openEMS/FDTD/operator_cylindermultigrid.cpp

571 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY{} without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "operator_cylindermultigrid.h"
#include "engine_cylindermultigrid.h"
#include "extensions/operator_ext_cylinder.h"
#include "tools/useful.h"
#include "CSUseful.h"
Operator_CylinderMultiGrid::Operator_CylinderMultiGrid(vector<double> Split_Radii, unsigned int level) : Operator_Cylinder()
{
m_Split_Radii = Split_Radii;
m_Split_Rad = m_Split_Radii.back();
m_Split_Radii.pop_back();
m_MultiGridLevel = level;
}
Operator_CylinderMultiGrid::~Operator_CylinderMultiGrid()
{
Delete();
}
Operator_CylinderMultiGrid* Operator_CylinderMultiGrid::New(vector<double> Split_Radii, unsigned int numThreads, unsigned int level)
{
if ((Split_Radii.size()==0) || (Split_Radii.size()>CYLIDINDERMULTIGRID_LIMIT))
{
cerr << "Operator_CylinderMultiGrid::New: Warning: Number of multigrids invalid! Split-Number: " << Split_Radii.size() << endl;
return NULL;
}
cout << "Create cylindrical multi grid FDTD operator " << endl;
Operator_CylinderMultiGrid* op = new Operator_CylinderMultiGrid(Split_Radii, level);
op->setNumThreads(numThreads);
op->Init();
return op;
}
Engine* Operator_CylinderMultiGrid::CreateEngine()
{
m_Engine = Engine_CylinderMultiGrid::New(this,m_numThreads);
return m_Engine;
}
double Operator_CylinderMultiGrid::GetNumberCells() const
{
if (numLines)
return (numLines[0]-m_Split_Pos)*(numLines[1])*(numLines[2]) + m_InnerOp->GetNumberCells();
return 0;
}
bool Operator_CylinderMultiGrid::SetupCSXGrid(CSRectGrid* grid)
{
if (Operator_Cylinder::SetupCSXGrid(grid)==false)
return false;
// make this multigrid use the larger timestep by method 3, since no r==0 singularity can be part of this engine
m_TimeStepVar = 3;
if ((numLines[1]-CC_closedAlpha)%2 != 1)
{
cerr << "Operator_CylinderMultiGrid::SetupCSXGrid: Error, number of line in alpha direction must be odd... found: " << numLines[1] << endl;
exit(0);
}
m_Split_Pos = 0;
for (unsigned int n=0; n<numLines[0]; ++n)
{
if (m_Split_Rad < discLines[0][n])
{
m_Split_Pos = n;
if (g_settings.GetVerboseLevel()>0)
cout << "Operator_CylinderMultiGrid::SetupCSXGrid: Found mesh split position @" << m_Split_Pos << endl;
m_Split_Rad = discLines[0][n];
break;
}
}
if ((m_Split_Pos<4) || (m_Split_Pos>numLines[0]-4))
{
cerr << "Operator_CylinderMultiGrid::SetupCSXGrid: Error, split invalid..." << endl;
return false;
}
return true;
}
bool Operator_CylinderMultiGrid::SetGeometryCSX(ContinuousStructure* geo)
{
if (Operator_Cylinder::SetGeometryCSX(geo)==false)
return false;
CSRectGrid* grid = geo->GetGrid();
grid->ClearLines(0);
grid->ClearLines(1);
for (unsigned int n=0; n<m_Split_Pos ; ++n)
grid->AddDiscLine(0,discLines[0][n]);
for (unsigned int n=0; n<numLines[1]; n+=2)
grid->AddDiscLine(1,discLines[1][n]);
if (m_InnerOp->SetGeometryCSX(CSX)==false)
return false;
//restore grid to original mesh
grid->ClearLines(0);
grid->ClearLines(1);
for (unsigned int n=0; n<numLines[0]; ++n)
grid->AddDiscLine(0,discLines[0][n]);
for (unsigned int n=0; n<numLines[1]; ++n)
grid->AddDiscLine(1,discLines[1][n]);
return true;
}
void Operator_CylinderMultiGrid::Init()
{
Operator_Cylinder::Init();
if (m_Split_Radii.empty())
m_InnerOp = Operator_Cylinder::New(m_numThreads);
else
m_InnerOp = Operator_CylinderMultiGrid::New(m_Split_Radii,m_numThreads, m_MultiGridLevel+1);
