|
|
struct DescriptorTable;
|
|
class MapFieldBase;
|
|
}
|
|
class UnknownFieldSet; // unknown_field_set.h
|
|
namespace io {
|
|
class ZeroCopyInputStream; // zero_copy_stream.h
|
|
class ZeroCopyOutputStream; // zero_copy_stream.h
|
|
class CodedInputStream; // coded_stream.h
|
|
class CodedOutputStream; // coded_stream.h
|
|
} // namespace io
|
|
namespace python {
|
|
class MapReflectionFriend; // scalar_map_container.h
|
|
}
|
|
namespace expr {
|
|
class CelMapReflectionFriend; // field_backed_map_impl.cc
|
|
}
|
|
|
|
namespace internal {
|
|
class MapFieldPrinterHelper; // text_format.cc
|
|
}
|
|
namespace util {
|
|
class MessageDifferencer;
|
|
}
|
|
|
|
|
|
namespace internal {
|
|
class ReflectionAccessor; // message.cc
|
|
class ReflectionOps; // reflection_ops.h
|
|
class MapKeySorter; // wire_format.cc
|
|
class WireFormat; // wire_format.h
|
|
class MapFieldReflectionTest; // map_test.cc
|
|
} // namespace internal
|
|
|
|
template <typename T>
|
|
class RepeatedField; // repeated_field.h
|
|
|
|
template <typename T>
|
|
class RepeatedPtrField; // repeated_field.h
|
|
|
|
// A container to hold message metadata.
|
|
struct Metadata {
|
|
const Descriptor* descriptor;
|
|
const Reflection* reflection;
|
|
};
|
|
|
|
namespace internal {
|
|
template <class To>
|
|
inline To* GetPointerAtOffset(Message* message, uint32 offset) {
|
|
return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
|
|
}
|
|
|
|
template <class To>
|
|
const To* GetConstPointerAtOffset(const Message* message, uint32 offset) {
|
|
return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
|
|
offset);
|
|
}
|
|
|
|
template <class To>
|
|
const To& GetConstRefAtOffset(const Message& message, uint32 offset) {
|
|
return *GetConstPointerAtOffset<To>(&message, offset);
|
|
}
|
|
|
|
bool CreateUnknownEnumValues(const FieldDescriptor* field);
|
|
} // namespace internal
|
|
|
|
// Abstract interface for protocol messages.
|
|
//
|
|
// See also MessageLite, which contains most every-day operations. Message
|
|
// adds descriptors and reflection on top of that.
|
|
//
|
|
// The methods of this class that are virtual but not pure-virtual have
|
|
// default implementations based on reflection. Message classes which are
|
|
// optimized for speed will want to override these with faster implementations,
|
|
// but classes optimized for code size may be happy with keeping them. See
|
|
// the optimize_for option in descriptor.proto.
|
|
//
|
|
// Users must not derive from this class. Only the protocol compiler and
|
|
// the internal library are allowed to create subclasses.
|
|
class PROTOBUF_EXPORT Message : public MessageLite {
|
|
public:
|
|
inline Message() {}
|
|
|
|
// Basic Operations ------------------------------------------------
|
|
|
|
// Construct a new instance of the same type. Ownership is passed to the
|
|
// caller. (This is also defined in MessageLite, but is defined again here
|
|
// for return-type covariance.)
|
|
Message* New() const override = 0;
|
|
|
|
// Construct a new instance on the arena. Ownership is passed to the caller
|
|
// if arena is a nullptr. Default implementation allows for API compatibility
|
|
// during the Arena transition.
|
|
Message* New(Arena* arena) const override {
|
|
Message* message = New();
|
|
if (arena != nullptr) {
|
|
arena->Own(message);
|
|
}
|
|
return message;
|
|
}
|
|
|
|
// Make this message into a copy of the given message. The given message
|
|
// must have the same descriptor, but need not necessarily be the same class.
|
|
// By default this is just implemented as "Clear(); MergeFrom(from);".
|
|
virtual void CopyFrom(const Message& from);
|
|
|
|
// Merge the fields from the given message into this message. Singular
|
|
// fields will be overwritten, if specified in from, except for embedded
|
|
// messages which will be merged. Repeated fields will be concatenated.
|
|
// The given message must be of the same type as this message (i.e. the
|
|
// exact same class).
|
|
virtual void MergeFrom(const Message& from);
|
|
|
|
// Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
|
|
// a nice error message.
|
|
void CheckInitialized() const;
|
|
|
|
// Slowly build a list of all required fields that are not set.
|
|
// This is much, much slower than IsInitialized() as it is implemented
|
|
// purely via reflection. Generally, you should not call this unless you
|
|
// have already determined that an error exists by calling IsInitialized().
|
|
void FindInitializationErrors(std::vector<std::string>* errors) const;
|
|
|
|
// Like FindInitializationErrors, but joins all the strings, delimited by
|
|
// commas, and returns them.
|
|
std::string InitializationErrorString() const override;
|
|
|
|
// Clears all unknown fields from this message and all embedded messages.
|
|
// Normally, if unknown tag numbers are encountered when parsing a message,
|
|
// the tag and value are stored in the message's UnknownFieldSet and
|
|
// then written back out when the message is serialized. This allows servers
|
|
// which simply route messages to other servers to pass through messages
|
|
// that have new field definitions which they don't yet know about. However,
|
|
// this behavior can have security implications. To avoid it, call this
|
|
// method after parsing.
|
|
//
|
|
// See Reflection::GetUnknownFields() for more on unknown fields.
|
|
virtual void DiscardUnknownFields();
|
|
|
|
// Computes (an estimate of) the total number of bytes currently used for
|
|
// storing the message in memory. The default implementation calls the
|
|
// Reflection object's SpaceUsed() method.
|
|
//
|
|
// SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
|
|
// using reflection (rather than the generated code implementation for
|
|
// ByteSize()). Like ByteSize(), its CPU time is linear in the number of
|
|
// fields defined for the proto.
|
|
virtual size_t SpaceUsedLong() const;
|
|
|
|
PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
|
|
int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
|
|
|
|
// Debugging & Testing----------------------------------------------
|
|
|
|
// Generates a human readable form of this message, useful for debugging
|
|
// and other purposes.
|
|
std::string DebugString() const;
|
|
// Like DebugString(), but with less whitespace.
|
|
std::string ShortDebugString() const;
|
|
// Like DebugString(), but do not escape UTF-8 byte sequences.
