openEMS/FDTD/openems_fdtd_mpi.cpp

450 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2011 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY{} without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "openems_fdtd_mpi.h"
#include "FDTD/engine_interface_fdtd.h"
#include "FDTD/operator_mpi.h"
#include "FDTD/engine_mpi.h"
#include "Common/processfields.h"
#include "Common/processintegral.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <vector>
#include <iomanip>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include "mpi.h"
#include "tools/useful.h"
#include "tinyxml.h"
openEMS_FDTD_MPI::openEMS_FDTD_MPI() : openEMS()
{
m_MyID = MPI::COMM_WORLD.Get_rank();
m_NumProc = MPI::COMM_WORLD.Get_size();
m_MaxEnergy = 0;
m_EnergyDecrement = 1;
m_MPI_Op = NULL;
if (m_NumProc>1)
m_MPI_Enabled=true;
else
m_MPI_Enabled=false;
if (m_MyID==0)
{
m_Gather_Buffer = new int[m_NumProc];
m_Energy_Buffer = new double[m_NumProc];
}
else
{
m_Gather_Buffer = NULL;
m_Energy_Buffer = NULL;
}
m_Original_Grid = NULL;
}
openEMS_FDTD_MPI::~openEMS_FDTD_MPI()
{
delete[] m_Gather_Buffer;
m_Gather_Buffer = NULL;
delete[] m_Energy_Buffer;
m_Energy_Buffer = NULL;
delete m_Original_Grid;
m_Original_Grid = NULL;
}
bool openEMS_FDTD_MPI::parseCommandLineArgument( const char *argv )
{
if (!argv)
return false;
bool ret = openEMS::parseCommandLineArgument( argv );
if (ret)
return ret;
if (strcmp(argv,"--engine=MPI")==0)
{
cout << "openEMS_FDTD_MPI - enabled MPI parallel processing" << endl;
m_engine = EngineType_MPI;
return true;
}
return false;
}
bool openEMS_FDTD_MPI::SetupMPI(TiXmlElement* FDTD_Opts)
{
//manipulate geometry for this part...
UNUSED(FDTD_Opts);
if (!m_MPI_Enabled)
{
if (g_settings.GetVerboseLevel()>0)
cerr << "openEMS_FDTD_MPI::SetupMPI: Warning: Number of MPI processes is 1, skipping MPI engine... " << endl;
return true;
}
TiXmlElement* MPI_Elem = FDTD_Opts->FirstChildElement("MPI");
CSRectGrid* grid = m_CSX->GetGrid();
delete m_Original_Grid;
m_Original_Grid = CSRectGrid::Clone(grid);
vector<unsigned int> SplitNumber[3];
2011-03-08 09:30:08 +00:00
string arg_Pos_Names[] = {"SplitPos_X", "SplitPos_Y", "SplitPos_Z"};
string arg_N_Names[] = {"SplitN_X", "SplitN_Y", "SplitN_Z"};
const char* tmp = NULL;
for (int n=0;n<3;++n)
{
SplitNumber[n].push_back(0);
2011-03-08 09:30:08 +00:00
tmp = MPI_Elem->Attribute(arg_Pos_Names[n].c_str());
if (tmp) //check if a split position is requested
{
vector<double> SplitLines = SplitString2Double(tmp, ',');
bool inside;
unsigned int line;
for (size_t lineN = 0; lineN<SplitLines.size();++lineN)
{
line = m_Original_Grid->Snap2LineNumber(n, SplitLines.at(lineN), inside);
if (inside)
SplitNumber[n].push_back(line);
}
}
2011-03-08 09:30:08 +00:00
else //check if a number of splits is requested
{
int SplitN=0;
if (MPI_Elem->QueryIntAttribute( arg_N_Names[n].c_str(), &SplitN) == TIXML_SUCCESS)
{
if (SplitN>1)
2011-03-08 09:30:08 +00:00
{
vector<unsigned int> jobs = AssignJobs2Threads(m_Original_Grid->GetQtyLines(n)-1, SplitN, true);
unsigned int line=0;
for (size_t i = 0; i<jobs.size()-1;++i)
{
line += jobs.at(i);
SplitNumber[n].push_back(line);
}
2011-03-08 09:30:08 +00:00
}
}
}
SplitNumber[n].push_back(m_Original_Grid->GetQtyLines(n)-1);
unique(SplitNumber[n].begin(), SplitNumber[n].end());
}
MPI_Barrier(MPI_COMM_WORLD);
2011-02-22 11:11:08 +00:00
//validate number of processes
int numProcs = (SplitNumber[0].size()-1)*(SplitNumber[1].size()-1)*(SplitNumber[2].size()-1);
if (numProcs!=m_NumProc)
{
if (m_MyID==0)
cerr << "openEMS_FDTD_MPI::SetupMPI: Error: Requested splits require " << numProcs << " processes, but only " << m_NumProc << " were found! Exit! " << endl;
exit(10);
}
//create process table
unsigned int procN = 0;
int procTable[SplitNumber[0].size()-1][SplitNumber[1].size()-1][SplitNumber[2].size()-1];