for (int n=0;n<2;++n)
{
m_interpol_pos_v_2p[n] = NULL;
f4_interpol_v_2p[n]=NULL;
m_interpol_pos_v_2pp[n] = NULL;
f4_interpol_v_2pp[n]=NULL;
m_interpol_pos_i_2p[n] = NULL;
f4_interpol_i_2p[n]=NULL;
m_interpol_pos_i_2pp[n] = NULL;
f4_interpol_i_2pp[n]=NULL;
}
}
bool Operator_CylinderMultiGrid::GetYeeCoords(int ny, unsigned int pos[3], double* coords, bool dualMesh) const
{
bool ret = Operator_Cylinder::GetYeeCoords(ny,pos,coords,dualMesh);
if (pos[0]<(m_Split_Pos-1))
ret = false;
return ret;
}
#ifdef MPI_SUPPORT
void Operator_CylinderMultiGrid::SetTag(int tag)
{
m_MyTag = tag;
m_InnerOp->SetTag(tag+1);
}
void Operator_CylinderMultiGrid::SetNeighborUp(int ny, int id)
{
if (ny==0)
{
cerr << "Operator_CylinderMultiGrid::SetNeighborUp: Error: MPI segregation in radial direction not supported for a cylindircal multigrid. Exit!";
MPI_Barrier(MPI_COMM_WORLD);
exit(-1);
}
Operator_Cylinder::SetNeighborUp(ny,id);
m_InnerOp->SetNeighborUp(ny,id);
}
void Operator_CylinderMultiGrid::SetNeighborDown(int ny, int id)
{
if (ny==0)
{
cerr << "Operator_CylinderMultiGrid::SetNeighborDown: Error: MPI segregation in radial direction not supported for a cylindircal multigrid. Exit!";
MPI_Barrier(MPI_COMM_WORLD);
exit(-1);
}
Operator_Cylinder::SetNeighborDown(ny,id);
m_InnerOp->SetNeighborDown(ny,id);
}
#endif
void Operator_CylinderMultiGrid::CalcStartStopLines(unsigned int &numThreads, vector<unsigned int> &start, vector<unsigned int> &stop) const
{
vector<unsigned int> jpt = AssignJobs2Threads(numLines[0]- m_Split_Pos + 1, numThreads, true);
numThreads = jpt.size();
start.resize(numThreads);
stop.resize(numThreads);
start.at(0)= m_Split_Pos-1;
stop.at(0)= jpt.at(0)-1 + m_Split_Pos-1;
for (unsigned int n=1; n<numThreads; n++)
{
start.at(n) = stop.at(n-1)+1;
stop.at(n) = start.at(n) + jpt.at(n) - 1;
}
}
void Operator_CylinderMultiGrid::FillMissingDataStorage()
{
unsigned int pos[3];
double EffMat[4];
for (int ny=0; ny<3; ++ny)
{
for (pos[0]=0; pos[0]<m_Split_Pos-1; ++pos[0])
{
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
Calc_EffMatPos(ny,pos,EffMat);
if (m_epsR)
m_epsR[ny][pos[0]][pos[1]][pos[2]] = EffMat[0];
if (m_kappa)
m_kappa[ny][pos[0]][pos[1]][pos[2]] = EffMat[1];
if (m_mueR)
m_mueR[ny][pos[0]][pos[1]][pos[2]] = EffMat[2];
if (m_sigma)
m_sigma[ny][pos[0]][pos[1]][pos[2]] = EffMat[3];
}
}
}
}
}
bool Operator_CylinderMultiGrid::GetCellCenterMaterialAvgCoord(const int pos[3], double coord[3]) const
{
if (Operator_Cylinder::GetCellCenterMaterialAvgCoord(pos, coord)==false)
return false;
if (pos[0]>=((int)m_Split_Pos))
return true;
int pos_a = MapAlphaIndex2Range(pos[1])/2;
if ((pos_a<0) || (pos_a>=(int)m_InnerOp->numLines[1]))
return false;
coord[1] = m_InnerOp->GetDiscLine(1,pos_a,true);
return true;
}
int Operator_CylinderMultiGrid::CalcECOperator( DebugFlags debugFlags )
{
int retCode=0;
if (dT)
m_InnerOp->SetTimestep(dT);
//calc inner child first
m_InnerOp->CalcECOperator();
dT = m_InnerOp->GetTimestep();
retCode = Operator_Cylinder::CalcECOperator( debugFlags );
if (GetTimestepValid()==false)
{
cerr << "Operator_CylinderMultiGrid::CalcECOperator(): Warning, timestep invalid... resetting..." << endl;
dT = opt_dT;
m_InnerOp->SetTimestep(dT);
m_InnerOp->CalcECOperator();
retCode = Operator_Cylinder::CalcECOperator( debugFlags );
}
SetupInterpolation();
//the data storage will only be filled up to m_Split_Pos-1, fill the remaining area here...