|
|
std::string Utf8DebugString() const;
|
|
// Convenience function useful in GDB. Prints DebugString() to stdout.
|
|
void PrintDebugString() const;
|
|
|
|
// Reflection-based methods ----------------------------------------
|
|
// These methods are pure-virtual in MessageLite, but Message provides
|
|
// reflection-based default implementations.
|
|
|
|
std::string GetTypeName() const override;
|
|
void Clear() override;
|
|
|
|
// Returns whether all required fields have been set. Note that required
|
|
// fields no longer exist starting in proto3.
|
|
bool IsInitialized() const override;
|
|
|
|
void CheckTypeAndMergeFrom(const MessageLite& other) override;
|
|
// Reflective parser
|
|
const char* _InternalParse(const char* ptr,
|
|
internal::ParseContext* ctx) override;
|
|
size_t ByteSizeLong() const override;
|
|
uint8* _InternalSerialize(uint8* target,
|
|
io::EpsCopyOutputStream* stream) const override;
|
|
|
|
private:
|
|
// This is called only by the default implementation of ByteSize(), to
|
|
// update the cached size. If you override ByteSize(), you do not need
|
|
// to override this. If you do not override ByteSize(), you MUST override
|
|
// this; the default implementation will crash.
|
|
//
|
|
// The method is private because subclasses should never call it; only
|
|
// override it. Yes, C++ lets you do that. Crazy, huh?
|
|
virtual void SetCachedSize(int size) const;
|
|
|
|
public:
|
|
// Introspection ---------------------------------------------------
|
|
|
|
|
|
// Get a non-owning pointer to a Descriptor for this message's type. This
|
|
// describes what fields the message contains, the types of those fields, etc.
|
|
// This object remains property of the Message.
|
|
const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
|
|
|
|
// Get a non-owning pointer to the Reflection interface for this Message,
|
|
// which can be used to read and modify the fields of the Message dynamically
|
|
// (in other words, without knowing the message type at compile time). This
|
|
// object remains property of the Message.
|
|
const Reflection* GetReflection() const { return GetMetadata().reflection; }
|
|
|
|
protected:
|
|
// Get a struct containing the metadata for the Message, which is used in turn
|
|
// to implement GetDescriptor() and GetReflection() above.
|
|
virtual Metadata GetMetadata() const = 0;
|
|
|
|
inline explicit Message(Arena* arena) : MessageLite(arena) {}
|
|
|
|
|
|
protected:
|
|
static size_t GetInvariantPerBuild(size_t salt);
|
|
|
|
private:
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
|
|
};
|
|
|
|
namespace internal {
|
|
// Forward-declare interfaces used to implement RepeatedFieldRef.
|
|
// These are protobuf internals that users shouldn't care about.
|
|
class RepeatedFieldAccessor;
|
|
} // namespace internal
|
|
|
|
// Forward-declare RepeatedFieldRef templates. The second type parameter is
|
|
// used for SFINAE tricks. Users should ignore it.
|
|
template <typename T, typename Enable = void>
|
|
class RepeatedFieldRef;
|
|
|
|
template <typename T, typename Enable = void>
|
|
class MutableRepeatedFieldRef;
|
|
|
|
// This interface contains methods that can be used to dynamically access
|
|
// and modify the fields of a protocol message. Their semantics are
|
|
// similar to the accessors the protocol compiler generates.
|
|
//
|
|
// To get the Reflection for a given Message, call Message::GetReflection().
|
|
//
|
|
// This interface is separate from Message only for efficiency reasons;
|
|
// the vast majority of implementations of Message will share the same
|
|
// implementation of Reflection (GeneratedMessageReflection,
|
|
// defined in generated_message.h), and all Messages of a particular class
|
|
// should share the same Reflection object (though you should not rely on
|
|
// the latter fact).
|
|
//
|
|
// There are several ways that these methods can be used incorrectly. For
|
|
// example, any of the following conditions will lead to undefined
|
|
// results (probably assertion failures):
|
|
// - The FieldDescriptor is not a field of this message type.
|
|
// - The method called is not appropriate for the field's type. For
|
|
// each field type in FieldDescriptor::TYPE_*, there is only one
|
|
// Get*() method, one Set*() method, and one Add*() method that is
|
|
// valid for that type. It should be obvious which (except maybe
|
|
// for TYPE_BYTES, which are represented using strings in C++).
|
|
// - A Get*() or Set*() method for singular fields is called on a repeated
|
|
// field.
|
|
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
|
|
// field.
|
|
// - The Message object passed to any method is not of the right type for
|
|
// this Reflection object (i.e. message.GetReflection() != reflection).
|
|
//
|
|
// You might wonder why there is not any abstract representation for a field
|
|
// of arbitrary type. E.g., why isn't there just a "GetField()" method that
|
|
// returns "const Field&", where "Field" is some class with accessors like
|
|
// "GetInt32Value()". The problem is that someone would have to deal with
|
|
// allocating these Field objects. For generated message classes, having to
|
|
// allocate space for an additional object to wrap every field would at least
|
|
// double the message's memory footprint, probably worse. Allocating the
|
|
// objects on-demand, on the other hand, would be expensive and prone to
|
|
// memory leaks. So, instead we ended up with this flat interface.
|
|
class PROTOBUF_EXPORT Reflection final {
|
|
public:
|
|
// Get the UnknownFieldSet for the message. This contains fields which
|
|
// were seen when the Message was parsed but were not recognized according
|
|
// to the Message's definition.
|
|
const UnknownFieldSet& GetUnknownFields(const Message& message) const;
|
|
// Get a mutable pointer to the UnknownFieldSet for the message. This
|
|
// contains fields which were seen when the Message was parsed but were not
|
|
// recognized according to the Message's definition.
|
|
UnknownFieldSet* MutableUnknownFields(Message* message) const;
|
|
|
|
// Estimate the amount of memory used by the message object.
|
|
size_t SpaceUsedLong(const Message& message) const;
|
|
|
|
PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
|
|
int SpaceUsed(const Message& message) const {
|
|
return internal::ToIntSize(SpaceUsedLong(message));
|
|
}
|
|
|
|
// Check if the given non-repeated field is set.
|
|
bool HasField(const Message& message, const FieldDescriptor* field) const;
|
|
|
|
// Get the number of elements of a repeated field.
|
|
int FieldSize(const Message& message, const FieldDescriptor* field) const;
|
|
|
|
// Clear the value of a field, so that HasField() returns false or
|
|
// FieldSize() returns zero.
