multimedia/client/webrtc_demo/third/include/google/protobuf/repeated_field.h

2847 lines
99 KiB
C++

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#include <utility>
#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/port.h>
#include <google/protobuf/stubs/casts.h>
#include <type_traits>
// Must be included last.
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
class Reflection;
template <typename T>
struct WeakRepeatedPtrField;
namespace internal {
class MergePartialFromCodedStreamHelper;
// kRepeatedFieldLowerClampLimit is the smallest size that will be allocated
// when growing a repeated field.
constexpr int kRepeatedFieldLowerClampLimit = 4;
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
constexpr int kRepeatedFieldUpperClampLimit =
(std::numeric_limits<int>::max() / 2) + 1;
// A utility function for logging that doesn't need any template types.
void LogIndexOutOfBounds(int index, int size);
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
return static_cast<int>(std::distance(begin, end));
}
template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
std::input_iterator_tag /*unused*/) {
return -1;
}
template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
typedef typename std::iterator_traits<Iter>::iterator_category Category;
return CalculateReserve(begin, end, Category());
}
// Swaps two blocks of memory of size sizeof(T).
template <typename T>
inline void SwapBlock(char* p, char* q) {
T tmp;
memcpy(&tmp, p, sizeof(T));
memcpy(p, q, sizeof(T));
memcpy(q, &tmp, sizeof(T));
}
// Swaps two blocks of memory of size kSize:
// template <int kSize> void memswap(char* p, char* q);
template <int kSize>
inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) {
}
#define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \
template <int kSize> \
typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \
void>::type \
memswap(char* p, char* q) { \
SwapBlock<reg_type>(p, q); \
memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \
q + sizeof(reg_type)); \
}
PROTO_MEMSWAP_DEF_SIZE(uint8, 2)
PROTO_MEMSWAP_DEF_SIZE(uint16, 4)
PROTO_MEMSWAP_DEF_SIZE(uint32, 8)
#ifdef __SIZEOF_INT128__
PROTO_MEMSWAP_DEF_SIZE(uint64, 16)
PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31))
#else
PROTO_MEMSWAP_DEF_SIZE(uint64, (1u << 31))
#endif
#undef PROTO_MEMSWAP_DEF_SIZE
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField final {
static_assert(
alignof(Arena) >= alignof(Element),
"We only support types that have an alignment smaller than Arena");
public:
RepeatedField();
explicit RepeatedField(Arena* arena);
RepeatedField(const RepeatedField& other);
template <typename Iter>
RepeatedField(Iter begin, const Iter& end);
~RepeatedField();
RepeatedField& operator=(const RepeatedField& other);
RepeatedField(RepeatedField&& other) noexcept;
RepeatedField& operator=(RepeatedField&& other) noexcept;
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
const Element& operator[](int index) const { return Get(index); }
Element& operator[](int index) { return *Mutable(index); }
const Element& at(int index) const;
Element& at(int index);
void Set(int index, const Element& value);
void Add(const Element& value);
// Appends a new element and return a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
Element* Add();
// Append elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
// Remove the last element in the array.
void RemoveLast();
// Extract elements with indices in "[start .. start+num-1]".
// Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
void Clear();
void MergeFrom(const RepeatedField& other);
void CopyFrom(const RepeatedField& other);
// Reserve space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resize the RepeatedField to a new, smaller size. This is O(1).
void Truncate(int new_size);
void AddAlreadyReserved(const Element& value);
// Appends a new element and return a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
// Should be called only if Capacity() > Size().
Element* AddAlreadyReserved();
Element* AddNAlreadyReserved(int elements);
int Capacity() const;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(int new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element* mutable_data();
const Element* data() const;
// Swap entire contents with "other". If they are separate arenas then, copies
// data between each other.
void Swap(RepeatedField* other);
// Swap entire contents with "other". Should be called only if the caller can
// guarantee that both repeated fields are on the same arena or are on the
// heap. Swapping between different arenas is disallowed and caught by a
// GOOGLE_DCHECK (see API docs for details).
void UnsafeArenaSwap(RepeatedField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef Element* iterator;
typedef const Element* const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position);
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first, const_iterator last);
// Get the Arena on which this RepeatedField stores its elements.
inline Arena* GetArena() const {
return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_)
: rep()->arena;
}
// For internal use only.
//
// This is public due to it being called by generated code.
inline void InternalSwap(RepeatedField* other);
private:
static constexpr int kInitialSize = 0;
// A note on the representation here (see also comment below for
// RepeatedPtrFieldBase's struct Rep):
//
// We maintain the same sizeof(RepeatedField) as before we added arena support
// so that we do not degrade performance by bloating memory usage. Directly
// adding an arena_ element to RepeatedField is quite costly. By using
// indirection in this way, we keep the same size when the RepeatedField is
// empty (common case), and add only an 8-byte header to the elements array
// when non-empty. We make sure to place the size fields directly in the
// RepeatedField class to avoid costly cache misses due to the indirection.
int current_size_;
int total_size_;
struct Rep {
Arena* arena;
// Here we declare a huge array as a way of approximating C's "flexible
// array member" feature without relying on undefined behavior.
Element elements[(std::numeric_limits<int>::max() - 2 * sizeof(Arena*)) /
sizeof(Element)];
};
static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
// If total_size_ == 0 this points to an Arena otherwise it points to the
// elements member of a Rep struct. Using this invariant allows the storage of
// the arena pointer without an extra allocation in the constructor.
void* arena_or_elements_;
// Return pointer to elements array.
// pre-condition: the array must have been allocated.
Element* elements() const {
GOOGLE_DCHECK_GT(total_size_, 0);
// Because of above pre-condition this cast is safe.
return unsafe_elements();
}
// Return pointer to elements array if it exists otherwise either null or
// a invalid pointer is returned. This only happens for empty repeated fields,
// where you can't dereference this pointer anyway (it's empty).
Element* unsafe_elements() const {
return static_cast<Element*>(arena_or_elements_);
}
// Return pointer to the Rep struct.
// pre-condition: the Rep must have been allocated, ie elements() is safe.
Rep* rep() const {
char* addr = reinterpret_cast<char*>(elements()) - offsetof(Rep, elements);
return reinterpret_cast<Rep*>(addr);
}
friend class Arena;
typedef void InternalArenaConstructable_;
// Move the contents of |from| into |to|, possibly clobbering |from| in the
// process. For primitive types this is just a memcpy(), but it could be
// specialized for non-primitive types to, say, swap each element instead.
void MoveArray(Element* to, Element* from, int size);
// Copy the elements of |from| into |to|.
void CopyArray(Element* to, const Element* from, int size);
// Internal helper to delete all elements and deallocate the storage.
void InternalDeallocate(Rep* rep, int size) {
if (rep != NULL) {
Element* e = &rep->elements[0];
if (!std::is_trivial<Element>::value) {
Element* limit = &rep->elements[size];
for (; e < limit; e++) {
e->~Element();
}
}
if (rep->arena == NULL) {
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
::operator delete(static_cast<void*>(rep), bytes);
#else
::operator delete(static_cast<void*>(rep));
#endif
}
}
}
// This class is a performance wrapper around RepeatedField::Add(const T&)
// function. In general unless a RepeatedField is a local stack variable LLVM
// has a hard time optimizing Add. The machine code tends to be
// loop:
// mov %size, dword ptr [%repeated_field] // load
// cmp %size, dword ptr [%repeated_field + 4]
// jae fallback
// mov %buffer, qword ptr [%repeated_field + 8]
// mov dword [%buffer + %size * 4], %value
// inc %size // increment
// mov dword ptr [%repeated_field], %size // store
// jmp loop
//
// This puts a load/store in each iteration of the important loop variable
// size. It's a pretty bad compile that happens even in simple cases, but
// largely the presence of the fallback path disturbs the compilers mem-to-reg
// analysis.