FillMissingDataStorage();
return retCode;
}
void Operator_CylinderMultiGrid::DumpPEC2File( string filename, unsigned int *range)
{
if (range!=NULL)
return Operator_Cylinder::DumpPEC2File(filename, range);
range = new unsigned int[6];
for (int n=0;n<3;++n)
{
range[2*n] = 0;
range[2*n+1] = numLines[n]-1;
}
range[0] = m_Split_Pos-1;
Operator_Cylinder::DumpPEC2File(filename + "_S" + ConvertInt(m_MultiGridLevel), range);
delete[] range;
range=NULL;
if (dynamic_cast<Operator_CylinderMultiGrid*>(m_InnerOp))
m_InnerOp->DumpPEC2File(filename);
else // base cylindrical grid
m_InnerOp->DumpPEC2File(filename + "_S" + ConvertInt(m_MultiGridLevel+1));
}
void Operator_CylinderMultiGrid::SetupInterpolation()
{
// n==0 --> interpolation in r&z-direction
// n==1 --> interpolation in a-direction
for (int n=0;n<2;++n)
{
delete[] m_interpol_pos_v_2p[n];
m_interpol_pos_v_2p[n] = new unsigned int[numLines[1]];
Delete1DArray_v4sf(f4_interpol_v_2p[n]);
f4_interpol_v_2p[n]=Create1DArray_v4sf(numLines[1]);
delete[] m_interpol_pos_v_2pp[n];
m_interpol_pos_v_2pp[n] = new unsigned int[numLines[1]];
Delete1DArray_v4sf(f4_interpol_v_2pp[n]);
f4_interpol_v_2pp[n]=Create1DArray_v4sf(numLines[1]);
delete[] m_interpol_pos_i_2p[n];
m_interpol_pos_i_2p[n] = new unsigned int[numLines[1]];
Delete1DArray_v4sf(f4_interpol_i_2p[n]);
f4_interpol_i_2p[n]=Create1DArray_v4sf(numLines[1]);
delete[] m_interpol_pos_i_2pp[n];
m_interpol_pos_i_2pp[n] = new unsigned int[numLines[1]];
Delete1DArray_v4sf(f4_interpol_i_2pp[n]);
f4_interpol_i_2pp[n]=Create1DArray_v4sf(numLines[1]);
}
bool isOdd, isEven;
for (unsigned int a_n=0; a_n<numLines[1]; ++a_n)
{
isOdd = (a_n%2);
isEven = !isOdd;
/* current interpolation position for r,z direction
this sub_grid 2p sub_grid 2pp
0 <-- 0 (-1) 0
1 <-- 0 1
2 <-- 1 0
3 <-- 1 2
4 <-- 2 1
5 <-- 2 3
...
*/
m_interpol_pos_i_2p[0][a_n] = a_n/2;
m_interpol_pos_i_2pp[0][a_n] = a_n/2 + isOdd - isEven;
if ((a_n==0) && CC_closedAlpha)
m_interpol_pos_i_2pp[0][a_n] = m_InnerOp->numLines[1]-3;
else if ((a_n==0) && !CC_closedAlpha)
m_interpol_pos_i_2pp[0][a_n] = 0;
//setup some special treatments for not closed alpha mesh
if ((a_n==numLines[1]-2) && !CC_closedAlpha)
m_interpol_pos_i_2pp[0][a_n] = a_n/2 - 1;
if ((a_n==numLines[1]-1) && !CC_closedAlpha)
m_interpol_pos_i_2p[0][a_n] = m_interpol_pos_i_2pp[0][a_n] = a_n/2;
double dl_p=m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2p[0][a_n],true);
double dl_pp=m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2pp[0][a_n],true);
if ((a_n==0) && CC_closedAlpha)
dl_pp -= 2*PI;
for (int v=0;v<4;++v)
{
if (m_interpol_pos_i_2p[0][a_n]==m_interpol_pos_i_2pp[0][a_n])
f4_interpol_i_2p[0][a_n].f[v] = 1.0;
else
{
f4_interpol_i_2p[0][a_n].f[v] = (dl_pp-GetDiscLine(1,a_n,true)) / (dl_pp-dl_p);
f4_interpol_i_2pp[0][a_n].f[v] = (GetDiscLine(1,a_n,true)-dl_p) / (dl_pp-dl_p);
}
}
/* voltage interpolation position for r,z direction
this sub_grid 2p sub_grid 2pp
0 <-- 0 0
1 <-- 0 1
2 <-- 1 1
3 <-- 1 2
4 <-- 2 2
5 <-- 2 3
...
