137 lines
4.2 KiB
Matlab
137 lines
4.2 KiB
Matlab
|
close all
|
||
|
clear
|
||
|
clc
|
||
|
|
||
|
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
EPS0 = 8.85418781762e-12;
|
||
|
MUE0 = 1.256637062e-6;
|
||
|
C0 = 1/sqrt(EPS0*MUE0);
|
||
|
Z0 = sqrt(MUE0/EPS0);
|
||
|
|
||
|
f0 = 0.5e9;
|
||
|
epsR = 1;
|
||
|
kappa = 0;
|
||
|
|
||
|
length = 3000;
|
||
|
port_dist = 1500;
|
||
|
rad_i = 100;
|
||
|
rad_a = 230;
|
||
|
max_mesh = 10;
|
||
|
max_alpha = max_mesh;
|
||
|
N_alpha = ceil(rad_a * 2*pi / max_alpha);
|
||
|
mesh_res = [max_mesh 2*pi/N_alpha max_mesh];
|
||
|
|
||
|
%% define and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
openEMS_opts = '';
|
||
|
openEMS_opts = [openEMS_opts ' --disable-dumps'];
|
||
|
% openEMS_opts = [openEMS_opts ' --debug-operator'];
|
||
|
% openEMS_opts = [openEMS_opts ' --debug-material'];
|
||
|
|
||
|
Sim_Path = 'tmp';
|
||
|
Sim_CSX = 'coax.xml';
|
||
|
|
||
|
if (exist(Sim_Path,'dir'))
|
||
|
rmdir(Sim_Path,'s');
|
||
|
end
|
||
|
mkdir(Sim_Path);
|
||
|
|
||
|
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
FDTD = InitCylindricalFDTD(1e5,1e-6,'OverSampling',10);
|
||
|
FDTD = SetGaussExcite(FDTD,f0,f0);
|
||
|
BC = [0 0 1 1 0 0];
|
||
|
FDTD = SetBoundaryCond(FDTD,BC);
|
||
|
|
||
|
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
CSX = InitCSX();
|
||
|
mesh.x = rad_i : mesh_res(1) : rad_a;
|
||
|
mesh.y = linspace(0,2*pi,N_alpha);
|
||
|
% mesh.y = mesh.y + mesh_res(2)/2;
|
||
|
mesh.z = 0 : mesh_res(3) : length;
|
||
|
CSX = DefineRectGrid(CSX, 1e-3,mesh);
|
||
|
|
||
|
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
abs_length = 30*(mesh.z(2)-mesh.z(1))
|
||
|
finalKappa = 0.3;
|
||
|
finalSigma = finalKappa*MUE0/EPS0/epsR;
|
||
|
CSX = AddMaterial(CSX,'pml');
|
||
|
CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa+kappa,'Epsilon',epsR);
|
||
|
CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma);
|
||
|
CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)/' num2str(abs_length^4)]);
|
||
|
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)/' num2str(abs_length^4)]);
|
||
|
|
||
|
start = [rad_i mesh.y(1) length-abs_length];
|
||
|
stop = [rad_a mesh.y(end) length];
|
||
|
CSX = AddBox(CSX,'pml',0 ,start,stop);
|
||
|
|
||
|
%% material
|
||
|
CSX = AddMaterial(CSX,'fill');
|
||
|
CSX = SetMaterialProperty(CSX,'fill','Epsilon',epsR,'Kappa',kappa);
|
||
|
start = [mesh.x(1) mesh.y(1) 0];
|
||
|
stop = [mesh.x(end) mesh.y(end) length];
|
||
|
CSX = AddBox(CSX,'fill',0 ,start,stop);
|
||
|
|
||
|
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
CSX = AddExcitation(CSX,'excite',0,[1 0 0]);
|
||
|
weight{1} = '1/rho';
|
||
|
weight{2} = 0;
|
||
|
weight{3} = 0;
|
||
|
CSX = SetExcitationWeight(CSX, 'excite', weight );
|
||
|
start = [rad_i mesh.y(1) 0];
|
||
|
stop = [rad_a mesh.y(end) 0];
|
||
|
CSX = AddBox(CSX,'excite',0 ,start,stop);
|
||
|
|
||
|
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
CSX = AddDump(CSX,'Et_','DumpMode',0);
|
||
|
start = [mesh.x(1) , 0 , mesh.z(1)];
|
||
|
stop = [mesh.x(end) , 0 , mesh.z(end)];
|
||
|
CSX = AddBox(CSX,'Et_',0 , start,stop);
|
||
|
|
||
|
CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',0);
|
||
|
CSX = AddBox(CSX,'Ht_',0,start,stop);
|
||
|
|
||
|
% voltage calc (take a voltage average to be at the same spot as the
|
||
|
% current calculation)
|
||
|
CSX = AddProbe(CSX,'ut1_1',0);
|
||
|
start = [ rad_i 0 port_dist ];stop = [ rad_a 0 port_dist ];
|
||
|
CSX = AddBox(CSX,'ut1_1', 0 ,start,stop);
|
||
|
CSX = AddProbe(CSX,'ut1_2',0);
|
||
|
start = [ rad_i 0 port_dist+mesh_res(3) ];stop = [ rad_a 0 port_dist+mesh_res(3) ];
|
||
|
CSX = AddBox(CSX,'ut1_2', 0 ,start,stop);
|
||
|
|
||
|
|
||
|
CSX = AddProbe(CSX,'ut_ex',0);
|
||
|
start = [ rad_i 0 0 ];stop = [ rad_a 0 0 ];
|
||
|
CSX = AddBox(CSX,'ut_ex', 0 ,start,stop);
|
||
|
|
||
|
% current calc
|
||
|
CSX = AddProbe(CSX,'it1',1);
|
||
|
mid = 0.5*(rad_i+rad_a);
|
||
|
start = [ 0 mesh.y(1) port_dist ];stop = [ mid mesh.y(end) port_dist ];
|
||
|
CSX = AddBox(CSX,'it1', 0 ,start,stop);
|
||
|
|
||
|
%% run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||
|
RunOpenEMS(Sim_Path,Sim_CSX,openEMS_opts);
|
||
|
|
||
|
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
UI = ReadUI({'ut1_1','ut1_2','it1'},Sim_Path);
|
||
|
plot(UI.TD{1}.t,UI.TD{1}.val)
|
||
|
|
||
|
UI_ex = ReadUI({'ut_ex'},'tmp/');
|
||
|
hold on;
|
||
|
plot(UI_ex.TD{1}.t,UI_ex.TD{1}.val,'r--');
|
||
|
|
||
|
u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current
|
||
|
i_f = UI.FD{3}.val;
|
||
|
|
||
|
figure
|
||
|
ZL = Z0/2/pi/sqrt(epsR)*log(rad_a/rad_i); %analytic line-impedance of a coax
|
||
|
plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g');
|
||
|
hold on;
|
||
|
grid on;
|
||
|
Z = u_f./i_f;
|
||
|
plot(UI.FD{1}.f,real(Z),'Linewidth',2);
|
||
|
plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2);
|
||
|
xlim([0 2*f0]);
|
||
|
legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');
|