openEMS/Common/processfields_fd.cpp

238 lines
7.7 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "processfields_fd.h"
#include "Common/operator_base.h"
#include <H5Cpp.h>
#include <iomanip>
#include <sstream>
#include <string>
ProcessFieldsFD::ProcessFieldsFD(Engine_Interface_Base* eng_if) : ProcessFields(eng_if)
{
}
ProcessFieldsFD::~ProcessFieldsFD()
{
for (size_t n = 0; n<m_FD_Fields.size(); ++n)
{
Delete_N_3DArray(m_FD_Fields.at(n),numLines);
}
m_FD_Fields.clear();
}
void ProcessFieldsFD::InitProcess()
{
if (Enabled==false) return;
if (m_FD_Samples.size()==0)
{
cerr << "ProcessFieldsFD::InitProcess: No frequencies found... skipping this dump!" << endl;
Enabled=false;
return;
}
//setup the hdf5 file
ProcessFields::InitProcess();
if (m_fileType==HDF5_FILETYPE)
{
//create hdf5 file & necessary groups
m_filename+= ".h5";
H5::H5File* file = new H5::H5File( m_filename , H5F_ACC_TRUNC );
H5::Group* group = new H5::Group( file->createGroup( "/FieldData" ));
delete group;
group = new H5::Group( file->createGroup( "/FieldData/FD" ));
//set number of frequencies
hsize_t t_dimsf[] = {1};
H5::DataSpace t_dataspace( 1, t_dimsf );
H5::Attribute attr = group->createAttribute("Number_of_Frequencies",H5::PredType::NATIVE_INT,t_dataspace);
int count = m_FD_Samples.size();
attr.write( H5::PredType::NATIVE_INT , &count);
delete group;
delete file;
//write mesh information in main root-group
#ifdef OUTPUT_IN_DRAWINGUNITS
double discScaling = 1;
#else
double discScaling = Op->GetGridDelta();
#endif
ProcessFields::WriteMesh2HDF5(m_filename,"/",numLines,discLines,m_Mesh_Type, discScaling);
}
//create data structures...
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
std::complex<float>**** field_fd = Create_N_3DArray<std::complex<float> >(numLines);
m_FD_Fields.push_back(field_fd);
}
}
int ProcessFieldsFD::Process()
{
if (Enabled==false) return -1;
if (CheckTimestep()==false) return GetNextInterval();
if ((m_FD_Interval==0) || (m_Eng_Interface->GetNumberOfTimesteps()%m_FD_Interval!=0))
return GetNextInterval();
FDTD_FLOAT**** field_td = CalcField();
std::complex<float>**** field_fd = NULL;
double T = m_Eng_Interface->GetTime(m_dualTime);
unsigned int pos[3];
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
std::complex<float> exp_jwt_2_dt = std::exp( (std::complex<float>)(-2.0 * _I * M_PI * m_FD_Samples.at(n) * T) );
exp_jwt_2_dt *= 2; // *2 for single-sided spectrum
exp_jwt_2_dt *= Op->GetTimestep() * m_FD_Interval; // multiply with timestep-interval
field_fd = m_FD_Fields.at(n);
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
field_fd[0][pos[0]][pos[1]][pos[2]] += field_td[0][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
field_fd[1][pos[0]][pos[1]][pos[2]] += field_td[1][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
field_fd[2][pos[0]][pos[1]][pos[2]] += field_td[2][pos[0]][pos[1]][pos[2]] * exp_jwt_2_dt;
}
}
}
}
Delete_N_3DArray<FDTD_FLOAT>(field_td,numLines);
++m_FD_SampleCount;
return GetNextInterval();
}
void ProcessFieldsFD::PostProcess()
{
DumpFDData();
}
void ProcessFieldsFD::DumpFDData()
{
#ifdef OUTPUT_IN_DRAWINGUNITS
double discLines_scaling = 1;
#else
double discLines_scaling = Op->GetGridDelta();
#endif
if (m_fileType==VTK_FILETYPE)
{
unsigned int pos[3];