//
// This class takes ownership of a repeated field for the duration of it's
// lifetime. The repeated field should not be accessed during this time, ie.
// only access through this class is allowed. This class should always be a
// function local stack variable. Intended use
//
// void AddSequence(const int* begin, const int* end, RepeatedField<int>* out)
// {
// RepeatedFieldAdder<int> adder(out); // Take ownership of out
// for (auto it = begin; it != end; ++it) {
// adder.Add(*it);
// }
// }
//
// Typically due to the fact adder is a local stack variable. The compiler
// will be successful in mem-to-reg transformation and the machine code will
// be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer + %size *
// 4], %val inc %size jmp loop
//
// The first version executes at 7 cycles per iteration while the second
// version near 1 or 2 cycles.
template <int = 0, bool = std::is_pod<Element>::value>
class FastAdderImpl {
public:
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {
index_ = repeated_field_->current_size_;
capacity_ = repeated_field_->total_size_;
buffer_ = repeated_field_->unsafe_elements();
}
~FastAdderImpl() { repeated_field_->current_size_ = index_; }
void Add(Element val) {
if (index_ == capacity_) {
repeated_field_->current_size_ = index_;
repeated_field_->Reserve(index_ + 1);
capacity_ = repeated_field_->total_size_;
buffer_ = repeated_field_->unsafe_elements();
}
buffer_[index_++] = val;
}
private:
RepeatedField* repeated_field_;
int index_;
int capacity_;
Element* buffer_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
};
// FastAdder is a wrapper for adding fields. The specialization above handles
// POD types more efficiently than RepeatedField.
template <int I>
class FastAdderImpl<I, false> {
public:
explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {}
void Add(const Element& val) { repeated_field_->Add(val); }
private:
RepeatedField* repeated_field_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl);
};
using FastAdder = FastAdderImpl<>;
friend class TestRepeatedFieldHelper;
friend class ::google::protobuf::internal::ParseContext;
};
namespace internal {
template <typename It>
class RepeatedPtrIterator;
template <typename It, typename VoidPtr>
class RepeatedPtrOverPtrsIterator;
} // namespace internal
namespace internal {
// This is a helper template to copy an array of elements efficiently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
bool HasTrivialCopy =
std::is_pod<Element>::value>
struct ElementCopier {
void operator()(Element* to, const Element* from, int array_size);
};
} // namespace internal
namespace internal {
// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
// arena-related "copy if on different arena" behavior if the necessary methods
// exist on the contained type. In particular, we rely on MergeFrom() existing
// as a general proxy for the fact that a copy will work, and we also provide a
// specific override for std::string*.
template <typename T>
struct TypeImplementsMergeBehaviorProbeForMergeFrom {
typedef char HasMerge;
typedef long HasNoMerge;
// We accept either of:
// - void MergeFrom(const T& other)
// - bool MergeFrom(const T& other)
//
// We mangle these names a bit to avoid compatibility issues in 'unclean'
// include environments that may have, e.g., "#define test ..." (yes, this
// exists).
template <typename U, typename RetType, RetType (U::*)(const U& arg)>
struct CheckType;
template <typename U>
static HasMerge Check(CheckType<U, void, &U::MergeFrom>*);
template <typename U>
static HasMerge Check(CheckType<U, bool, &U::MergeFrom>*);
template <typename U>
static HasNoMerge Check(...);
// Resolves to either std::true_type or std::false_type.
typedef std::integral_constant<bool,
(sizeof(Check<T>(0)) == sizeof(HasMerge))>
type;
};
template <typename T, typename = void>
struct TypeImplementsMergeBehavior
: TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};
template <>
struct TypeImplementsMergeBehavior<std::string> {
typedef std::true_type type;
};
template <typename T>
struct IsMovable
: std::integral_constant<bool, std::is_move_constructible<T>::value &&
std::is_move_assignable<T>::value> {};
// This is the common base class for RepeatedPtrFields. It deals only in void*
// pointers. Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler. Its signature is:
// class TypeHandler {
// public:
// typedef MyType Type;
// static Type* New();
// static Type* NewFromPrototype(const Type* prototype,
// Arena* arena);
// static void Delete(Type*);
// static void Clear(Type*);
// static void Merge(const Type& from, Type* to);
//
// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
// static int SpaceUsedLong(const Type&);
// };
class PROTOBUF_EXPORT RepeatedPtrFieldBase {
protected:
RepeatedPtrFieldBase();
explicit RepeatedPtrFieldBase(Arena* arena);
~RepeatedPtrFieldBase() {
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds. If arena_
// lifetime has ended before the destructor.
if (arena_) (void)arena_->SpaceAllocated();
#endif
}
public:
// Must be called from destructor.
template <typename TypeHandler>
void Destroy();
protected:
bool empty() const;
int size() const;
template <typename TypeHandler>
const typename TypeHandler::Type& at(int index) const;
template <typename TypeHandler>
typename TypeHandler::Type& at(int index);
template <typename TypeHandler>
typename TypeHandler::Type* Mutable(int index);
template <typename TypeHandler>
void Delete(int index);
template <typename TypeHandler>
typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);
public:
// The next few methods are public so that they can be called from generated
// code when implicit weak fields are used, but they should never be called by
// application code.
template <typename TypeHandler>
const typename TypeHandler::Type& Get(int index) const;
// Creates and adds an element using the given prototype, without introducing
// a link-time dependency on the concrete message type. This method is used to
// implement implicit weak fields. The prototype may be NULL, in which case an
// ImplicitWeakMessage will be used as a placeholder.
MessageLite* AddWeak(const MessageLite* prototype);
template <typename TypeHandler>
void Clear();
template <typename TypeHandler>
void MergeFrom(const RepeatedPtrFieldBase& other);
inline void InternalSwap(RepeatedPtrFieldBase* other);
protected:
template <
typename TypeHandler,
typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
void Add(typename TypeHandler::Type&& value);
template <typename TypeHandler>
void RemoveLast();
template <typename TypeHandler>
void CopyFrom(const RepeatedPtrFieldBase& other);
void CloseGap(int start, int num);
void Reserve(int new_size);
int Capacity() const;
// Used for constructing iterators.
void* const* raw_data() const;
void** raw_mutable_data() const;
template <typename TypeHandler>
typename TypeHandler::Type** mutable_data();
template <typename TypeHandler>
const typename TypeHandler::Type* const* data() const;
template <typename TypeHandler>
PROTOBUF_ALWAYS_INLINE void Swap(RepeatedPtrFieldBase* other);
void SwapElements(int index1, int index2);
template <typename TypeHandler>
size_t SpaceUsedExcludingSelfLong() const;
// Advanced memory management --------------------------------------
// Like Add(), but if there are no cleared objects to use, returns NULL.
template <typename TypeHandler>
typename TypeHandler::Type* AddFromCleared();
template <typename TypeHandler>
void AddAllocated(typename TypeHandler::Type* value) {
typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
AddAllocatedInternal<TypeHandler>(value, t);
}
template <typename TypeHandler>
void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLast() {
typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
return ReleaseLastInternal<TypeHandler>(t);
}
// Releases last element and returns it, but does not do out-of-arena copy.
