Tutorials: use new waveguide ports

Signed-off-by: Thorsten Liebig <Thorsten.Liebig@gmx.de>
pull/1/head
Thorsten Liebig 2013-03-22 16:39:31 +01:00
parent c2078f5c39
commit 0ba70f0a27
4 changed files with 65 additions and 271 deletions

View File

@ -6,9 +6,9 @@
% %
% Tested with % Tested with
% - Matlab 2011a / Octave 3.4.3 % - Matlab 2011a / Octave 3.4.3
% - openEMS v0.0.26 % - openEMS v0.0.31
% %
% (C) 2010-2012 Thorsten Liebig <thorsten.liebig@gmx.de> % (C) 2010-2013 Thorsten Liebig <thorsten.liebig@gmx.de>
close all close all
clear clear
@ -28,33 +28,8 @@ f_stop = 500e6;
mesh_res = [10 2*pi/49.999 10]; %targeted mesh resolution mesh_res = [10 2*pi/49.999 10]; %targeted mesh resolution
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% by David M. Pozar, Microwave Engineering, third edition
freq = linspace(f_start,f_stop,201);
p11 = 1.841;
kc = p11 / rad /unit;
k = 2*pi*freq/C0;
fc = C0*kc/2/pi;
beta = sqrt(k.^2 - kc^2);
n_eff = (beta/k);
ZL_a = k * Z0 ./ beta; %analytic waveguide impedance
% TE_11 mode profile E- and H-field
kc = kc*unit; %functions must be defined in drawing units
func_Er = [ num2str(-1/kc^2,15) '/rho*cos(a)*j1(' num2str(kc,15) '*rho)'];
func_Ea = [ num2str(1/kc,15) '*sin(a)*0.5*(j0(' num2str(kc,15) '*rho)-jn(2,' num2str(kc,15) '*rho))'];
func_Ha = [ num2str(-1/kc^2,15) '/rho*cos(a)*j1(' num2str(kc,15) '*rho)'];
func_Hr = [ '-1*' num2str(1/kc,15) '*sin(a)*0.5*(j0(' num2str(kc,15) '*rho)-jn(2,' num2str(kc,15) '*rho))'];
disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e6) ' MHz']);
if (f_start<fc)
warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
end
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(1e6,1e-5,'CoordSystem',1); FDTD = InitFDTD('EndCriteria',1e-4,'CoordSystem',1);
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
% boundary conditions % boundary conditions
@ -68,35 +43,14 @@ mesh.a = SmoothMeshLines([0 2*pi], mesh_res(2)); % mesh in aziumthal dir.
mesh.z = SmoothMeshLines([0 length], mesh_res(3)); mesh.z = SmoothMeshLines([0 length], mesh_res(3));
CSX = DefineRectGrid(CSX, unit,mesh); CSX = DefineRectGrid(CSX, unit,mesh);
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% apply the waveguide port %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ra-mode profile excitation located directly on top of pml (first 8 z-lines) start=[mesh.r(1) mesh.a(1) mesh.z(8)];
CSX = AddExcitation(CSX,'excite',0,[1 1 0]); stop =[mesh.r(end) mesh.a(end) mesh.z(15)];
weight{1} = func_Er; [CSX, port{1}] = AddCircWaveGuidePort( CSX, 0, 1, start, stop, rad*unit, 'TE11', 0, 1);
weight{2} = func_Ea;
weight{3} = 0;
CSX = SetExcitationWeight(CSX,'excite',weight);
start=[mesh.r(1) mesh.a(1) mesh.z(8) ];
stop =[mesh.r(end) mesh.a(end) mesh.z(8) ];
CSX = AddBox(CSX,'excite',0 ,start,stop);
%% voltage and current definitions using the mode matching probes %%%%%%%%% start=[mesh.r(1) mesh.a(1) mesh.z(end-13)];
%port 1 stop =[mesh.r(end) mesh.a(end) mesh.z(end-14)];
start = [mesh.r(1) mesh.a(1) mesh.z(15)]; [CSX, port{2}] = AddCircWaveGuidePort( CSX, 0, 2, start, stop, rad*unit, 'TE11');
stop = [mesh.r(end) mesh.a(end) mesh.z(15)];
CSX = AddProbe(CSX, 'ut1', 10, 'ModeFunction',{func_Er,func_Ea,0});
CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
CSX = AddProbe(CSX,'it1', 11, 'ModeFunction',{func_Hr,func_Ha,0});
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%port 2
start(3) = mesh.z(end-14);
stop(3) = mesh.z(end-14);
CSX = AddProbe(CSX, 'ut2', 10, 'ModeFunction',{func_Er,func_Ea,0});
CSX = AddBox(CSX, 'ut2', 0 ,start,stop);
CSX = AddProbe(CSX,'it2', 11, 'ModeFunction',{func_Hr,func_Ha,0});
CSX = AddBox(CSX,'it2', 0 ,start,stop);
port_dist = mesh.z(end-14) - mesh.z(15);
%% define dump box... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% define dump box... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,4'); CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,4');
@ -106,7 +60,7 @@ CSX = AddBox(CSX,'Et',0 , start,stop);
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sim_Path = 'tmp'; Sim_Path = 'tmp';
Sim_CSX = 'rect_wg.xml'; Sim_CSX = 'circ_wg.xml';
[status, message, messageid] = rmdir(Sim_Path,'s'); [status, message, messageid] = rmdir(Sim_Path,'s');
[status, message, messageid] = mkdir(Sim_Path); [status, message, messageid] = mkdir(Sim_Path);
@ -116,29 +70,16 @@ WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
RunOpenEMS(Sim_Path, Sim_CSX) RunOpenEMS(Sim_Path, Sim_CSX)
%% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq); freq = linspace(f_start,f_stop,201);
I = ReadUI({'it1','it2'},[Sim_Path '/'],freq); port = calcPort( port, Sim_Path, freq);
Exc = ReadUI('et',Sim_Path,freq);
uf1 = U.FD{1}.val./Exc.FD{1}.val; s11 = port{1}.uf.ref./ port{1}.uf.inc;
uf2 = U.FD{2}.val./Exc.FD{1}.val; s21 = port{2}.uf.ref./ port{1}.uf.inc;
if1 = I.FD{1}.val./Exc.FD{1}.val; ZL = port{1}.uf.tot./port{1}.if.tot;
if2 = I.FD{2}.val./Exc.FD{1}.val;
uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a );
if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a );
uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a );
if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a );
uf1_ref = uf1 - uf1_inc;
if1_ref = if1_inc - if1;
uf2_ref = uf2 - uf2_inc;
if2_ref = if2_inc - if2;
%% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure figure
s11 = uf1_ref./uf1_inc;
s21 = uf2_inc./uf1_inc;
plot(freq*1e-6,20*log10(abs(s11)),'k-','Linewidth',2); plot(freq*1e-6,20*log10(abs(s11)),'k-','Linewidth',2);
xlim([freq(1) freq(end)]*1e-6); xlim([freq(1) freq(end)]*1e-6);
grid on; grid on;
@ -151,14 +92,14 @@ xlabel('frequency (MHz) \rightarrow','FontSize',12);
%% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%% %% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%%
figure figure
ZL = uf1./if1;
plot(freq*1e-6,real(ZL),'Linewidth',2); plot(freq*1e-6,real(ZL),'Linewidth',2);
hold on; hold on;
grid on; grid on;
plot(freq*1e-6,imag(ZL),'r--','Linewidth',2); plot(freq*1e-6,imag(ZL),'r--','Linewidth',2);
plot(freq*1e-6,ZL_a,'g-.','Linewidth',2); plot(freq*1e-6,port{1}.ZL,'g-.','Linewidth',2);
ylabel('ZL (\Omega)','FontSize',12); ylabel('ZL (\Omega)','FontSize',12);
xlabel('frequency (MHz) \rightarrow','FontSize',12); xlabel('frequency (MHz) \rightarrow','FontSize',12);
xlim([freq(1) freq(end)]*1e-6); xlim([freq(1) freq(end)]*1e-6);
l = legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best'); l = legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best');
set(l,'FontSize',12); set(l,'FontSize',12);

