openEMS/FDTD/extensions/engine_ext_excitation.cpp

171 lines
5.1 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2011 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine_ext_excitation.h"
#include "operator_ext_excitation.h"
#include "FDTD/engine_sse.h"
Engine_Ext_Excitation::Engine_Ext_Excitation(Operator_Ext_Excitation* op_ext) : Engine_Extension(op_ext)
{
m_Op_Exc = op_ext;
m_Priority = ENG_EXT_PRIO_EXCITATION;
}
Engine_Ext_Excitation::~Engine_Ext_Excitation()
{
}
void Engine_Ext_Excitation::Apply2Voltages()
{
//soft voltage excitation here (E-field excite)
int exc_pos;
unsigned int ny;
unsigned int pos[3];
int numTS = m_Eng->GetNumberOfTimesteps();
unsigned int length = m_Op_Exc->m_Exc->GetLength();
FDTD_FLOAT* exc_volt = m_Op_Exc->m_Exc->GetVoltageSignal();
int p = numTS+1;
if (m_Op_Exc->m_Exc->GetSignalPeriod()>0)
p = int(m_Op_Exc->m_Exc->GetSignalPeriod()/m_Op_Exc->m_Exc->GetTimestep());
//switch for different engine types to access faster inline engine functions
switch (m_Eng->GetType())
{
case Engine::BASIC:
{
for (unsigned int n=0; n<m_Op_Exc->Volt_Count; ++n)
{
exc_pos = numTS - (int)m_Op_Exc->Volt_delay[n];
exc_pos *= (exc_pos>0);
exc_pos %= p;
exc_pos *= (exc_pos<(int)length);
ny = m_Op_Exc->Volt_dir[n];
pos[0]=m_Op_Exc->Volt_index[0][n];
pos[1]=m_Op_Exc->Volt_index[1][n];
pos[2]=m_Op_Exc->Volt_index[2][n];
m_Eng->Engine::SetVolt(ny,pos, m_Eng->Engine::GetVolt(ny,pos) + m_Op_Exc->Volt_amp[n]*exc_volt[exc_pos]);
}
break;
}
case Engine::SSE:
{
for (unsigned int n=0; n<m_Op_Exc->Volt_Count; ++n)
{
Engine_sse* eng_sse = (Engine_sse*) m_Eng;
exc_pos = numTS - (int)m_Op_Exc->Volt_delay[n];
exc_pos *= (exc_pos>0);
exc_pos %= p;
exc_pos *= (exc_pos<(int)length);
ny = m_Op_Exc->Volt_dir[n];
pos[0]=m_Op_Exc->Volt_index[0][n];
pos[1]=m_Op_Exc->Volt_index[1][n];
pos[2]=m_Op_Exc->Volt_index[2][n];
eng_sse->Engine_sse::SetVolt(ny,pos, eng_sse->Engine_sse::GetVolt(ny,pos) + m_Op_Exc->Volt_amp[n]*exc_volt[exc_pos]);
}
break;
}
default:
{
for (unsigned int n=0; n<m_Op_Exc->Volt_Count; ++n)
{
exc_pos = numTS - (int)m_Op_Exc->Volt_delay[n];
exc_pos *= (exc_pos>0);
exc_pos %= p;
exc_pos *= (exc_pos<(int)length);
ny = m_Op_Exc->Volt_dir[n];
pos[0]=m_Op_Exc->Volt_index[0][n];
pos[1]=m_Op_Exc->Volt_index[1][n];
pos[2]=m_Op_Exc->Volt_index[2][n];
m_Eng->SetVolt(ny,pos, m_Eng->GetVolt(ny,pos) + m_Op_Exc->Volt_amp[n]*exc_volt[exc_pos]);
}
break;
}
}
}
void Engine_Ext_Excitation::Apply2Current()
{
//soft current excitation here (H-field excite)
int exc_pos;
unsigned int ny;
unsigned int pos[3];
int numTS = m_Eng->GetNumberOfTimesteps();
unsigned int length = m_Op_Exc->m_Exc->GetLength();
FDTD_FLOAT* exc_curr = m_Op_Exc->m_Exc->GetCurrentSignal();
int p = numTS+1;
if (m_Op_Exc->m_Exc->GetSignalPeriod()>0)
p = int(m_Op_Exc->m_Exc->GetSignalPeriod()/m_Op_Exc->m_Exc->GetTimestep());
//switch for different engine types to access faster inline engine functions
switch (m_Eng->GetType())
{
case Engine::BASIC:
{
for (unsigned int n=0; n<m_Op_Exc->Curr_Count; ++n)
{
exc_pos = numTS - (int)m_Op_Exc->Curr_delay[n];
exc_pos *= (exc_pos>0);
exc_pos %= p;
exc_pos *= (exc_pos<(int)length);
ny = m_Op_Exc->Curr_dir[n];
pos[0]=m_Op_Exc->Curr_index[0][n];
pos[1]=m_Op_Exc->Curr_index[1][n];
pos[2]=m_Op_Exc->Curr_index[2][n];
m_Eng->Engine::SetCurr(ny,pos, m_Eng->Engine::GetCurr(ny,pos) + m_Op_Exc->Curr_amp[n]*exc_curr[exc_pos]);
}
break;
}
case Engine::SSE:
{
for (unsigned int n=0; n<m_Op_Exc->Curr_Count; ++n)
{
Engine_sse* eng_sse = (Engine_sse*) m_Eng;
exc_pos = numTS - (int)m_Op_Exc->Curr_delay[n];
exc_pos *= (exc_pos>0);
exc_pos %= p;
exc_pos *= (exc_pos<(int)length);
ny = m_Op_Exc->Curr_dir[n];
pos[0]=m_Op_Exc->Curr_index[0][n];
pos[1]=m_Op_Exc->Curr_index[1][n];
pos[2]=m_Op_Exc->Curr_index[2][n];
eng_sse->Engine_sse::SetCurr(ny,pos, eng_sse->Engine_sse::GetCurr(ny,pos) + m_Op_Exc->Curr_amp[n]*exc_curr[exc_pos]);
}
break;
}
default:
{
for (unsigned int n=0; n<m_Op_Exc->Curr_Count; ++n)
{
exc_pos = numTS - (int)m_Op_Exc->Curr_delay[n];
exc_pos *= (exc_pos>0);
exc_pos %= p;
exc_pos *= (exc_pos<(int)length);
ny = m_Op_Exc->Curr_dir[n];
pos[0]=m_Op_Exc->Curr_index[0][n];
pos[1]=m_Op_Exc->Curr_index[1][n];
pos[2]=m_Op_Exc->Curr_index[2][n];
m_Eng->SetCurr(ny,pos, m_Eng->GetCurr(ny,pos) + m_Op_Exc->Curr_amp[n]*exc_curr[exc_pos]);
}
break;
}
}
}