// And just returns the raw pointer to the contained element in the arena.
template <typename TypeHandler>
typename TypeHandler::Type* UnsafeArenaReleaseLast();
int ClearedCount() const;
template <typename TypeHandler>
void AddCleared(typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseCleared();
template <typename TypeHandler>
void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type);
template <typename TypeHandler>
void AddAllocatedInternal(typename TypeHandler::Type* value, std::false_type);
template <typename TypeHandler>
PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena);
template <typename TypeHandler>
PROTOBUF_NOINLINE void AddAllocatedSlowWithoutCopy(
typename TypeHandler::Type* value);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLastInternal(std::true_type);
template <typename TypeHandler>
typename TypeHandler::Type* ReleaseLastInternal(std::false_type);
template <typename TypeHandler>
PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other);
inline Arena* GetArena() const { return arena_; }
private:
static constexpr int kInitialSize = 0;
// A few notes on internal representation:
//
// We use an indirected approach, with struct Rep, to keep
// sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
// was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
// allocated only when the repeated field is non-empty, and it is a
// dynamically-sized struct (the header is directly followed by elements[]).
// We place arena_ and current_size_ directly in the object to avoid cache
// misses due to the indirection, because these fields are checked frequently.
// Placing all fields directly in the RepeatedPtrFieldBase instance costs
// significant performance for memory-sensitive workloads.
Arena* arena_;
int current_size_;
int total_size_;
struct Rep {
int allocated_size;
// Here we declare a huge array as a way of approximating C's "flexible
// array member" feature without relying on undefined behavior.
void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
sizeof(void*)];
};
static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
Rep* rep_;
template <typename TypeHandler>
static inline typename TypeHandler::Type* cast(void* element) {
return reinterpret_cast<typename TypeHandler::Type*>(element);
}
template <typename TypeHandler>
static inline const typename TypeHandler::Type* cast(const void* element) {
return reinterpret_cast<const typename TypeHandler::Type*>(element);
}
// Non-templated inner function to avoid code duplication. Takes a function
// pointer to the type-specific (templated) inner allocate/merge loop.
void MergeFromInternal(const RepeatedPtrFieldBase& other,
void (RepeatedPtrFieldBase::*inner_loop)(void**,
void**, int,
int));
template <typename TypeHandler>
void MergeFromInnerLoop(void** our_elems, void** other_elems, int length,
int already_allocated);
// Internal helper: extend array space if necessary to contain |extend_amount|
// more elements, and return a pointer to the element immediately following
// the old list of elements. This interface factors out common behavior from
// Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
void** InternalExtend(int extend_amount);
// The reflection implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class ::PROTOBUF_NAMESPACE_ID::Reflection;
// ExtensionSet stores repeated message extensions as
// RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
// SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
// reinterpreting MessageLite as Message. ExtensionSet also needs to make use
// of AddFromCleared(), which is not part of the public interface.
friend class ExtensionSet;
// The MapFieldBase implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class MapFieldBase;
// The table-driven MergePartialFromCodedStream implementation needs to
// operate on RepeatedPtrField<MessageLite>.
friend class MergePartialFromCodedStreamHelper;
friend class AccessorHelper;
template <typename T>
friend struct google::protobuf::WeakRepeatedPtrField;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
};
template <typename GenericType>
class GenericTypeHandler {
public:
typedef GenericType Type;
using Movable = IsMovable<GenericType>;
static inline GenericType* New(Arena* arena) {
return Arena::CreateMaybeMessage<Type>(arena);
}
static inline GenericType* New(Arena* arena, GenericType&& value) {
return Arena::Create<GenericType>(arena, std::move(value));
}
static inline GenericType* NewFromPrototype(const GenericType* prototype,
Arena* arena = NULL);
static inline void Delete(GenericType* value, Arena* arena) {
if (arena == NULL) {
delete value;
}
}
static inline Arena* GetArena(GenericType* value) {
return Arena::GetArena<Type>(value);
}
static inline void* GetMaybeArenaPointer(GenericType* value) {
return Arena::GetArena<Type>(value);
}
static inline void Clear(GenericType* value) { value->Clear(); }
PROTOBUF_NOINLINE
static void Merge(const GenericType& from, GenericType* to);
static inline size_t SpaceUsedLong(const GenericType& value) {
return value.SpaceUsedLong();
}
};
template <typename GenericType>
GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
const GenericType* /* prototype */, Arena* arena) {
return New(arena);
}
template <typename GenericType>
void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
GenericType* to) {
to->MergeFrom(from);
}
// NewFromPrototype() and Merge() are not defined inline here, as we will need
// to do a virtual function dispatch anyways to go from Message* to call
// New/Merge.
template <>
MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
const MessageLite* prototype, Arena* arena);
template <>
inline Arena* GenericTypeHandler<MessageLite>::GetArena(MessageLite* value) {
return value->GetArena();
}
template <>
inline void* GenericTypeHandler<MessageLite>::GetMaybeArenaPointer(
MessageLite* value) {
return value->GetMaybeArenaPointer();
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
MessageLite* to);
template <>
inline void GenericTypeHandler<std::string>::Clear(std::string* value) {
value->clear();
}
template <>
void GenericTypeHandler<std::string>::Merge(const std::string& from,
std::string* to);
// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
template <>
PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
const Message* prototype, Arena* arena);
template <>
PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetArena(Message* value);
template <>
PROTOBUF_EXPORT void* GenericTypeHandler<Message>::GetMaybeArenaPointer(
Message* value);
class StringTypeHandler {
public:
typedef std::string Type;
using Movable = IsMovable<Type>;
static inline std::string* New(Arena* arena) {
return Arena::Create<std::string>(arena);
}
static inline std::string* New(Arena* arena, std::string&& value) {
return Arena::Create<std::string>(arena, std::move(value));
}
static inline std::string* NewFromPrototype(const std::string*,
Arena* arena) {
return New(arena);
}
static inline Arena* GetArena(std::string*) { return NULL; }
static inline void* GetMaybeArenaPointer(std::string* /* value */) {
return NULL;
}
static inline void Delete(std::string* value, Arena* arena) {
if (arena == NULL) {
delete value;
}
}
static inline void Clear(std::string* value) { value->clear(); }
static inline void Merge(const std::string& from, std::string* to) {
*to = from;
}
static size_t SpaceUsedLong(const std::string& value) {
return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
}
};
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
public:
RepeatedPtrField();
explicit RepeatedPtrField(Arena* arena);
RepeatedPtrField(const RepeatedPtrField& other);
template <typename Iter>
RepeatedPtrField(Iter begin, const Iter& end);
~RepeatedPtrField();
RepeatedPtrField& operator=(const RepeatedPtrField& other);
RepeatedPtrField(RepeatedPtrField&& other) noexcept;
RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;
bool empty() const;
int size() const;
const Element& Get(int index) const;
Element* Mutable(int index);
Element* Add();
void Add(Element&& value);
const Element& operator[](int index) const { return Get(index); }
Element& operator[](int index) { return *Mutable(index); }
const Element& at(int index) const;
Element& at(int index);
// Remove the last element in the array.
// Ownership of the element is retained by the array.
void RemoveLast();
// Delete elements with indices in the range [start .. start+num-1].
