openEMS/FDTD/operator_sse_compressed.h

69 lines
2.1 KiB
C
Raw Normal View History

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPERATOR_SSE_COMPRESSED_H
#define OPERATOR_SSE_COMPRESSED_H
#include "operator_sse.h"
class Operator_SSE_Compressed : public Operator_sse
{
public:
//! Create a new operator
static Operator_SSE_Compressed* New();
virtual ~Operator_SSE_Compressed();
virtual Engine* CreateEngine() const;
virtual int CalcECOperator();
virtual void ShowStat() const;
void SetCompressionThreshold(double val) {m_Compression_Threshold = val;}
void SetCacheSize(unsigned int size) {m_max_fifo = size;}
bool CompressOperator();
protected:
Operator_SSE_Compressed();
bool m_Use_Compression;
bool m_Max_Compression; //reached maximal compression?
unsigned int m_Op_Count;
//! Compression ratio threshold. If this ratio is exceeded, compression will be disabled. \sa SetCompressionThreshold
double m_Compression_Threshold; //default is 0.8
virtual void Init();
virtual void Reset();
virtual void InitOperator();
//! Compression cache size, default is 1000 \sa SetCacheSize
unsigned int m_max_fifo;
bool CompareOperators(unsigned int pos1[3], unsigned int pos2[3]);
// engine needs access
public:
unsigned int*** m_Op_index;
f4vector* f4_vv_Compressed[3]; //calc new voltage from old voltage
f4vector* f4_vi_Compressed[3]; //calc new voltage from old current
f4vector* f4_iv_Compressed[3]; //calc new current from old current
f4vector* f4_ii_Compressed[3]; //calc new current from old voltage
};
#endif // OPERATOR_SSE_Compressed_H