*/
m_interpol_pos_v_2p[0][a_n] = a_n/2;
m_interpol_pos_v_2pp[0][a_n] = a_n/2 + isOdd;
dl_p=m_InnerOp->GetDiscLine(1,m_interpol_pos_v_2p[0][a_n],false);
dl_pp=m_InnerOp->GetDiscLine(1,m_interpol_pos_v_2pp[0][a_n],false);
for (int v=0;v<4;++v)
{
if (m_interpol_pos_v_2p[0][a_n]==m_interpol_pos_v_2pp[0][a_n])
f4_interpol_v_2p[0][a_n].f[v] = 1.0;
else
{
f4_interpol_v_2p[0][a_n].f[v] = (dl_pp-GetDiscLine(1,a_n,false)) / (dl_pp-dl_p);
f4_interpol_v_2pp[0][a_n].f[v] = (GetDiscLine(1,a_n,false)-dl_p) / (dl_pp-dl_p);
}
}
/* current interpolation position for the alpha direction
this sub_grid 2p sub_grid 2pp
0 <-- 0 0
1 <-- 0 1
2 <-- 1 1
3 <-- 1 2
4 <-- 2 2
5 <-- 2 3
...
*/
m_interpol_pos_i_2p[1][a_n] = a_n/2;
m_interpol_pos_i_2pp[1][a_n] = a_n/2 + isOdd;
//setup some special treatments for not closed alpha mesh
if ((a_n==1) && !CC_closedAlpha)
m_interpol_pos_i_2p[1][a_n] = 2;
if ((a_n==numLines[1]-2) && !CC_closedAlpha)
m_interpol_pos_i_2pp[1][a_n] = a_n/2 - 1;
for (int v=0;v<4;++v)
{
if (m_interpol_pos_i_2p[1][a_n]==m_interpol_pos_i_2pp[1][a_n])
f4_interpol_i_2p[1][a_n].f[v] = GetDiscDelta(1,a_n,true)/m_InnerOp->GetDiscDelta(1,m_interpol_pos_i_2p[1][a_n],true);
else
{
f4_interpol_i_2p[1][a_n].f[v] = (m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2pp[1][a_n],false)-GetDiscLine(1,a_n,false)) /
(m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2pp[1][a_n],false)-m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2p[1][a_n],false));
f4_interpol_i_2p[1][a_n].f[v] *= GetDiscDelta(1,a_n,true)/m_InnerOp->GetDiscDelta(1,m_interpol_pos_i_2p[1][a_n],true);
f4_interpol_i_2pp[1][a_n].f[v] = (GetDiscLine(1,a_n,false)-m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2p[1][a_n],false)) /
(m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2pp[1][a_n],false)-m_InnerOp->GetDiscLine(1,m_interpol_pos_i_2p[1][a_n],false));
f4_interpol_i_2pp[1][a_n].f[v] *= GetDiscDelta(1,a_n,true)/m_InnerOp->GetDiscDelta(1,m_interpol_pos_i_2pp[1][a_n],true);
}
}
/* voltage interpolation position for the alpha direction
this sub_grid 2p sub_grid 2pp
0 <-- 0 (-1) 0
1 <-- 0 1
2 <-- 1 0
3 <-- 1 2
4 <-- 2 1
5 <-- 2 3
...