|
|
void ClearField(Message* message, const FieldDescriptor* field) const;
|
|
|
|
// Check if the oneof is set. Returns true if any field in oneof
|
|
// is set, false otherwise.
|
|
bool HasOneof(const Message& message,
|
|
const OneofDescriptor* oneof_descriptor) const;
|
|
|
|
void ClearOneof(Message* message,
|
|
const OneofDescriptor* oneof_descriptor) const;
|
|
|
|
// Returns the field descriptor if the oneof is set. nullptr otherwise.
|
|
const FieldDescriptor* GetOneofFieldDescriptor(
|
|
const Message& message, const OneofDescriptor* oneof_descriptor) const;
|
|
|
|
// Removes the last element of a repeated field.
|
|
// We don't provide a way to remove any element other than the last
|
|
// because it invites inefficient use, such as O(n^2) filtering loops
|
|
// that should have been O(n). If you want to remove an element other
|
|
// than the last, the best way to do it is to re-arrange the elements
|
|
// (using Swap()) so that the one you want removed is at the end, then
|
|
// call RemoveLast().
|
|
void RemoveLast(Message* message, const FieldDescriptor* field) const;
|
|
// Removes the last element of a repeated message field, and returns the
|
|
// pointer to the caller. Caller takes ownership of the returned pointer.
|
|
Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
|
|
|
|
// Swap the complete contents of two messages.
|
|
void Swap(Message* message1, Message* message2) const;
|
|
|
|
// Swap fields listed in fields vector of two messages.
|
|
void SwapFields(Message* message1, Message* message2,
|
|
const std::vector<const FieldDescriptor*>& fields) const;
|
|
|
|
// Swap two elements of a repeated field.
|
|
void SwapElements(Message* message, const FieldDescriptor* field, int index1,
|
|
int index2) const;
|
|
|
|
// List all fields of the message which are currently set, except for unknown
|
|
// fields, but including extension known to the parser (i.e. compiled in).
|
|
// Singular fields will only be listed if HasField(field) would return true
|
|
// and repeated fields will only be listed if FieldSize(field) would return
|
|
// non-zero. Fields (both normal fields and extension fields) will be listed
|
|
// ordered by field number.
|
|
// Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
|
|
// access to fields/extensions unknown to the parser.
|
|
void ListFields(const Message& message,
|
|
std::vector<const FieldDescriptor*>* output) const;
|
|
|
|
// Singular field getters ------------------------------------------
|
|
// These get the value of a non-repeated field. They return the default
|
|
// value for fields that aren't set.
|
|
|
|
int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
|
|
int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
|
|
uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
|
|
uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
|
|
float GetFloat(const Message& message, const FieldDescriptor* field) const;
|
|
double GetDouble(const Message& message, const FieldDescriptor* field) const;
|
|
bool GetBool(const Message& message, const FieldDescriptor* field) const;
|
|
std::string GetString(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
const EnumValueDescriptor* GetEnum(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
// GetEnumValue() returns an enum field's value as an integer rather than
|
|
// an EnumValueDescriptor*. If the integer value does not correspond to a
|
|
// known value descriptor, a new value descriptor is created. (Such a value
|
|
// will only be present when the new unknown-enum-value semantics are enabled
|
|
// for a message.)
|
|
int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
|
|
|
|
// See MutableMessage() for the meaning of the "factory" parameter.
|
|
const Message& GetMessage(const Message& message,
|
|
const FieldDescriptor* field,
|
|
MessageFactory* factory = nullptr) const;
|
|
|
|
// Get a string value without copying, if possible.
|
|
//
|
|
// GetString() necessarily returns a copy of the string. This can be
|
|
// inefficient when the std::string is already stored in a std::string object
|
|
// in the underlying message. GetStringReference() will return a reference to
|
|
// the underlying std::string in this case. Otherwise, it will copy the
|
|
// string into *scratch and return that.
|
|
//
|
|
// Note: It is perfectly reasonable and useful to write code like:
|
|
// str = reflection->GetStringReference(message, field, &str);
|
|
// This line would ensure that only one copy of the string is made
|
|
// regardless of the field's underlying representation. When initializing
|
|
// a newly-constructed string, though, it's just as fast and more
|
|
// readable to use code like:
|
|
// std::string str = reflection->GetString(message, field);
|
|
const std::string& GetStringReference(const Message& message,
|
|
const FieldDescriptor* field,
|
|
std::string* scratch) const;
|
|
|
|
|
|
// Singular field mutators -----------------------------------------
|
|
// These mutate the value of a non-repeated field.
|
|
|
|
void SetInt32(Message* message, const FieldDescriptor* field,
|
|
int32 value) const;
|
|
void SetInt64(Message* message, const FieldDescriptor* field,
|
|
int64 value) const;
|
|
void SetUInt32(Message* message, const FieldDescriptor* field,
|
|
uint32 value) const;
|
|
void SetUInt64(Message* message, const FieldDescriptor* field,
|
|
uint64 value) const;
|
|
void SetFloat(Message* message, const FieldDescriptor* field,
|
|
float value) const;
|
|
void SetDouble(Message* message, const FieldDescriptor* field,
|
|
double value) const;
|
|
void SetBool(Message* message, const FieldDescriptor* field,
|
|
bool value) const;
|
|
void SetString(Message* message, const FieldDescriptor* field,
|
|
std::string value) const;
|
|
void SetEnum(Message* message, const FieldDescriptor* field,
|
|
const EnumValueDescriptor* value) const;
|
|
// Set an enum field's value with an integer rather than EnumValueDescriptor.
|
|
// For proto3 this is just setting the enum field to the value specified, for
|
|
// proto2 it's more complicated. If value is a known enum value the field is
|
|
// set as usual. If the value is unknown then it is added to the unknown field
|
|
// set. Note this matches the behavior of parsing unknown enum values.
|
|
// If multiple calls with unknown values happen than they are all added to the
|
|
// unknown field set in order of the calls.
|
|
void SetEnumValue(Message* message, const FieldDescriptor* field,
|
|
int value) const;
|
|
|
|
// Get a mutable pointer to a field with a message type. If a MessageFactory
|
|
// is provided, it will be used to construct instances of the sub-message;
|
|
// otherwise, the default factory is used. If the field is an extension that
|
|
// does not live in the same pool as the containing message's descriptor (e.g.