for (size_t i=0;i<SplitNumber[0].size()-1;++i)
for (size_t j=0;j<SplitNumber[1].size()-1;++j)
for (size_t k=0;k<SplitNumber[2].size()-1;++k)
{
procTable[i][j][k] = procN;
++procN;
}
//assign mesh and neighbors to this process
for (size_t i=0;i<SplitNumber[0].size()-1;++i)
{
for (size_t j=0;j<SplitNumber[1].size()-1;++j)
{
for (size_t k=0;k<SplitNumber[2].size()-1;++k)
{
if (procTable[i][j][k] == m_MyID)
{
grid->ClearLines(0);
grid->ClearLines(1);
grid->ClearLines(2);
for (unsigned int n=SplitNumber[0].at(i);n<=SplitNumber[0].at(i+1);++n)
grid->AddDiscLine(0, m_Original_Grid->GetLine(0,n) );
for (unsigned int n=SplitNumber[1].at(j);n<=SplitNumber[1].at(j+1);++n)
grid->AddDiscLine(1, m_Original_Grid->GetLine(1,n) );
for (unsigned int n=SplitNumber[2].at(k);n<=SplitNumber[2].at(k+1);++n)
grid->AddDiscLine(2, m_Original_Grid->GetLine(2,n) );
if (i>0)
m_MPI_Op->SetNeighborDown(0,procTable[i-1][j][k]);
if (i<SplitNumber[0].size()-2)
m_MPI_Op->SetNeighborUp(0,procTable[i+1][j][k]);
if (j>0)
m_MPI_Op->SetNeighborDown(1,procTable[i][j-1][k]);
if (j<SplitNumber[1].size()-2)
m_MPI_Op->SetNeighborUp(1,procTable[i][j+1][k]);
if (k>0)
m_MPI_Op->SetNeighborDown(2,procTable[i][j][k-1]);
if (k<SplitNumber[2].size()-2)
m_MPI_Op->SetNeighborUp(2,procTable[i][j][k+1]);
}
}
}
}
m_MPI_Op->SetTag(0);
return true;
}
bool openEMS_FDTD_MPI::SetupOperator(TiXmlElement* FDTD_Opts)
{
bool ret = true;
if (m_engine == EngineType_MPI)
{
FDTD_Op = Operator_MPI::New();
}
else
{
ret = openEMS::SetupOperator(FDTD_Opts);
}
m_MPI_Op = dynamic_cast<Operator_MPI*>(FDTD_Op);
if ((m_MPI_Enabled) && (m_MPI_Op==NULL))
{
cerr << "openEMS_FDTD_MPI::SetupOperator: Error: MPI is enabled but requested engine does not support MPI... EXIT!!!" << endl;
MPI_Barrier(MPI_COMM_WORLD);
exit(0);
}
ret &=SetupMPI(FDTD_Opts);
return ret;
}
unsigned int openEMS_FDTD_MPI::GetNextStep()
{
//start processing and get local next step
int step=PA->Process();
double currTS = FDTD_Eng->GetNumberOfTimesteps();
if ((step<0) || (step>(int)(NrTS - currTS))) step=NrTS - currTS;
int local_step=step;
//find the smallest next step requestes by all processings
MPI_Reduce(&local_step, &step, 1, MPI_INT, MPI_MIN, 0, MPI_COMM_WORLD);
//send the smallest next step to all
MPI_Bcast(&step, 1, MPI_INT, 0, MPI_COMM_WORLD);
return step;
}
bool openEMS_FDTD_MPI::CheckEnergyCalc()
{
int local_Check = (int)m_ProcField->CheckTimestep();
int result;
//check if some process request an energy calculation --> the sum is larger than 0
MPI_Reduce(&local_Check, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
//send result to all
MPI_Bcast(&result, 1, MPI_INT, 0, MPI_COMM_WORLD);
//calc energy if result is non-zero
return result>0;
}
double openEMS_FDTD_MPI::CalcEnergy()
{
double energy = 0;
double loc_energy= m_ProcField->CalcTotalEnergy();
//calc the sum of all local energies
MPI_Reduce(&loc_energy, &energy, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
//send sum-energy to all processes
MPI_Bcast(&energy, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if (energy>m_MaxEnergy)
m_MaxEnergy = energy;
if (m_MaxEnergy)
m_EnergyDecrement = energy/m_MaxEnergy;
return energy;
}
bool openEMS_FDTD_MPI::SetupProcessing()
{
bool ret = openEMS::SetupProcessing();
//search for active processings in different processes
size_t numProc = PA->GetNumberOfProcessings();
int active=0;
bool deactivate = false;
bool rename = false;
for (size_t n=0;n<numProc;++n)
{
Processing* proc = PA->GetProcessing(n);
int isActive = (int)proc->GetEnable();
//sum of all active processings
MPI_Reduce(&isActive, &active, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
deactivate = false;
rename = false;
if ((m_MyID==0) && (active>1)) //more than one active processing...