// Caution: implementation moves all elements with indices [start+num .. ].
// Calling this routine inside a loop can cause quadratic behavior.
void DeleteSubrange(int start, int num);
void Clear();
void MergeFrom(const RepeatedPtrField& other);
void CopyFrom(const RepeatedPtrField& other);
// Reserve space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
int Capacity() const;
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element** mutable_data();
const Element* const* data() const;
// Swap entire contents with "other". If they are on separate arenas, then
// copies data.
void Swap(RepeatedPtrField* other);
// Swap entire contents with "other". Caller should guarantee that either both
// fields are on the same arena or both are on the heap. Swapping between
// different arenas with this function is disallowed and is caught via
// GOOGLE_DCHECK.
void UnsafeArenaSwap(RepeatedPtrField* other);
// Swap two elements.
void SwapElements(int index1, int index2);
// STL-like iterator support
typedef internal::RepeatedPtrIterator<Element> iterator;
typedef internal::RepeatedPtrIterator<const Element> const_iterator;
typedef Element value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef int size_type;
typedef ptrdiff_t difference_type;
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
// Reverse iterator support
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Custom STL-like iterator that iterates over and returns the underlying
// pointers to Element rather than Element itself.
typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
pointer_iterator;
typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
const void* const>
const_pointer_iterator;
pointer_iterator pointer_begin();
const_pointer_iterator pointer_begin() const;
pointer_iterator pointer_end();
const_pointer_iterator pointer_end() const;
// Returns (an estimate of) the number of bytes used by the repeated field,
// excluding sizeof(*this).
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Advanced memory management --------------------------------------
// When hardcore memory management becomes necessary -- as it sometimes
// does here at Google -- the following methods may be useful.
// Add an already-allocated object, passing ownership to the
// RepeatedPtrField.
//
// Note that some special behavior occurs with respect to arenas:
//
// (i) if this field holds submessages, the new submessage will be copied if
// the original is in an arena and this RepeatedPtrField is either in a
// different arena, or on the heap.
// (ii) if this field holds strings, the passed-in string *must* be
// heap-allocated, not arena-allocated. There is no way to dynamically check
// this at runtime, so User Beware.
void AddAllocated(Element* value);
// Remove the last element and return it, passing ownership to the caller.
// Requires: size() > 0
//
// If this RepeatedPtrField is on an arena, an object copy is required to pass
// ownership back to the user (for compatible semantics). Use
// UnsafeArenaReleaseLast() if this behavior is undesired.
Element* ReleaseLast();
// Add an already-allocated object, skipping arena-ownership checks. The user
// must guarantee that the given object is in the same arena as this
// RepeatedPtrField.
// It is also useful in legacy code that uses temporary ownership to avoid
// copies. Example:
// RepeatedPtrField<T> temp_field;
// temp_field.AddAllocated(new T);
// ... // Do something with temp_field
// temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
// If you put temp_field on the arena this fails, because the ownership
// transfers to the arena at the "AddAllocated" call and is not released
// anymore causing a double delete. UnsafeArenaAddAllocated prevents this.
void UnsafeArenaAddAllocated(Element* value);
// Remove the last element and return it. Works only when operating on an
// arena. The returned pointer is to the original object in the arena, hence
// has the arena's lifetime.
// Requires: current_size_ > 0
Element* UnsafeArenaReleaseLast();
// Extract elements with indices in the range "[start .. start+num-1]".
// The caller assumes ownership of the extracted elements and is responsible
// for deleting them when they are no longer needed.
// If "elements" is non-NULL, then pointers to the extracted elements
// are stored in "elements[0 .. num-1]" for the convenience of the caller.
// If "elements" is NULL, then the caller must use some other mechanism
// to perform any further operations (like deletion) on these elements.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
//
// Memory copying behavior is identical to ReleaseLast(), described above: if
// this RepeatedPtrField is on an arena, an object copy is performed for each
// returned element, so that all returned element pointers are to
// heap-allocated copies. If this copy is not desired, the user should call
// UnsafeArenaExtractSubrange().
void ExtractSubrange(int start, int num, Element** elements);
// Identical to ExtractSubrange() described above, except that when this
// repeated field is on an arena, no object copies are performed. Instead, the
// raw object pointers are returned. Thus, if on an arena, the returned
// objects must not be freed, because they will not be heap-allocated objects.
void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
// When elements are removed by calls to RemoveLast() or Clear(), they
// are not actually freed. Instead, they are cleared and kept so that
// they can be reused later. This can save lots of CPU time when
// repeatedly reusing a protocol message for similar purposes.
//
// Hardcore programs may choose to manipulate these cleared objects
// to better optimize memory management using the following routines.
// Get the number of cleared objects that are currently being kept
// around for reuse.
int ClearedCount() const;
// Add an element to the pool of cleared objects, passing ownership to
// the RepeatedPtrField. The element must be cleared prior to calling
// this method.
//
// This method cannot be called when the repeated field is on an arena or when
// |value| is; both cases will trigger a GOOGLE_DCHECK-failure.
void AddCleared(Element* value);
// Remove a single element from the cleared pool and return it, passing
// ownership to the caller. The element is guaranteed to be cleared.
// Requires: ClearedCount() > 0
//
//
// This method cannot be called when the repeated field is on an arena; doing
// so will trigger a GOOGLE_DCHECK-failure.
Element* ReleaseCleared();
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position);
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first, const_iterator last);
// Gets the arena on which this RepeatedPtrField stores its elements.
inline Arena* GetArena() const;
// For internal use only.
//
// This is public due to it being called by generated code.
void InternalSwap(RepeatedPtrField* other) {
internal::RepeatedPtrFieldBase::InternalSwap(other);
}
private:
// Note: RepeatedPtrField SHOULD NOT be subclassed by users.
class TypeHandler;
// Implementations for ExtractSubrange(). The copying behavior must be
// included only if the type supports the necessary operations (e.g.,
// MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
// uses SFINAE to choose one of the below implementations.
void ExtractSubrangeInternal(int start, int num, Element** elements,
std::true_type);
void ExtractSubrangeInternal(int start, int num, Element** elements,
std::false_type);
friend class Arena;
template <typename T>
friend struct WeakRepeatedPtrField;
typedef void InternalArenaConstructable_;
};
// implementation ====================================================
template <typename Element>
inline RepeatedField<Element>::RepeatedField()
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
: current_size_(0), total_size_(0), arena_or_elements_(arena) {}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
if (other.current_size_ != 0) {
Reserve(other.size());
AddNAlreadyReserved(other.size());
CopyArray(Mutable(0), &other.Get(0), other.size());
}
}
template <typename Element>
template <typename Iter>
RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
: current_size_(0), total_size_(0), arena_or_elements_(nullptr) {
Add(begin, end);
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
if (total_size_ > 0) {
InternalDeallocate(rep(), total_size_);
}
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
const RepeatedField& other) {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
: RepeatedField() {
// We don't just call Swap(&other) here because it would perform 3 copies if
// other is on an arena. This field can't be on an arena because arena
// construction always uses the Arena* accepting constructor.
if (other.GetArena()) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
RepeatedField&& other) noexcept {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (this->GetArena() != other.GetArena()) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedField<Element>::empty() const {
return current_size_ == 0;
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return current_size_;
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return total_size_;
}
template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
GOOGLE_DCHECK_LT(current_size_, total_size_);
elements()[current_size_++] = value;
}
template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
GOOGLE_DCHECK_LT(current_size_, total_size_);
return &elements()[current_size_++];
}
template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n) {
GOOGLE_DCHECK_GE(total_size_ - current_size_, n)
<< total_size_ << ", " << current_size_;
// Warning: sometimes people call this when n == 0 and total_size_ == 0. In
// this case the return pointer points to a zero size array (n == 0). Hence
// we can just use unsafe_elements(), because the user cannot dereference the
// pointer anyway.
