openEMS/matlab/Tutorials/StripLine2MSL.m

134 lines
4.3 KiB
Matlab
Raw Normal View History

%
% Stripline to Microstrip Line Transition
%
% Describtion at:
% <http://openems.de/index.php/Tutorial:_Stripline_to_MSL_Transition>
%
% Tested with
% - Octave 4.0
% - openEMS v0.0.35
%
% (C) 2017 Thorsten Liebig <thorsten.liebig@gmx.de>
close all
clear
clc
%% Setup the Simulation
physical_constants;
unit = 1e-6; % specify everything in um
line_length = 15000; % line length of strip line and microstrip line
substrate_width = 6000;
air_spacer = 4000; % air spacer above the substrate
msl_width = 500;
msl_substrate_thickness = 254;
strip_width = 500;
strip_substrate_thickness = 512;
connect_via_rad = 500/2;
connect_via_gap = 1250/2;
substrate_epr = 3.66;
substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epr; % substrate losses
f_max = 10e9;
resolution = 250;
edge_res = 25;
feed_shift = 2500;
meas_shift = 5000;
%% Setup FDTD Parameters & Excitation Function
FDTD = InitFDTD();
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2);
BC = {'PML_8' 'PML_8' 'PEC' 'PEC' 'PEC' 'MUR'};
FDTD = SetBoundaryCond( FDTD, BC );
%% Setup CSXCAD Geometry & Mesh
CSX = InitCSX();
edge_mesh = [-1/3 2/3]*edge_res; % 1/3 - 2/3 rule for 2D metal edges
mesh.x = SmoothMeshLines( [-connect_via_gap 0 connect_via_gap], 2*edge_res, 1.5 );
mesh.x = SmoothMeshLines( [-line_length mesh.x line_length], resolution, 1.5);
mesh.y = SmoothMeshLines( [0 msl_width/2+edge_mesh substrate_width/2], resolution/4 , 1.5);
mesh.y = sort(unique([-mesh.y mesh.y]));
mesh.z = SmoothMeshLines( [linspace(-strip_substrate_thickness,0,5) linspace(0,strip_substrate_thickness,5) linspace(strip_substrate_thickness,msl_substrate_thickness+strip_substrate_thickness,5) 2*strip_substrate_thickness+air_spacer] , resolution );
CSX = DefineRectGrid( CSX, unit, mesh );
% Create Substrate
CSX = AddMaterial( CSX, 'RO4350B' );
CSX = SetMaterialProperty( CSX, 'RO4350B', 'Epsilon', substrate_epr, 'Kappa', substrate_kappa );
start = [mesh.x(1), mesh.y(1), -strip_substrate_thickness];
stop = [mesh.x(end), mesh.y(end), +strip_substrate_thickness+msl_substrate_thickness];
CSX = AddBox( CSX, 'RO4350B', 0, start, stop );
% Create a PEC called 'metal' and 'gnd'
CSX = AddMetal( CSX, 'gnd' );
CSX = AddMetal( CSX, 'metal' );
% Create strip line port (incl. metal stip line)
start = [-line_length -strip_width/2 0];
stop = [0 +strip_width/2 0];
[CSX,port{1}] = AddStripLinePort( CSX, 100, 1, 'metal', start, stop, strip_substrate_thickness, 'x', [0 0 -1], 'ExcitePort', true, 'FeedShift', feed_shift, 'MeasPlaneShift', meas_shift );
% Create MSL port on top
start = [line_length -strip_width/2 strip_substrate_thickness+msl_substrate_thickness];
stop = [0 +strip_width/2 strip_substrate_thickness];
[CSX,port{2}] = AddMSLPort( CSX, 100, 2, 'metal', start, stop, 'x', [0 0 -1], 'MeasPlaneShift', meas_shift );
% transitional via
start = [0, 0, 0];
stop = [0, 0, strip_substrate_thickness+msl_substrate_thickness];
CSX = AddCylinder(CSX, 'metal', 100, start, stop, connect_via_rad);
% metal plane between strip line and MSL, including hole for transition
p(1,1) = mesh.x(1);
p(2,1) = mesh.y(1);
p(1,2) = 0;
p(2,2) = mesh.y(1);
for a = linspace(-pi, pi, 21)
p(1,end+1) = connect_via_gap*sin(a);
p(2,end) = connect_via_gap*cos(a);
endfor
p(1,end+1) = 0;
p(2,end ) = mesh.y(1);
p(1,end+1) = mesh.x(end);
p(2,end ) = mesh.y(1);
p(1,end+1) = mesh.x(end);
p(2,end ) = mesh.y(end);
p(1,end+1) = mesh.x(1);
p(2,end ) = mesh.y(end);
CSX = AddPolygon( CSX, 'gnd', 1, 'z', strip_substrate_thickness, p);
%% Write/Show/Run the openEMS compatible xml-file
Sim_Path = 'tmp';
Sim_CSX = 'strip2msl.xml';
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
RunOpenEMS( Sim_Path, Sim_CSX );
%% Post-Processing
close all
f = linspace( 0, f_max, 1601 );
port = calcPort( port, Sim_Path, f, 'RefImpedance', 50);
s11 = port{1}.uf.ref./ port{1}.uf.inc;
s21 = port{2}.uf.ref./ port{1}.uf.inc;
plot(f/1e9,20*log10(abs(s11)),'k-','LineWidth',2);
hold on;
grid on;
plot(f/1e9,20*log10(abs(s21)),'r--','LineWidth',2);
legend('S_{11}','S_{21}');
ylabel('S-Parameter (dB)','FontSize',12);
xlabel('frequency (GHz) \rightarrow','FontSize',12);
ylim([-40 2]);