*/
m_interpol_pos_v_2p[1][a_n] = a_n/2;
m_interpol_pos_v_2pp[1][a_n] = a_n/2 + isOdd - isEven;
if ((a_n==0) && CC_closedAlpha)
m_interpol_pos_v_2pp[1][a_n] = m_InnerOp->numLines[1]-3;
else if ((a_n==0) && !CC_closedAlpha)
m_interpol_pos_v_2pp[1][a_n] = 1;
//setup some special treatments for not closed alpha mesh
if ((a_n==numLines[1]-2) && !CC_closedAlpha)
m_interpol_pos_v_2pp[1][a_n] = a_n/2 - 1;
if ((a_n==numLines[1]-1) && !CC_closedAlpha)
{
m_interpol_pos_v_2p[1][a_n] = 0;
m_interpol_pos_v_2pp[1][a_n] = 0;
}
dl_p=m_InnerOp->GetDiscLine(1,m_interpol_pos_v_2p[1][a_n],true);
dl_pp=m_InnerOp->GetDiscLine(1,m_interpol_pos_v_2pp[1][a_n],true);
for (int v=0;v<4;++v)
{
if (m_interpol_pos_v_2p[1][a_n]==m_interpol_pos_v_2pp[1][a_n])
f4_interpol_v_2p[1][a_n].f[v] = f4_interpol_v_2pp[1][a_n].f[v] = 0;
else
{
f4_interpol_v_2p[1][a_n].f[v] = (dl_pp-GetDiscLine(1,a_n,true)) / (dl_pp-dl_p);
f4_interpol_v_2p[1][a_n].f[v] *= GetDiscDelta(1,a_n,false)/m_InnerOp->GetDiscDelta(1,m_interpol_pos_v_2p[1][a_n],false);
f4_interpol_v_2pp[1][a_n].f[v] = (GetDiscLine(1,a_n,true)-dl_p) / (dl_pp-dl_p);
f4_interpol_v_2pp[1][a_n].f[v] *= GetDiscDelta(1,a_n,false)/m_InnerOp->GetDiscDelta(1,m_interpol_pos_v_2pp[1][a_n],false);
}
}
}
}
void Operator_CylinderMultiGrid::SetExcitationSignal(Excitation* exc)
{
m_InnerOp->SetExcitationSignal(exc);
Operator_Cylinder::SetExcitationSignal(exc);
}
void Operator_CylinderMultiGrid::Delete()
{
delete m_InnerOp;
m_InnerOp=0;
for (int n=0;n<2;++n)
{
delete[] m_interpol_pos_v_2p[n];
m_interpol_pos_v_2p[n]=NULL;
Delete1DArray_v4sf(f4_interpol_v_2p[n]);
f4_interpol_v_2p[n]=NULL;
delete[] m_interpol_pos_v_2pp[n];
m_interpol_pos_v_2pp[n]=NULL;
Delete1DArray_v4sf(f4_interpol_v_2pp[n]);
f4_interpol_v_2pp[n]=NULL;
delete[] m_interpol_pos_i_2p[n];
m_interpol_pos_i_2p[n]=NULL;
Delete1DArray_v4sf(f4_interpol_i_2p[n]);
f4_interpol_i_2p[n]=NULL;
delete[] m_interpol_pos_i_2pp[n];
m_interpol_pos_i_2pp[n]=NULL;
Delete1DArray_v4sf(f4_interpol_i_2pp[n]);
f4_interpol_i_2pp[n]=NULL;
}
}
void Operator_CylinderMultiGrid::Reset()
{
Delete();
Operator_Cylinder::Reset();
}
void Operator_CylinderMultiGrid::SetBoundaryCondition(int* BCs)
{
Operator_Cylinder::SetBoundaryCondition(BCs);
int oldBC = BCs[1];
BCs[1] = 0; //always PEC in +r-direction
m_InnerOp->SetBoundaryCondition(BCs);
BCs[1] = oldBC;
}
void Operator_CylinderMultiGrid::AddExtension(Operator_Extension* op_ext)
{
//check whether extension is save to use in multi-grid
if (op_ext->IsCylindricalMultiGridSave(false)==false)
{
cerr << "Operator_CylinderMultiGrid::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylindrical multi-grids!! skipping...!" << endl;
delete op_ext;
return;
}
Operator_Cylinder::AddExtension(op_ext);
// cylinder extension does not need to be cloned, it will be created by each operator of its own...
if (dynamic_cast<Operator_Ext_Cylinder*>(op_ext))
return;
//check whether extension is save to use in child multi-grid
if (op_ext->IsCylindricalMultiGridSave(true))
{
Operator_Extension* child_Ext = op_ext->Clone(m_InnerOp);
if (child_Ext==NULL)
{
cerr << "Operator_CylinderMultiGrid::AddExtension: Warning, extension: " << op_ext->GetExtensionName() << " can not be cloned for the child operator. Skipping Extension... " << endl;
return;
}
//give the copy to child
m_InnerOp->AddExtension(child_Ext);
}
}
void Operator_CylinderMultiGrid::ShowStat() const
{
m_InnerOp->ShowStat();
m_InnerOp->ShowExtStat();
Operator_Cylinder::ShowStat();
}