FDTD_FLOAT**** field = Create_N_3DArray<float>(numLines);
std::complex<float>**** field_fd = NULL;
double angle=0;
int Nr_Ph = 21;
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
//dump multiple phase to vtk-files
for (int p=0; p<Nr_Ph; ++p)
{
angle = 2.0 * M_PI * p / Nr_Ph;
std::complex<float> exp_jwt = std::exp( (std::complex<float>)( _I * angle) );
field_fd = m_FD_Fields.at(n);
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
field[0][pos[0]][pos[1]][pos[2]] = real(field_fd[0][pos[0]][pos[1]][pos[2]] * exp_jwt);
field[1][pos[0]][pos[1]][pos[2]] = real(field_fd[1][pos[0]][pos[1]][pos[2]] * exp_jwt);
field[2][pos[0]][pos[1]][pos[2]] = real(field_fd[2][pos[0]][pos[1]][pos[2]] * exp_jwt);
}
}
}
stringstream ss;
ss << m_filename << fixed << "_f=" << m_FD_Samples.at(n) << "_p=" << std::setw( 3 ) << std::setfill( '0' ) <<(int)(angle * 180 / M_PI) << ".vtk";
ofstream file(ss.str().c_str());
if (file.is_open()==false)
cerr << "ProcessFieldsFD::DumpFDData: can't open file '" << ss.str() << "' for writing... abort! " << endl;
DumpVectorArray2VTK(file,GetFieldNameByType(m_DumpType),field,discLines,numLines,m_precision,string("Interpolation: ")+m_Eng_Interface->GetInterpolationTypeString(), m_Mesh_Type, discLines_scaling);
file.close();
}
{
//dump magnitude to vtk-files
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
field[0][pos[0]][pos[1]][pos[2]] = abs(field_fd[0][pos[0]][pos[1]][pos[2]]);
field[1][pos[0]][pos[1]][pos[2]] = abs(field_fd[1][pos[0]][pos[1]][pos[2]]);
field[2][pos[0]][pos[1]][pos[2]] = abs(field_fd[2][pos[0]][pos[1]][pos[2]]);
}
}
}
stringstream ss;
ss << m_filename << fixed << "_f=" << m_FD_Samples.at(n) << "_abs" << ".vtk";
ofstream file(ss.str().c_str());
if (file.is_open()==false)
cerr << "ProcessFieldsFD::DumpFDData: can't open file '" << ss.str() << "' for writing... abort! " << endl;
DumpVectorArray2VTK(file,GetFieldNameByType(m_DumpType),field,discLines,numLines,m_precision,string("Interpolation: ")+m_Eng_Interface->GetInterpolationTypeString(), m_Mesh_Type, discLines_scaling);
file.close();
}
{
//dump phase to vtk-files
for (pos[0]=0; pos[0]<numLines[0]; ++pos[0])
{
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
field[0][pos[0]][pos[1]][pos[2]] = arg(field_fd[0][pos[0]][pos[1]][pos[2]]);
field[1][pos[0]][pos[1]][pos[2]] = arg(field_fd[1][pos[0]][pos[1]][pos[2]]);
field[2][pos[0]][pos[1]][pos[2]] = arg(field_fd[2][pos[0]][pos[1]][pos[2]]);
}
}
}
stringstream ss;
ss << m_filename << fixed << "_f=" << m_FD_Samples.at(n) << "_arg" << ".vtk";
ofstream file(ss.str().c_str());
if (file.is_open()==false)
cerr << "ProcessFieldsFD::DumpFDData: can't open file '" << ss.str() << "' for writing... abort! " << endl;
DumpVectorArray2VTK(file,GetFieldNameByType(m_DumpType),field,discLines,numLines,m_precision,string("Interpolation: ")+m_Eng_Interface->GetInterpolationTypeString(), m_Mesh_Type, discLines_scaling);
file.close();
}
}
Delete_N_3DArray(field,numLines);
return;
}
if (m_fileType==HDF5_FILETYPE)
{
for (size_t n = 0; n<m_FD_Samples.size(); ++n)
{
stringstream ss;
ss << "f" << n;
DumpVectorArray2HDF5(m_filename.c_str(), "/FieldData/FD", ss.str(), m_FD_Fields.at(n),numLines,1.0,m_FD_Samples.at(n));
}
return;
}
cerr << "ProcessFieldsTD::Process: unknown File-Type" << endl;
}