|
|
// it lives in an overlay pool), then a MessageFactory must be provided.
|
|
// If you have no idea what that meant, then you probably don't need to worry
|
|
// about it (don't provide a MessageFactory). WARNING: If the
|
|
// FieldDescriptor is for a compiled-in extension, then
|
|
// factory->GetPrototype(field->message_type()) MUST return an instance of
|
|
// the compiled-in class for this type, NOT DynamicMessage.
|
|
Message* MutableMessage(Message* message, const FieldDescriptor* field,
|
|
MessageFactory* factory = nullptr) const;
|
|
// Replaces the message specified by 'field' with the already-allocated object
|
|
// sub_message, passing ownership to the message. If the field contained a
|
|
// message, that message is deleted. If sub_message is nullptr, the field is
|
|
// cleared.
|
|
void SetAllocatedMessage(Message* message, Message* sub_message,
|
|
const FieldDescriptor* field) const;
|
|
// Releases the message specified by 'field' and returns the pointer,
|
|
// ReleaseMessage() will return the message the message object if it exists.
|
|
// Otherwise, it may or may not return nullptr. In any case, if the return
|
|
// value is non-null, the caller takes ownership of the pointer.
|
|
// If the field existed (HasField() is true), then the returned pointer will
|
|
// be the same as the pointer returned by MutableMessage().
|
|
// This function has the same effect as ClearField().
|
|
Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
|
|
MessageFactory* factory = nullptr) const;
|
|
|
|
|
|
// Repeated field getters ------------------------------------------
|
|
// These get the value of one element of a repeated field.
|
|
|
|
int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
std::string GetRepeatedString(const Message& message,
|
|
const FieldDescriptor* field, int index) const;
|
|
const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const;
|
|
// GetRepeatedEnumValue() returns an enum field's value as an integer rather
|
|
// than an EnumValueDescriptor*. If the integer value does not correspond to a
|
|
// known value descriptor, a new value descriptor is created. (Such a value
|
|
// will only be present when the new unknown-enum-value semantics are enabled
|
|
// for a message.)
|
|
int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
|
|
int index) const;
|
|
const Message& GetRepeatedMessage(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const;
|
|
|
|
// See GetStringReference(), above.
|
|
const std::string& GetRepeatedStringReference(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index,
|
|
std::string* scratch) const;
|
|
|
|
|
|
// Repeated field mutators -----------------------------------------
|
|
// These mutate the value of one element of a repeated field.
|
|
|
|
void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
|
|
int index, int32 value) const;
|
|
void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
|
|
int index, int64 value) const;
|
|
void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
|
|
int index, uint32 value) const;
|
|
void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
|
|
int index, uint64 value) const;
|
|
void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
|
|
int index, float value) const;
|
|
void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
|
|
int index, double value) const;
|
|
void SetRepeatedBool(Message* message, const FieldDescriptor* field,
|
|
int index, bool value) const;
|
|
void SetRepeatedString(Message* message, const FieldDescriptor* field,
|
|
int index, std::string value) const;
|
|
void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
|
|
int index, const EnumValueDescriptor* value) const;
|
|
// Set an enum field's value with an integer rather than EnumValueDescriptor.
|
|
// For proto3 this is just setting the enum field to the value specified, for
|
|
// proto2 it's more complicated. If value is a known enum value the field is
|
|
// set as usual. If the value is unknown then it is added to the unknown field
|
|
// set. Note this matches the behavior of parsing unknown enum values.
|
|
// If multiple calls with unknown values happen than they are all added to the
|
|
// unknown field set in order of the calls.
|
|
void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
|
|
int index, int value) const;
|
|
// Get a mutable pointer to an element of a repeated field with a message
|
|
// type.
|
|
Message* MutableRepeatedMessage(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index) const;
|
|
|
|
|
|
// Repeated field adders -------------------------------------------
|
|
// These add an element to a repeated field.
|
|
|
|
void AddInt32(Message* message, const FieldDescriptor* field,
|
|
int32 value) const;
|
|
void AddInt64(Message* message, const FieldDescriptor* field,
|
|
int64 value) const;
|
|
void AddUInt32(Message* message, const FieldDescriptor* field,
|
|
uint32 value) const;
|
|
void AddUInt64(Message* message, const FieldDescriptor* field,
|
|
uint64 value) const;
|
|
void AddFloat(Message* message, const FieldDescriptor* field,
|
|
float value) const;
|
|
void AddDouble(Message* message, const FieldDescriptor* field,
|
|
double value) const;
|
|
void AddBool(Message* message, const FieldDescriptor* field,
|
|
bool value) const;
|
|
void AddString(Message* message, const FieldDescriptor* field,
|
|
std::string value) const;
|
|
void AddEnum(Message* message, const FieldDescriptor* field,
|
|
const EnumValueDescriptor* value) const;
|
|
// Add an integer value to a repeated enum field rather than
|
|
// EnumValueDescriptor. For proto3 this is just setting the enum field to the
|
|
// value specified, for proto2 it's more complicated. If value is a known enum
|
|
// value the field is set as usual. If the value is unknown then it is added
|
|
// to the unknown field set. Note this matches the behavior of parsing unknown
|
|
// enum values. If multiple calls with unknown values happen than they are all
|
|
// added to the unknown field set in order of the calls.
|
|
void AddEnumValue(Message* message, const FieldDescriptor* field,
|
|
int value) const;
|
|
// See MutableMessage() for comments on the "factory" parameter.
|
|
Message* AddMessage(Message* message, const FieldDescriptor* field,
|
|
MessageFactory* factory = nullptr) const;
|
|
|
|
// Appends an already-allocated object 'new_entry' to the repeated field
|
|
// specified by 'field' passing ownership to the message.
|
|
void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
|
|
Message* new_entry) const;
|
|
|
|
|
|
// Get a RepeatedFieldRef object that can be used to read the underlying
|
|
// repeated field. The type parameter T must be set according to the
|
|
// field's cpp type. The following table shows the mapping from cpp type
|
|
// to acceptable T.
|
|
//
|
|
// field->cpp_type() T
|
|
// CPPTYPE_INT32 int32
|
|
// CPPTYPE_UINT32 uint32
|
|
// CPPTYPE_INT64 int64
|
|
// CPPTYPE_UINT64 uint64
|
|
// CPPTYPE_DOUBLE double
|
|
// CPPTYPE_FLOAT float
|
|
// CPPTYPE_BOOL bool
|
|
// CPPTYPE_ENUM generated enum type or int32
|
|
// CPPTYPE_STRING std::string
|
|
// CPPTYPE_MESSAGE generated message type or google::protobuf::Message
|
|
//
|
|
// A RepeatedFieldRef object can be copied and the resulted object will point
|
|
// to the same repeated field in the same message. The object can be used as
|
|
// long as the message is not destroyed.