Element* ret = unsafe_elements() + current_size_;
current_size_ += n;
return ret;
}
template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
GOOGLE_DCHECK_GE(new_size, 0);
if (new_size > current_size_) {
Reserve(new_size);
std::fill(&elements()[current_size_], &elements()[new_size], value);
}
current_size_ = new_size;
}
template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return elements()[index];
}
template <typename Element>
inline const Element& RepeatedField<Element>::at(int index) const {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return elements()[index];
}
template <typename Element>
inline Element& RepeatedField<Element>::at(int index) {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return elements()[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return &elements()[index];
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
elements()[index] = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
uint32 size = current_size_;
if (static_cast<int>(size) == total_size_) {
// value could reference an element of the array. Reserving new space will
// invalidate the reference. So we must make a copy first.
auto tmp = value;
Reserve(total_size_ + 1);
elements()[size] = std::move(tmp);
} else {
elements()[size] = value;
}
current_size_ = size + 1;
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() {
uint32 size = current_size_;
if (static_cast<int>(size) == total_size_) Reserve(total_size_ + 1);
auto ptr = &elements()[size];
current_size_ = size + 1;
return ptr;
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
if (reserve == 0) {
return;
}
Reserve(reserve + size());
// TODO(ckennelly): The compiler loses track of the buffer freshly
// allocated by Reserve() by the time we call elements, so it cannot
// guarantee that elements does not alias [begin(), end()).
//
// If restrict is available, annotating the pointer obtained from elements()
// causes this to lower to memcpy instead of memmove.
std::copy(begin, end, elements() + size());
current_size_ = reserve + size();
} else {
FastAdder fast_adder(this);
for (; begin != end; ++begin) fast_adder.Add(*begin);
}
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
current_size_--;
}
template <typename Element>
void RepeatedField<Element>::ExtractSubrange(int start, int num,
Element* elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, this->current_size_);
// Save the values of the removed elements if requested.
if (elements != NULL) {
for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start);
}
// Slide remaining elements down to fill the gap.
if (num > 0) {
for (int i = start + num; i < this->current_size_; ++i)
this->Set(i - num, this->Get(i));
this->Truncate(this->current_size_ - num);
}
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
current_size_ = 0;
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
GOOGLE_DCHECK_NE(&other, this);
if (other.current_size_ != 0) {
int existing_size = size();
Reserve(existing_size + other.size());
AddNAlreadyReserved(other.size());
CopyArray(Mutable(existing_size), &other.Get(0), other.size());
}
}
template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
if (&other == this) return;
Clear();
MergeFrom(other);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator position) {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator first, const_iterator last) {
size_type first_offset = first - cbegin();
if (first != last) {
Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
}
return begin() + first_offset;
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
return unsafe_elements();
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
return unsafe_elements();
}
template <typename Element>
inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
GOOGLE_DCHECK(this != other);
GOOGLE_DCHECK(GetArena() == other->GetArena());
// Swap all fields at once.
static_assert(std::is_standard_layout<RepeatedField<Element>>::value,
"offsetof() requires standard layout before c++17");
internal::memswap<offsetof(RepeatedField, arena_or_elements_) +
sizeof(this->arena_or_elements_) -
offsetof(RepeatedField, current_size_)>(
reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_),
reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_));
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
if (GetArena() == other->GetArena()) {
InternalSwap(other);
} else {
RepeatedField<Element> temp(other->GetArena());
temp.MergeFrom(*this);
CopyFrom(*other);
other->UnsafeArenaSwap(&temp);
}
}
template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
if (this == other) return;
InternalSwap(other);
}
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(elements()[index1], elements()[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
return unsafe_elements();
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
return unsafe_elements();
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const {
return unsafe_elements();
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() {
return unsafe_elements() + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
return unsafe_elements() + current_size_;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const {
return unsafe_elements() + current_size_;
}
template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
}
namespace internal {
// Returns the new size for a reserved field based on its 'total_size' and the
// requested 'new_size'. The result is clamped to the closed interval:
// [internal::kMinRepeatedFieldAllocationSize,
// std::numeric_limits<int>::max()]
// Requires:
// new_size > total_size &&
// (total_size == 0 ||
// total_size >= kRepeatedFieldLowerClampLimit)
inline int CalculateReserveSize(int total_size, int new_size) {
if (new_size < kRepeatedFieldLowerClampLimit) {
// Clamp to smallest allowed size.
return kRepeatedFieldLowerClampLimit;
}
if (total_size < kRepeatedFieldUpperClampLimit) {
return std::max(total_size * 2, new_size);
} else {
// Clamp to largest allowed size.
GOOGLE_DCHECK_GT(new_size, kRepeatedFieldUpperClampLimit);
return std::numeric_limits<int>::max();
}
}
} // namespace internal
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
if (total_size_ >= new_size) return;
Rep* old_rep = total_size_ > 0 ? rep() : NULL;
Rep* new_rep;
Arena* arena = GetArena();
new_size = internal::CalculateReserveSize(total_size_, new_size);
GOOGLE_DCHECK_LE(
static_cast<size_t>(new_size),
(std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
<< "Requested size is too large to fit into size_t.";
size_t bytes =
kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
if (arena == NULL) {
new_rep = static_cast<Rep*>(::operator new(bytes));
} else {
new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, bytes));
}
new_rep->arena = arena;
int old_total_size = total_size_;
// Already known: new_size >= internal::kMinRepeatedFieldAllocationSize
// Maintain invariant:
// total_size_ == 0 ||
// total_size_ >= internal::kMinRepeatedFieldAllocationSize
total_size_ = new_size;
arena_or_elements_ = new_rep->elements;
// Invoke placement-new on newly allocated elements. We shouldn't have to do
// this, since Element is supposed to be POD, but a previous version of this
// code allocated storage with "new Element[size]" and some code uses
// RepeatedField with non-POD types, relying on constructor invocation. If
// Element has a trivial constructor (e.g., int32), gcc (tested with -O2)
// completely removes this loop because the loop body is empty, so this has no
// effect unless its side-effects are required for correctness.
// Note that we do this before MoveArray() below because Element's copy
// assignment implementation will want an initialized instance first.
Element* e = &elements()[0];
Element* limit = e + total_size_;
for (; e < limit; e++) {
new (e) Element;
}
if (current_size_ > 0) {
MoveArray(&elements()[0], old_rep->elements, current_size_);
}
// Likewise, we need to invoke destructors on the old array.