{
deactivate = true; //default
if (dynamic_cast<ProcessIntegral*>(proc)!=NULL)
{
//type is integral processing --> disable! Needs to be fixed!
cerr << "openEMS_FDTD_MPI::SetupProcessing(): Warning: Processing: " << proc->GetName() << " occures multiple times and is being deactivated..." << endl;
deactivate = true;
rename = false;
}
if (dynamic_cast<ProcessFields*>(proc)!=NULL)
{
//type is field processing --> renameing! Needs to be fixed!
cerr << "openEMS_FDTD_MPI::SetupProcessing(): Warning: Processing: " << proc->GetName() << " occures multiple times and is being renamed..." << endl;
deactivate = false;
rename = true;
}
}
//broadcast informations to all
MPI_Bcast(&deactivate, 1, MPI::BOOL, 0, MPI_COMM_WORLD);
MPI_Bcast(&rename, 1, MPI::BOOL, 0, MPI_COMM_WORLD);
if (deactivate)
proc->SetEnable(false);
if (rename)
{
ProcessFields* ProcField = dynamic_cast<ProcessFields*>(proc);
if (ProcField)
{
stringstream name_ss;
name_ss << "ID" << m_MyID << "_" << ProcField->GetName();
ProcField->SetName(name_ss.str());
ProcField->SetFilePattern(name_ss.str());
ProcField->SetFileName(name_ss.str());
}
}
}
return ret;
}
void openEMS_FDTD_MPI::RunFDTD()
{
if (!m_MPI_Enabled)
return openEMS::RunFDTD();
cout << "Running MPI-FDTD engine... this may take a while... grab a cup of coffee?!?" << endl;
//get the sum of all cells
unsigned int local_NrCells=FDTD_Op->GetNumberCells();
MPI_Reduce(&local_NrCells, &m_NumberCells, 1, MPI_UNSIGNED, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Bcast(&m_NumberCells, 1, MPI_UNSIGNED, 0, MPI_COMM_WORLD);
//special handling of a field processing, needed to realize the end criteria...
m_ProcField = new ProcessFields(new Engine_Interface_FDTD(FDTD_Op,FDTD_Eng));
PA->AddProcessing(m_ProcField);
//init processings
PA->InitAll();
double currE=0;
//add all timesteps to end-crit field processing with max excite amplitude
unsigned int maxExcite = FDTD_Op->Exc->GetMaxExcitationTimestep();
for (unsigned int n=0; n<FDTD_Op->Exc->Volt_Count; ++n)
m_ProcField->AddStep(FDTD_Op->Exc->Volt_delay[n]+maxExcite);
int prevTS=0,currTS=0;
double speed = m_NumberCells/1e6;
double t_diff;
timeval currTime;
gettimeofday(&currTime,NULL);
timeval startTime = currTime;
timeval prevTime= currTime;
//*************** simulate ************//
PA->PreProcess();
int step = GetNextStep();
while ((step>0) && !CheckAbortCond())
{
FDTD_Eng->IterateTS(step);
step = GetNextStep();
currTS = FDTD_Eng->GetNumberOfTimesteps();
currE = 0;
gettimeofday(&currTime,NULL);
t_diff = CalcDiffTime(currTime,prevTime);
if (CheckEnergyCalc())
currE = CalcEnergy();
//make sure all processes are at the same simulation time
MPI_Bcast(&t_diff, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if (t_diff>4)
{
if (currE==0)
currE = CalcEnergy();
if (m_MyID==0)
{
cout << "[@" << FormatTime(CalcDiffTime(currTime,startTime)) << "] Timestep: " << setw(12) << currTS << " (" << setw(6) << setprecision(2) << std::fixed << (double)currTS/(double)NrTS*100.0 << "%)" ;
cout << " || Speed: " << setw(6) << setprecision(1) << std::fixed << speed*(currTS-prevTS)/t_diff << " MC/s (" << setw(4) << setprecision(3) << std::scientific << t_diff/(currTS-prevTS) << " s/TS)" ;
cout << " || Energy: ~" << setw(6) << setprecision(2) << std::scientific << currE << " (-" << setw(5) << setprecision(2) << std::fixed << fabs(10.0*log10(m_EnergyDecrement)) << "dB)" << endl;
//set step to zero to abort simulation and send to all
if (m_EnergyDecrement<endCrit)
step=0;
}
MPI_Bcast(&step, 1, MPI_INT, 0, MPI_COMM_WORLD);
prevTime=currTime;
prevTS=currTS;
PA->FlushNext();
}
}
PA->PostProcess();
//*************** postproc ************//
prevTime = currTime;
gettimeofday(&currTime,NULL);
t_diff = CalcDiffTime(currTime,startTime);
if (m_MyID==0)
{
cout << "Time for " << FDTD_Eng->GetNumberOfTimesteps() << " iterations with " << FDTD_Op->GetNumberCells() << " cells : " << t_diff << " sec" << endl;
cout << "Speed: " << speed*(double)FDTD_Eng->GetNumberOfTimesteps()/t_diff << " MCells/s " << endl;
}
}