2016-08-28 19:32:48 +00:00
|
|
|
# -*- coding: utf-8 -*-
|
2016-09-08 20:10:27 +00:00
|
|
|
#
|
|
|
|
# Copyright (C) 2015,20016 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
|
|
|
#
|
|
|
|
# This program is free software: you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU General Public License as published
|
|
|
|
# by the Free Software Foundation, either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#
|
2016-08-28 19:32:48 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
def DFT_time2freq( t, val, freq, signal_type='pulse'):
|
|
|
|
assert len(t)==len(val)
|
|
|
|
assert len(freq)>0
|
|
|
|
f_val = np.zeros(len(freq))*1j
|
|
|
|
for n_f in range(len(freq)):
|
|
|
|
f_val[n_f] = np.sum( val*np.exp( -1j*2*np.pi*freq[n_f] * t ) )
|
|
|
|
|
|
|
|
if signal_type == 'pulse':
|
|
|
|
f_val *= t[1]-t[0]
|
|
|
|
elif signal_type == 'periodic':
|
|
|
|
f_val /= len(t)
|
|
|
|
else:
|
|
|
|
raise Exception('Unknown signal type: "{}"'.format(signal_type))
|
|
|
|
|
|
|
|
return 2*f_val # single-sided spectrum
|
|
|
|
|
|
|
|
def Check_Array_Equal(a,b, tol, relative=False):
|
|
|
|
a = np.array(a)
|
|
|
|
b = np.array(b)
|
|
|
|
if a.shape!=b.shape:
|
|
|
|
return False
|
|
|
|
if tol==0:
|
|
|
|
return (a==b).all()
|
|
|
|
if relative:
|
|
|
|
d = np.abs((a-b)/a)
|
|
|
|
else:
|
|
|
|
d = np.abs((a-b))
|
|
|
|
return np.max(d)<tol
|
|
|
|
|
|
|
|
if __name__=="__main__":
|
|
|
|
import pylab as plt
|
|
|
|
|
|
|
|
t = np.linspace(0,2,201)
|
|
|
|
|
|
|
|
s = np.sin(2*np.pi*2*t)
|
|
|
|
plt.plot(t,s)
|
|
|
|
|
|
|
|
f = np.linspace(0,3,101)
|
|
|
|
sf = DFT_time2freq(t, s, f, 'periodic')
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
plt.plot(f, np.abs(sf))
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|