InternalDeallocate(old_rep, old_total_size);
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
GOOGLE_DCHECK_LE(new_size, current_size_);
if (current_size_ > 0) {
current_size_ = new_size;
}
}
template <typename Element>
inline void RepeatedField<Element>::MoveArray(Element* to, Element* from,
int array_size) {
CopyArray(to, from, array_size);
}
template <typename Element>
inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from,
int array_size) {
internal::ElementCopier<Element>()(to, from, array_size);
}
namespace internal {
template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to,
const Element* from,
int array_size) {
std::copy(from, from + array_size, to);
}
template <typename Element>
struct ElementCopier<Element, true> {
void operator()(Element* to, const Element* from, int array_size) {
memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
}
};
} // namespace internal
// -------------------------------------------------------------------
namespace internal {
inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
: arena_(NULL), current_size_(0), total_size_(0), rep_(NULL) {}
inline RepeatedPtrFieldBase::RepeatedPtrFieldBase(Arena* arena)
: arena_(arena), current_size_(0), total_size_(0), rep_(NULL) {}
template <typename TypeHandler>
void RepeatedPtrFieldBase::Destroy() {
if (rep_ != NULL && arena_ == NULL) {
int n = rep_->allocated_size;
void* const* elements = rep_->elements;
for (int i = 0; i < n; i++) {
TypeHandler::Delete(cast<TypeHandler>(elements[i]), NULL);
}
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
::operator delete(static_cast<void*>(rep_), size);
#else
::operator delete(static_cast<void*>(rep_));
#endif
}
rep_ = NULL;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Swap(RepeatedPtrFieldBase* other) {
if (other->GetArena() == GetArena()) {
InternalSwap(other);
} else {
SwapFallback<TypeHandler>(other);
}
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::SwapFallback(RepeatedPtrFieldBase* other) {
GOOGLE_DCHECK(other->GetArena() != GetArena());
// Copy semantics in this case. We try to improve efficiency by placing the
// temporary on |other|'s arena so that messages are copied twice rather than
// three times.
RepeatedPtrFieldBase temp(other->GetArena());
temp.MergeFrom<TypeHandler>(*this);
this->Clear<TypeHandler>();
this->MergeFrom<TypeHandler>(*other);
other->InternalSwap(&temp);
temp.Destroy<TypeHandler>(); // Frees rep_ if `other` had no arena.
}
inline bool RepeatedPtrFieldBase::empty() const { return current_size_ == 0; }
inline int RepeatedPtrFieldBase::size() const { return current_size_; }
template <typename TypeHandler>
inline const typename TypeHandler::Type& RepeatedPtrFieldBase::Get(
int index) const {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return *cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
inline const typename TypeHandler::Type& RepeatedPtrFieldBase::at(
int index) const {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return *cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
inline typename TypeHandler::Type& RepeatedPtrFieldBase::at(int index) {
GOOGLE_CHECK_GE(index, 0);
GOOGLE_CHECK_LT(index, current_size_);
return *cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Mutable(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
return cast<TypeHandler>(rep_->elements[index]);
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Delete(int index) {
GOOGLE_DCHECK_GE(index, 0);
GOOGLE_DCHECK_LT(index, current_size_);
TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add(
typename TypeHandler::Type* prototype) {
if (rep_ != NULL && current_size_ < rep_->allocated_size) {
return cast<TypeHandler>(rep_->elements[current_size_++]);
}
if (!rep_ || rep_->allocated_size == total_size_) {
Reserve(total_size_ + 1);
}
++rep_->allocated_size;
typename TypeHandler::Type* result =
TypeHandler::NewFromPrototype(prototype, arena_);
rep_->elements[current_size_++] = result;
return result;
}
template <typename TypeHandler,
typename std::enable_if<TypeHandler::Movable::value>::type*>
inline void RepeatedPtrFieldBase::Add(typename TypeHandler::Type&& value) {
if (rep_ != NULL && current_size_ < rep_->allocated_size) {
*cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
return;
}
if (!rep_ || rep_->allocated_size == total_size_) {
Reserve(total_size_ + 1);
}
++rep_->allocated_size;
typename TypeHandler::Type* result =
TypeHandler::New(arena_, std::move(value));
rep_->elements[current_size_++] = result;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::RemoveLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::Clear() {
const int n = current_size_;
GOOGLE_DCHECK_GE(n, 0);
if (n > 0) {
void* const* elements = rep_->elements;
int i = 0;
do {
TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
} while (i < n);
current_size_ = 0;
}
}
// To avoid unnecessary code duplication and reduce binary size, we use a
// layered approach to implementing MergeFrom(). The toplevel method is
// templated, so we get a small thunk per concrete message type in the binary.
// This calls a shared implementation with most of the logic, passing a function
// pointer to another type-specific piece of code that calls the object-allocate
// and merge handlers.
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
GOOGLE_DCHECK_NE(&other, this);
if (other.current_size_ == 0) return;
MergeFromInternal(other,
&RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
}
inline void RepeatedPtrFieldBase::MergeFromInternal(
const RepeatedPtrFieldBase& other,
void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) {
// Note: wrapper has already guaranteed that other.rep_ != NULL here.
int other_size = other.current_size_;
void** other_elements = other.rep_->elements;
void** new_elements = InternalExtend(other_size);
int allocated_elems = rep_->allocated_size - current_size_;
(this->*inner_loop)(new_elements, other_elements, other_size,
allocated_elems);
current_size_ += other_size;
if (rep_->allocated_size < current_size_) {
rep_->allocated_size = current_size_;
}
}
// Merges other_elems to our_elems.
template <typename TypeHandler>
void RepeatedPtrFieldBase::MergeFromInnerLoop(void** our_elems,
void** other_elems, int length,
int already_allocated) {
// Split into two loops, over ranges [0, allocated) and [allocated, length),
// to avoid a branch within the loop.
for (int i = 0; i < already_allocated && i < length; i++) {
// Already allocated: use existing element.
typename TypeHandler::Type* other_elem =
reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
typename TypeHandler::Type* new_elem =
reinterpret_cast<typename TypeHandler::Type*>(our_elems[i]);
TypeHandler::Merge(*other_elem, new_elem);
}
Arena* arena = GetArena();
for (int i = already_allocated; i < length; i++) {
// Not allocated: alloc a new element first, then merge it.
typename TypeHandler::Type* other_elem =
reinterpret_cast<typename TypeHandler::Type*>(other_elems[i]);
typename TypeHandler::Type* new_elem =
TypeHandler::NewFromPrototype(other_elem, arena);
TypeHandler::Merge(*other_elem, new_elem);
our_elems[i] = new_elem;
}
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
if (&other == this) return;
RepeatedPtrFieldBase::Clear<TypeHandler>();
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
inline int RepeatedPtrFieldBase::Capacity() const { return total_size_; }
inline void* const* RepeatedPtrFieldBase::raw_data() const {
return rep_ ? rep_->elements : NULL;
}
inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
return rep_ ? const_cast<void**>(rep_->elements) : NULL;
}
template <typename TypeHandler>
inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
}
template <typename TypeHandler>
inline const typename TypeHandler::Type* const* RepeatedPtrFieldBase::data()
const {
// TODO(kenton): Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<const typename TypeHandler::Type* const*>(raw_data());
}
inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(rep_->elements[index1], rep_->elements[index2]);
}
template <typename TypeHandler>
inline size_t RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong() const {
size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
if (rep_ != NULL) {
for (int i = 0; i < rep_->allocated_size; ++i) {
allocated_bytes +=
TypeHandler::SpaceUsedLong(*cast<TypeHandler>(rep_->elements[i]));
}
allocated_bytes += kRepHeaderSize;
}
return allocated_bytes;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
if (rep_ != NULL && current_size_ < rep_->allocated_size) {
return cast<TypeHandler>(rep_->elements[current_size_++]);
} else {
return NULL;
}
}
// AddAllocated version that implements arena-safe copying behavior.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedInternal(
typename TypeHandler::Type* value, std::true_type) {
Arena* element_arena =
reinterpret_cast<Arena*>(TypeHandler::GetMaybeArenaPointer(value));
Arena* arena = GetArena();
if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) {
// Fast path: underlying arena representation (tagged pointer) is equal to
// our arena pointer, and we can add to array without resizing it (at least
// one slot that is not allocated).