|
|
//
|
|
// Note that to use this method users need to include the header file
|
|
// "reflection.h" (which defines the RepeatedFieldRef class templates).
|
|
template <typename T>
|
|
RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
// Like GetRepeatedFieldRef() but return an object that can also be used
|
|
// manipulate the underlying repeated field.
|
|
template <typename T>
|
|
MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
|
|
Message* message, const FieldDescriptor* field) const;
|
|
|
|
// DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
|
|
// access. The following repeated field accessors will be removed in the
|
|
// future.
|
|
//
|
|
// Repeated field accessors -------------------------------------------------
|
|
// The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
|
|
// access to the data in a RepeatedField. The methods below provide aggregate
|
|
// access by exposing the RepeatedField object itself with the Message.
|
|
// Applying these templates to inappropriate types will lead to an undefined
|
|
// reference at link time (e.g. GetRepeatedField<***double>), or possibly a
|
|
// template matching error at compile time (e.g. GetRepeatedPtrField<File>).
|
|
//
|
|
// Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
|
|
|
|
// DEPRECATED. Please use GetRepeatedFieldRef().
|
|
//
|
|
// for T = Cord and all protobuf scalar types except enums.
|
|
template <typename T>
|
|
PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
|
|
const RepeatedField<T>& GetRepeatedField(const Message& msg,
|
|
const FieldDescriptor* d) const {
|
|
return GetRepeatedFieldInternal<T>(msg, d);
|
|
}
|
|
|
|
// DEPRECATED. Please use GetMutableRepeatedFieldRef().
|
|
//
|
|
// for T = Cord and all protobuf scalar types except enums.
|
|
template <typename T>
|
|
PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
|
|
RepeatedField<T>* MutableRepeatedField(Message* msg,
|
|
const FieldDescriptor* d) const {
|
|
return MutableRepeatedFieldInternal<T>(msg, d);
|
|
}
|
|
|
|
// DEPRECATED. Please use GetRepeatedFieldRef().
|
|
//
|
|
// for T = std::string, google::protobuf::internal::StringPieceField
|
|
// google::protobuf::Message & descendants.
|
|
template <typename T>
|
|
PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
|
|
const RepeatedPtrField<T>& GetRepeatedPtrField(
|
|
const Message& msg, const FieldDescriptor* d) const {
|
|
return GetRepeatedPtrFieldInternal<T>(msg, d);
|
|
}
|
|
|
|
// DEPRECATED. Please use GetMutableRepeatedFieldRef().
|
|
//
|
|
// for T = std::string, google::protobuf::internal::StringPieceField
|
|
// google::protobuf::Message & descendants.
|
|
template <typename T>
|
|
PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
|
|
RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
|
|
const FieldDescriptor* d) const {
|
|
return MutableRepeatedPtrFieldInternal<T>(msg, d);
|
|
}
|
|
|
|
// Extensions ----------------------------------------------------------------
|
|
|
|
// Try to find an extension of this message type by fully-qualified field
|
|
// name. Returns nullptr if no extension is known for this name or number.
|
|
const FieldDescriptor* FindKnownExtensionByName(
|
|
const std::string& name) const;
|
|
|
|
// Try to find an extension of this message type by field number.
|
|
// Returns nullptr if no extension is known for this name or number.
|
|
const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
|
|
|
|
// Feature Flags -------------------------------------------------------------
|
|
|
|
// Does this message support storing arbitrary integer values in enum fields?
|
|
// If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
|
|
// take arbitrary integer values, and the legacy GetEnum() getter will
|
|
// dynamically create an EnumValueDescriptor for any integer value without
|
|
// one. If |false|, setting an unknown enum value via the integer-based
|
|
// setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
|
|
//
|
|
// Generic code that uses reflection to handle messages with enum fields
|
|
// should check this flag before using the integer-based setter, and either
|
|
// downgrade to a compatible value or use the UnknownFieldSet if not. For
|
|
// example:
|
|
//
|
|
// int new_value = GetValueFromApplicationLogic();
|
|
// if (reflection->SupportsUnknownEnumValues()) {
|
|
// reflection->SetEnumValue(message, field, new_value);
|
|
// } else {
|
|
// if (field_descriptor->enum_type()->
|
|
// FindValueByNumber(new_value) != nullptr) {
|
|
// reflection->SetEnumValue(message, field, new_value);
|
|
// } else if (emit_unknown_enum_values) {
|
|
// reflection->MutableUnknownFields(message)->AddVarint(
|
|
// field->number(), new_value);
|
|
// } else {
|
|
// // convert value to a compatible/default value.
|
|
// new_value = CompatibleDowngrade(new_value);
|
|
// reflection->SetEnumValue(message, field, new_value);
|
|
// }
|
|
// }
|
|
bool SupportsUnknownEnumValues() const;
|
|
|
|
// Returns the MessageFactory associated with this message. This can be
|
|
// useful for determining if a message is a generated message or not, for
|
|
// example:
|
|
// if (message->GetReflection()->GetMessageFactory() ==
|
|
// google::protobuf::MessageFactory::generated_factory()) {
|
|
// // This is a generated message.
|
|
// }
|
|
// It can also be used to create more messages of this type, though
|
|
// Message::New() is an easier way to accomplish this.
|
|
MessageFactory* GetMessageFactory() const;
|
|
|
|
private:
|
|
template <typename T>
|
|
const RepeatedField<T>& GetRepeatedFieldInternal(
|
|
const Message& message, const FieldDescriptor* field) const;
|
|
template <typename T>
|
|
RepeatedField<T>* MutableRepeatedFieldInternal(
|
|
Message* message, const FieldDescriptor* field) const;
|
|
template <typename T>
|
|
const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
|
|
const Message& message, const FieldDescriptor* field) const;
|
|
template <typename T>
|
|
RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
|
|
Message* message, const FieldDescriptor* field) const;
|
|
// Obtain a pointer to a Repeated Field Structure and do some type checking:
|
|
// on field->cpp_type(),
|
|
// on field->field_option().ctype() (if ctype >= 0)
|
|
// of field->message_type() (if message_type != nullptr).