void** elems = rep_->elements;
if (current_size_ < rep_->allocated_size) {
// Make space at [current] by moving first allocated element to end of
// allocated list.
elems[rep_->allocated_size] = elems[current_size_];
}
elems[current_size_] = value;
current_size_ = current_size_ + 1;
rep_->allocated_size = rep_->allocated_size + 1;
} else {
AddAllocatedSlowWithCopy<TypeHandler>(value, TypeHandler::GetArena(value),
arena);
}
}
// Slowpath handles all cases, copying if necessary.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedSlowWithCopy(
// Pass value_arena and my_arena to avoid duplicate virtual call (value) or
// load (mine).
typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
// Ensure that either the value is in the same arena, or if not, we do the
// appropriate thing: Own() it (if it's on heap and we're in an arena) or copy
// it to our arena/heap (otherwise).
if (my_arena != NULL && value_arena == NULL) {
my_arena->Own(value);
} else if (my_arena != value_arena) {
typename TypeHandler::Type* new_value =
TypeHandler::NewFromPrototype(value, my_arena);
TypeHandler::Merge(*value, new_value);
TypeHandler::Delete(value, value_arena);
value = new_value;
}
UnsafeArenaAddAllocated<TypeHandler>(value);
}
// AddAllocated version that does not implement arena-safe copying behavior.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedInternal(
typename TypeHandler::Type* value, std::false_type) {
if (rep_ && rep_->allocated_size < total_size_) {
// Fast path: underlying arena representation (tagged pointer) is equal to
// our arena pointer, and we can add to array without resizing it (at least
// one slot that is not allocated).
void** elems = rep_->elements;
if (current_size_ < rep_->allocated_size) {
// Make space at [current] by moving first allocated element to end of
// allocated list.
elems[rep_->allocated_size] = elems[current_size_];
}
elems[current_size_] = value;
current_size_ = current_size_ + 1;
++rep_->allocated_size;
} else {
UnsafeArenaAddAllocated<TypeHandler>(value);
}
}
template <typename TypeHandler>
void RepeatedPtrFieldBase::UnsafeArenaAddAllocated(
typename TypeHandler::Type* value) {
// Make room for the new pointer.
if (!rep_ || current_size_ == total_size_) {
// The array is completely full with no cleared objects, so grow it.
Reserve(total_size_ + 1);
++rep_->allocated_size;
} else if (rep_->allocated_size == total_size_) {
// There is no more space in the pointer array because it contains some
// cleared objects awaiting reuse. We don't want to grow the array in this
// case because otherwise a loop calling AddAllocated() followed by Clear()
// would leak memory.
TypeHandler::Delete(cast<TypeHandler>(rep_->elements[current_size_]),
arena_);
} else if (current_size_ < rep_->allocated_size) {
// We have some cleared objects. We don't care about their order, so we
// can just move the first one to the end to make space.
rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
++rep_->allocated_size;
} else {
// There are no cleared objects.
++rep_->allocated_size;
}
rep_->elements[current_size_++] = value;
}
// ReleaseLast() for types that implement merge/copy behavior.
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
std::true_type) {
// First, release an element.
typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
// Now perform a copy if we're on an arena.
Arena* arena = GetArena();
if (arena == NULL) {
return result;
} else {
typename TypeHandler::Type* new_result =
TypeHandler::NewFromPrototype(result, NULL);
TypeHandler::Merge(*result, new_result);
return new_result;
}
}
// ReleaseLast() for types that *do not* implement merge/copy behavior -- this
// is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if we're on
// an arena, since the user really should implement the copy operation in this
// case.
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseLastInternal(
std::false_type) {
GOOGLE_DCHECK(GetArena() == NULL)
<< "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
<< "with a type that does not implement MergeFrom. This is unsafe; "
<< "please implement MergeFrom for your type.";
return UnsafeArenaReleaseLast<TypeHandler>();
}
template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::UnsafeArenaReleaseLast() {
GOOGLE_DCHECK_GT(current_size_, 0);
typename TypeHandler::Type* result =
cast<TypeHandler>(rep_->elements[--current_size_]);
--rep_->allocated_size;
if (current_size_ < rep_->allocated_size) {
// There are cleared elements on the end; replace the removed element
// with the last allocated element.
rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
}
return result;
}
inline int RepeatedPtrFieldBase::ClearedCount() const {
return rep_ ? (rep_->allocated_size - current_size_) : 0;
}
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::AddCleared(
typename TypeHandler::Type* value) {
GOOGLE_DCHECK(GetArena() == NULL)
<< "AddCleared() can only be used on a RepeatedPtrField not on an arena.";
GOOGLE_DCHECK(TypeHandler::GetArena(value) == NULL)
<< "AddCleared() can only accept values not on an arena.";
if (!rep_ || rep_->allocated_size == total_size_) {
Reserve(total_size_ + 1);
}
rep_->elements[rep_->allocated_size++] = value;
}
template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
GOOGLE_DCHECK(GetArena() == NULL)
<< "ReleaseCleared() can only be used on a RepeatedPtrField not on "
<< "an arena.";
GOOGLE_DCHECK(GetArena() == NULL);
GOOGLE_DCHECK(rep_ != NULL);
GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
}
} // namespace internal
// -------------------------------------------------------------------
template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
: public internal::GenericTypeHandler<Element> {};
template <>
class RepeatedPtrField<std::string>::TypeHandler
: public internal::StringTypeHandler {};
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField() : RepeatedPtrFieldBase() {}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
: RepeatedPtrFieldBase(arena) {}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
const RepeatedPtrField& other)
: RepeatedPtrFieldBase() {
MergeFrom(other);
}
template <typename Element>
template <typename Iter>
inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin,
const Iter& end) {
int reserve = internal::CalculateReserve(begin, end);
if (reserve != -1) {
Reserve(reserve);
}
for (; begin != end; ++begin) {
*Add() = *begin;
}
}
template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
Destroy<TypeHandler>();
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
const RepeatedPtrField& other) {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
RepeatedPtrField&& other) noexcept
: RepeatedPtrField() {
// We don't just call Swap(&other) here because it would perform 3 copies if
// other is on an arena. This field can't be on an arena because arena
// construction always uses the Arena* accepting constructor.
if (other.GetArena()) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
RepeatedPtrField&& other) noexcept {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (this->GetArena() != other.GetArena()) {
CopyFrom(other);
} else {
InternalSwap(&other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
return RepeatedPtrFieldBase::empty();
}
template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
return RepeatedPtrFieldBase::size();
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::at(int index) const {
return RepeatedPtrFieldBase::at<TypeHandler>(index);
}
template <typename Element>
inline Element& RepeatedPtrField<Element>::at(int index) {
return RepeatedPtrFieldBase::at<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
return RepeatedPtrFieldBase::Add<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Add(Element&& value) {
RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
}
template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
for (int i = 0; i < num; ++i) {
RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
}
ExtractSubrange(start, num, NULL);
}
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
Element** elements) {
typename internal::TypeImplementsMergeBehavior<
typename TypeHandler::Type>::type t;
ExtractSubrangeInternal(start, num, elements, t);
}
// ExtractSubrange() implementation for types that implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
int start, int num, Element** elements, std::true_type) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
if (num > 0) {
// Save the values of the removed elements if requested.
if (elements != NULL) {
if (GetArena() != NULL) {
// If we're on an arena, we perform a copy for each element so that the
// returned elements are heap-allocated.
for (int i = 0; i < num; ++i) {
Element* element =
RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
typename TypeHandler::Type* new_value =
TypeHandler::NewFromPrototype(element, NULL);
TypeHandler::Merge(*element, new_value);
elements[i] = new_value;
}
} else {
for (int i = 0; i < num; ++i) {
elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
}
}
CloseGap(start, num);
}
}
// ExtractSubrange() implementation for types that do not implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
int start, int num, Element** elements, std::false_type) {
// This case is identical to UnsafeArenaExtractSubrange(). However, since
// ExtractSubrange() must return heap-allocated objects by contract, and we
// cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
// we are not on an arena.
GOOGLE_DCHECK(GetArena() == NULL)
<< "ExtractSubrange() when arena is non-NULL is only supported when "
<< "the Element type supplies a MergeFrom() operation to make copies.";
UnsafeArenaExtractSubrange(start, num, elements);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
int start, int num, Element** elements) {
GOOGLE_DCHECK_GE(start, 0);
GOOGLE_DCHECK_GE(num, 0);
GOOGLE_DCHECK_LE(start + num, size());
if (num > 0) {
// Save the values of the removed elements if requested.
if (elements != NULL) {
for (int i = 0; i < num; ++i) {
elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
}
}
CloseGap(start, num);
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
RepeatedPtrFieldBase::Clear<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
const RepeatedPtrField& other) {
RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator position) {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
size_type pos_offset = std::distance(cbegin(), first);
size_type last_offset = std::distance(cbegin(), last);
DeleteSubrange(pos_offset, last_offset - pos_offset);
return begin() + pos_offset;
}
template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}
template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
return RepeatedPtrFieldBase::data<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
if (this == other) return;
RepeatedPtrFieldBase::Swap<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
RepeatedPtrField* other) {
if (this == other) return;
RepeatedPtrFieldBase::InternalSwap(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
RepeatedPtrFieldBase::SwapElements(index1, index2);
}
template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetArena() const {
return RepeatedPtrFieldBase::GetArena();
}
template <typename Element>
inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
}
template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
return RepeatedPtrFieldBase::ClearedCount();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
return RepeatedPtrFieldBase::Reserve(new_size);
}
template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
return RepeatedPtrFieldBase::Capacity();
}
// -------------------------------------------------------------------
namespace internal {
// STL-like iterator implementation for RepeatedPtrField. You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template <typename Element>
class RepeatedPtrIterator {
public:
using iterator = RepeatedPtrIterator<Element>;
using iterator_category = std::random_access_iterator_tag;
using value_type = typename std::remove_const<Element>::type;
using difference_type = std::ptrdiff_t;
using pointer = Element*;
using reference = Element&;
RepeatedPtrIterator() : it_(NULL) {}
explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
// Allow "upcasting" from RepeatedPtrIterator<T**> to
// RepeatedPtrIterator<const T*const*>.
template <typename OtherElement>
RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
: it_(other.it_) {
// Force a compiler error if the other type is not convertible to ours.
if (false) {
implicit_cast<Element*>(static_cast<OtherElement*>(nullptr));
}
}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() {
++it_;
return *this;
}
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() {
--it_;
return *this;
}
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, const difference_type d) {
it += d;
return it;
}
friend iterator operator+(const difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
template <typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
void* const* it_;
};
// Provide an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator. It should either be "void *" for a mutable
// iterator, or "const void* const" for a constant iterator.
template <typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator {
public:
using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
using iterator_category = std::random_access_iterator_tag;
using value_type = typename std::remove_const<Element>::type;
using difference_type = std::ptrdiff_t;
using pointer = Element*;
using reference = Element&;
RepeatedPtrOverPtrsIterator() : it_(NULL) {}
explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() {
++it_;
return *this;
}
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() {
--it_;
return *this;
}
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
bool operator==(const iterator& x) const { return it_ == x.it_; }
bool operator!=(const iterator& x) const { return it_ != x.it_; }
// less_than_comparable
bool operator<(const iterator& x) const { return it_ < x.it_; }
bool operator<=(const iterator& x) const { return it_ <= x.it_; }
bool operator>(const iterator& x) const { return it_ > x.it_; }
bool operator>=(const iterator& x) const { return it_ >= x.it_; }
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
difference_type operator-(const iterator& x) const { return it_ - x.it_; }
private:
template <typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
VoidPtr* it_;
};
void RepeatedPtrFieldBase::InternalSwap(RepeatedPtrFieldBase* other) {
GOOGLE_DCHECK(this != other);
GOOGLE_DCHECK(GetArena() == other->GetArena());
// Swap all fields at once.
static_assert(std::is_standard_layout<RepeatedPtrFieldBase>::value,
"offsetof() requires standard layout before c++17");
internal::memswap<offsetof(RepeatedPtrFieldBase, rep_) + sizeof(this->rep_) -
offsetof(RepeatedPtrFieldBase, current_size_)>(
reinterpret_cast<char*>(this) +
offsetof(RepeatedPtrFieldBase, current_size_),
reinterpret_cast<char*>(other) +
offsetof(RepeatedPtrFieldBase, current_size_));
}
} // namespace internal
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cbegin() const {
return begin();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cend() const {
return end();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
return const_pointer_iterator(
const_cast<const void* const*>(raw_data() + size()));
}
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// A back inserter for RepeatedField objects.
template <typename T>
class RepeatedFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit RepeatedFieldBackInsertIterator(
RepeatedField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
field_->Add(value);
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedField<T>* field_;
};
// A back inserter for RepeatedPtrField objects.
template <typename T>
class RepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
*field_->Add() = value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(
const T* const ptr_to_value) {
*field_->Add() = *ptr_to_value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
*field_->Add() = std::move(value);
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// A back inserter for RepeatedPtrFields that inserts by transferring ownership
// of a pointer.
template <typename T>
class AllocatedRepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit AllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T* const ptr_to_value) {
field_->AddAllocated(ptr_to_value);
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
// uses the UnsafeArenaAddAllocated instead.
template <typename T>
class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator
: public std::iterator<std::output_iterator_tag, T> {
public:
explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T const* const ptr_to_value) {
field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedField<T>* const mutable_field) {
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template <typename T>
internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
// Similar to AllocatedRepeatedPtrFieldBackInserter, using
// UnsafeArenaAddAllocated instead of AddAllocated.
// This is slightly faster if that matters. It is also useful in legacy code
// that uses temporary ownership to avoid copies. Example:
// RepeatedPtrField<T> temp_field;
// temp_field.AddAllocated(new T);
// ... // Do something with temp_field
// temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
// If you put temp_field on the arena this fails, because the ownership
// transfers to the arena at the "AddAllocated" call and is not released anymore
// causing a double delete. Using UnsafeArenaAddAllocated prevents this.
template <typename T>
internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
// Extern declarations of common instantiations to reduce library bloat.
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>;
extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE
RepeatedPtrField<std::string>;
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__