|
|
// We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
|
|
void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
|
|
FieldDescriptor::CppType, int ctype,
|
|
const Descriptor* message_type) const;
|
|
|
|
const void* GetRawRepeatedField(const Message& message,
|
|
const FieldDescriptor* field,
|
|
FieldDescriptor::CppType cpptype, int ctype,
|
|
const Descriptor* message_type) const;
|
|
|
|
// The following methods are used to implement (Mutable)RepeatedFieldRef.
|
|
// A Ref object will store a raw pointer to the repeated field data (obtained
|
|
// from RepeatedFieldData()) and a pointer to a Accessor (obtained from
|
|
// RepeatedFieldAccessor) which will be used to access the raw data.
|
|
|
|
// Returns a raw pointer to the repeated field
|
|
//
|
|
// "cpp_type" and "message_type" are deduced from the type parameter T passed
|
|
// to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
|
|
// "message_type" should be set to its descriptor. Otherwise "message_type"
|
|
// should be set to nullptr. Implementations of this method should check
|
|
// whether "cpp_type"/"message_type" is consistent with the actual type of the
|
|
// field. We use 1 routine rather than 2 (const vs mutable) because it is
|
|
// protected and it doesn't change the message.
|
|
void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
|
|
FieldDescriptor::CppType cpp_type,
|
|
const Descriptor* message_type) const;
|
|
|
|
// The returned pointer should point to a singleton instance which implements
|
|
// the RepeatedFieldAccessor interface.
|
|
const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
|
|
const FieldDescriptor* field) const;
|
|
|
|
// Lists all fields of the message which are currently set, except for unknown
|
|
// fields and stripped fields. See ListFields for details.
|
|
void ListFieldsOmitStripped(
|
|
const Message& message,
|
|
std::vector<const FieldDescriptor*>* output) const;
|
|
|
|
bool IsMessageStripped(const Descriptor* descriptor) const {
|
|
return schema_.IsMessageStripped(descriptor);
|
|
}
|
|
|
|
friend class TextFormat;
|
|
|
|
void ListFieldsMayFailOnStripped(
|
|
const Message& message, bool should_fail,
|
|
std::vector<const FieldDescriptor*>* output) const;
|
|
|
|
const Descriptor* const descriptor_;
|
|
const internal::ReflectionSchema schema_;
|
|
const DescriptorPool* const descriptor_pool_;
|
|
MessageFactory* const message_factory_;
|
|
|
|
// Last non weak field index. This is an optimization when most weak fields
|
|
// are at the end of the containing message. If a message proto doesn't
|
|
// contain weak fields, then this field equals descriptor_->field_count().
|
|
int last_non_weak_field_index_;
|
|
|
|
template <typename T, typename Enable>
|
|
friend class RepeatedFieldRef;
|
|
template <typename T, typename Enable>
|
|
friend class MutableRepeatedFieldRef;
|
|
friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
|
|
friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
|
|
friend class DynamicMessageFactory;
|
|
friend class python::MapReflectionFriend;
|
|
friend class util::MessageDifferencer;
|
|
#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
|
|
friend class expr::CelMapReflectionFriend;
|
|
friend class internal::MapFieldReflectionTest;
|
|
friend class internal::MapKeySorter;
|
|
friend class internal::WireFormat;
|
|
friend class internal::ReflectionOps;
|
|
// Needed for implementing text format for map.
|
|
friend class internal::MapFieldPrinterHelper;
|
|
|
|
Reflection(const Descriptor* descriptor,
|
|
const internal::ReflectionSchema& schema,
|
|
const DescriptorPool* pool, MessageFactory* factory);
|
|
|
|
// Special version for specialized implementations of string. We can't
|
|
// call MutableRawRepeatedField directly here because we don't have access to
|
|
// FieldOptions::* which are defined in descriptor.pb.h. Including that
|
|
// file here is not possible because it would cause a circular include cycle.
|
|
// We use 1 routine rather than 2 (const vs mutable) because it is private
|
|
// and mutable a repeated string field doesn't change the message.
|
|
void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
|
|
bool is_string) const;
|
|
|
|
friend class MapReflectionTester;
|
|
// Returns true if key is in map. Returns false if key is not in map field.
|
|
bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
|
|
const MapKey& key) const;
|
|
|
|
// If key is in map field: Saves the value pointer to val and returns
|
|
// false. If key in not in map field: Insert the key into map, saves
|
|
// value pointer to val and returns true. Users are able to modify the
|
|
// map value by MapValueRef.
|
|
bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
|
|
const MapKey& key, MapValueRef* val) const;
|
|
|
|
// If key is in map field: Saves the value pointer to val and returns true.
|
|
// Returns false if key is not in map field. Users are NOT able to modify
|
|
// the value by MapValueConstRef.
|
|
bool LookupMapValue(const Message& message, const FieldDescriptor* field,
|
|
const MapKey& key, MapValueConstRef* val) const;
|
|
bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
|
|
MapValueRef*) const = delete;
|
|
|
|
// Delete and returns true if key is in the map field. Returns false
|
|
// otherwise.
|
|
bool DeleteMapValue(Message* message, const FieldDescriptor* field,
|
|
const MapKey& key) const;
|
|
|
|
// Returns a MapIterator referring to the first element in the map field.
|
|
// If the map field is empty, this function returns the same as
|
|
// reflection::MapEnd. Mutation to the field may invalidate the iterator.
|
|
MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
|
|
|
|
// Returns a MapIterator referring to the theoretical element that would
|
|
// follow the last element in the map field. It does not point to any
|
|
// real element. Mutation to the field may invalidate the iterator.
|
|
MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
|
|
|
|
// Get the number of <key, value> pair of a map field. The result may be
|
|
// different from FieldSize which can have duplicate keys.
|
|
int MapSize(const Message& message, const FieldDescriptor* field) const;
|
|
|
|
// Help method for MapIterator.
|
|
friend class MapIterator;
|
|
friend class WireFormatForMapFieldTest;
|
|
internal::MapFieldBase* MutableMapData(Message* message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
const internal::MapFieldBase* GetMapData(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
template <class T>
|
|
const T& GetRawNonOneof(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
template <class T>
|
|
T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
|
|
|
|
template <typename Type>
|
|
const Type& GetRaw(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
template <typename Type>
|
|
inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
|
|
template <typename Type>
|
|
const Type& DefaultRaw(const FieldDescriptor* field) const;
|
|
|
|
const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
|
|
|
|
inline const uint32* GetHasBits(const Message& message) const;
|
|
inline uint32* MutableHasBits(Message* message) const;
|
|
inline uint32 GetOneofCase(const Message& message,
|
|
const OneofDescriptor* oneof_descriptor) const;
|
|
inline uint32* MutableOneofCase(
|
|
Message* message, const OneofDescriptor* oneof_descriptor) const;
|
|
inline bool HasExtensionSet(const Message& /* message */) const {
|
|
return schema_.HasExtensionSet();
|
|
}
|
|
const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
|
|
internal::ExtensionSet* MutableExtensionSet(Message* message) const;
|
|
inline Arena* GetArena(Message* message) const;
|
|
|
|
inline const internal::InternalMetadata& GetInternalMetadata(
|
|
const Message& message) const;
|
|
|
|
internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
|
|
|
|
inline bool IsInlined(const FieldDescriptor* field) const;
|
|
|
|
inline bool HasBit(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
inline void SetBit(Message* message, const FieldDescriptor* field) const;
|
|
inline void ClearBit(Message* message, const FieldDescriptor* field) const;
|
|
inline void SwapBit(Message* message1, Message* message2,
|
|
const FieldDescriptor* field) const;
|
|
|
|
// This function only swaps the field. Should swap corresponding has_bit
|
|
// before or after using this function.
|
|
void SwapField(Message* message1, Message* message2,
|
|
const FieldDescriptor* field) const;
|
|
|
|
void SwapOneofField(Message* message1, Message* message2,
|
|
const OneofDescriptor* oneof_descriptor) const;
|
|
|
|
inline bool HasOneofField(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
inline void SetOneofCase(Message* message,
|
|
const FieldDescriptor* field) const;
|
|
inline void ClearOneofField(Message* message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
template <typename Type>
|
|
inline const Type& GetField(const Message& message,
|
|
const FieldDescriptor* field) const;
|
|
template <typename Type>
|
|
inline void SetField(Message* message, const FieldDescriptor* field,
|
|
const Type& value) const;
|
|
template <typename Type>
|
|
inline Type* MutableField(Message* message,
|
|
const FieldDescriptor* field) const;
|
|
template <typename Type>
|
|
inline const Type& GetRepeatedField(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const;
|
|
template <typename Type>
|
|
inline const Type& GetRepeatedPtrField(const Message& message,
|
|
const FieldDescriptor* field,
|
|
int index) const;
|
|
template <typename Type>
|
|
inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
|
|
int index, Type value) const;
|
|
template <typename Type>
|
|
inline Type* MutableRepeatedField(Message* message,
|
|
const FieldDescriptor* field,
|
|
int index) const;
|
|
template <typename Type>
|
|
inline void AddField(Message* message, const FieldDescriptor* field,
|
|
const Type& value) const;
|
|
template <typename Type>
|
|
inline Type* AddField(Message* message, const FieldDescriptor* field) const;
|
|
|
|
int GetExtensionNumberOrDie(const Descriptor* type) const;
|
|
|
|
// Internal versions of EnumValue API perform no checking. Called after checks
|
|
// by public methods.
|
|
void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
|
|
int value) const;
|
|
void SetRepeatedEnumValueInternal(Message* message,
|
|
const FieldDescriptor* field, int index,
|
|
int value) const;
|
|
void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
|
|
int value) const;
|
|
|
|
Message* UnsafeArenaReleaseMessage(Message* message,
|
|
const FieldDescriptor* field,
|
|
MessageFactory* factory = nullptr) const;
|
|
|
|
void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
|
|
const FieldDescriptor* field) const;
|
|
|
|
friend inline // inline so nobody can call this function.
|
|
void
|
|
RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
|
|
friend inline const char* ParseLenDelim(int field_number,
|
|
const FieldDescriptor* field,
|
|
Message* msg,
|
|
const Reflection* reflection,
|
|
const char* ptr,
|
|
internal::ParseContext* ctx);
|
|
friend inline const char* ParsePackedField(const FieldDescriptor* field,
|
|
Message* msg,
|
|
const Reflection* reflection,
|
|
const char* ptr,
|
|
internal::ParseContext* ctx);
|
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
|
|
};
|
|
|
|
// Abstract interface for a factory for message objects.
|
|
class PROTOBUF_EXPORT MessageFactory {
|
|
public:
|
|
inline MessageFactory() {}
|
|
virtual ~MessageFactory();
|
|
|
|
// Given a Descriptor, gets or constructs the default (prototype) Message
|
|
// of that type. You can then call that message's New() method to construct
|
|
// a mutable message of that type.
|
|
//
|
|
// Calling this method twice with the same Descriptor returns the same
|
|
// object. The returned object remains property of the factory. Also, any
|
|
// objects created by calling the prototype's New() method share some data
|
|
// with the prototype, so these must be destroyed before the MessageFactory
|
|
// is destroyed.
|
|
//
|
|
// The given descriptor must outlive the returned message, and hence must
|
|
// outlive the MessageFactory.
|
|
//
|
|
// Some implementations do not support all types. GetPrototype() will
|
|
// return nullptr if the descriptor passed in is not supported.
|
|
//
|
|
// This method may or may not be thread-safe depending on the implementation.
|
|
// Each implementation should document its own degree thread-safety.
|
|
virtual const Message* GetPrototype(const Descriptor* type) = 0;
|
|
|
|
// Gets a MessageFactory which supports all generated, compiled-in messages.
|
|
// In other words, for any compiled-in type FooMessage, the following is true:
|
|
// MessageFactory::generated_factory()->GetPrototype(
|
|
// FooMessage::descriptor()) == FooMessage::default_instance()
|
|
// This factory supports all types which are found in
|
|
// DescriptorPool::generated_pool(). If given a descriptor from any other
|
|
// pool, GetPrototype() will return nullptr. (You can also check if a
|
|
// descriptor is for a generated message by checking if
|
|
// descriptor->file()->pool() == DescriptorPool::generated_pool().)
|
|
//
|
|
// This factory is 100% thread-safe; calling GetPrototype() does not modify
|
|
// any shared data.
|
|
//
|
|
// This factory is a singleton. The caller must not delete the object.
|
|
static MessageFactory* generated_factory();
|
|
|
|
// For internal use only: Registers a .proto file at static initialization
|
|
// time, to be placed in generated_factory. The first time GetPrototype()
|
|
// is called with a descriptor from this file, |register_messages| will be
|
|
// called, with the file name as the parameter. It must call
|
|
// InternalRegisterGeneratedMessage() (below) to register each message type
|
|
// in the file. This strange mechanism is necessary because descriptors are
|
|
// built lazily, so we can't register types by their descriptor until we
|
|
// know that the descriptor exists. |filename| must be a permanent string.
|
|
static void InternalRegisterGeneratedFile(
|
|
const google::protobuf::internal::DescriptorTable* table);
|
|
|
|
// For internal use only: Registers a message type. Called only by the
|
|
// functions which are registered with InternalRegisterGeneratedFile(),
|
|
// above.
|
|
static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
|
|
const Message* prototype);
|
|
|
|
|
|
private:
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
|
|
};
|
|
|
|
#define DECLARE_GET_REPEATED_FIELD(TYPE) \
|
|
template <> \
|
|
PROTOBUF_EXPORT const RepeatedField<TYPE>& \
|
|
Reflection::GetRepeatedFieldInternal<TYPE>( \
|
|
const Message& message, const FieldDescriptor* field) const; \
|
|
\
|
|
template <> \
|
|
PROTOBUF_EXPORT RepeatedField<TYPE>* \
|
|
Reflection::MutableRepeatedFieldInternal<TYPE>( \
|
|
Message * message, const FieldDescriptor* field) const;
|
|
|
|
DECLARE_GET_REPEATED_FIELD(int32)
|
|
DECLARE_GET_REPEATED_FIELD(int64)
|
|
DECLARE_GET_REPEATED_FIELD(uint32)
|
|
DECLARE_GET_REPEATED_FIELD(uint64)
|
|
DECLARE_GET_REPEATED_FIELD(float)
|
|
DECLARE_GET_REPEATED_FIELD(double)
|
|
DECLARE_GET_REPEATED_FIELD(bool)
|
|
|
|
#undef DECLARE_GET_REPEATED_FIELD
|
|
|
|
// Tries to downcast this message to a generated message type. Returns nullptr
|
|
// if this class is not an instance of T. This works even if RTTI is disabled.
|
|
//
|
|
// This also has the effect of creating a strong reference to T that will
|
|
// prevent the linker from stripping it out at link time. This can be important
|
|
// if you are using a DynamicMessageFactory that delegates to the generated
|
|
// factory.
|
|
template <typename T>
|
|
const T* DynamicCastToGenerated(const Message* from) {
|
|
// Compile-time assert that T is a generated type that has a
|
|
// default_instance() accessor, but avoid actually calling it.
|
|
const T& (*get_default_instance)() = &T::default_instance;
|
|
(void)get_default_instance;
|
|
|
|
// Compile-time assert that T is a subclass of google::protobuf::Message.
|
|
const Message* unused = static_cast<T*>(nullptr);
|
|
(void)unused;
|
|
|
|
#if PROTOBUF_RTTI
|
|
return dynamic_cast<const T*>(from);
|
|
#else
|
|
bool ok = T::default_instance().GetReflection() == from->GetReflection();
|
|
return ok ? down_cast<const T*>(from) : nullptr;
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
T* DynamicCastToGenerated(Message* from) {
|
|
const Message* message_const = from;
|
|
return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
|
|
}
|
|
|
|
// Call this function to ensure that this message's reflection is linked into
|
|
// the binary:
|
|
//
|
|
// google::protobuf::LinkMessageReflection<FooMessage>();
|
|
//
|
|
// This will ensure that the following lookup will succeed:
|
|
//
|
|
// DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
|
|
//
|
|
// As a side-effect, it will also guarantee that anything else from the same
|
|
// .proto file will also be available for lookup in the generated pool.
|
|
//
|
|
// This function does not actually register the message, so it does not need
|
|
// to be called before the lookup. However it does need to occur in a function
|
|
// that cannot be stripped from the binary (ie. it must be reachable from main).
|
|
//
|
|
// Best practice is to call this function as close as possible to where the
|
|
// reflection is actually needed. This function is very cheap to call, so you
|
|
// should not need to worry about its runtime overhead except in the tightest
|
|
// of loops (on x86-64 it compiles into two "mov" instructions).
|
|
template <typename T>
|
|
void LinkMessageReflection() {
|
|
internal::StrongReference(T::default_instance);
|
|
}
|
|
|
|
// =============================================================================
|
|
// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
|
|
// specializations for <std::string>, <StringPieceField> and <Message> and
|
|
// handle everything else with the default template which will match any type
|
|
// having a method with signature "static const google::protobuf::Descriptor*
|
|
// descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
|
|
|
|
template <>
|
|
inline const RepeatedPtrField<std::string>&
|
|
Reflection::GetRepeatedPtrFieldInternal<std::string>(
|
|
const Message& message, const FieldDescriptor* field) const {
|
|
return *static_cast<RepeatedPtrField<std::string>*>(
|
|
MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
|
|
}
|
|
|
|
template <>
|
|
inline RepeatedPtrField<std::string>*
|
|
Reflection::MutableRepeatedPtrFieldInternal<std::string>(
|
|
Message* message, const FieldDescriptor* field) const {
|
|
return static_cast<RepeatedPtrField<std::string>*>(
|
|
MutableRawRepeatedString(message, field, true));
|
|
}
|
|
|
|
|
|
// -----
|
|
|
|
template <>
|
|
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
|
|
const Message& message, const FieldDescriptor* field) const {
|
|
return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
|
|
message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
|
|
}
|
|
|
|
template <>
|
|
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
|
|
Message* message, const FieldDescriptor* field) const {
|
|
return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
|
|
message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
|
|
}
|
|
|
|
template <typename PB>
|
|
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
|
|
const Message& message, const FieldDescriptor* field) const {
|
|
return *static_cast<const RepeatedPtrField<PB>*>(
|
|
GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
|
|
PB::default_instance().GetDescriptor()));
|
|
}
|
|
|
|
template <typename PB>
|
|
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
|
|
Message* message, const FieldDescriptor* field) const {
|
|
return static_cast<RepeatedPtrField<PB>*>(
|
|
MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
|
|
-1, PB::default_instance().GetDescriptor()));
|
|
}
|
|
|
|
template <typename Type>
|
|
const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
|
|
return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
|
|
}
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
#include <google/protobuf/port_undef.inc>
|
|
|
|
#endif // GOOGLE_PROTOBUF_MESSAGE_H__
|