View File

@ -5,8 +5,8 @@
% http://openems.de/index.php/Tutorial:_Conical_Horn_Antenna % http://openems.de/index.php/Tutorial:_Conical_Horn_Antenna
% %
% Tested with % Tested with
% - Matlab 2011a / Octave 3.4.3 % - Matlab 2011a / Octave 3.6.3
% - openEMS v0.0.27 % - openEMS v0.0.31
% %
% (C) 2011,2012 Thorsten Liebig <thorsten.liebig@uni-due.de> % (C) 2011,2012 Thorsten Liebig <thorsten.liebig@uni-due.de>
@ -40,35 +40,6 @@ f_stop = 20e9;
% frequency of interest % frequency of interest
f0 = 15e9; f0 = 15e9;
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% by David M. Pozar, Microwave Engineering, third edition, page 113
freq = linspace(f_start,f_stop,201);
p11 = 1.841;
kc = p11 / horn.radius /unit;
k = 2*pi*freq/C0;
fc = C0*kc/2/pi;
beta = sqrt(k.^2 - kc^2);
ZL_a = k * Z0 ./ beta; %analytic waveguide impedance
% mode profile E- and H-field
kc = kc*unit;
func_Er = [ num2str(-1/kc^2,'%14.13f') '/rho*cos(a)*j1(' num2str(kc,'%14.13f') '*rho)'];
func_Ea = [ num2str(1/kc,'%14.13f') '*sin(a)*0.5*(j0(' num2str(kc,'%14.13f') '*rho)-jn(2,' num2str(kc,'%14.13f') '*rho))'];
func_Ex = ['(' func_Er '*cos(a) - ' func_Ea '*sin(a) ) * (rho<' num2str(horn.radius) ')'];
func_Ey = ['(' func_Er '*sin(a) + ' func_Ea '*cos(a) ) * (rho<' num2str(horn.radius) ')'];
func_Ha = [ num2str(-1/kc^2,'%14.13f') '/rho*cos(a)*j1(' num2str(kc,'%14.13f') '*rho)'];
func_Hr = [ '-1*' num2str(1/kc,'%14.13f') '*sin(a)*0.5*(j0(' num2str(kc,'%14.13f') '*rho)-jn(2,' num2str(kc,'%14.13f') '*rho))'];
func_Hx = ['(' func_Hr '*cos(a) - ' func_Ha '*sin(a) ) * (rho<' num2str(horn.radius) ')'];
func_Hy = ['(' func_Hr '*sin(a) + ' func_Ha '*cos(a) ) * (rho<' num2str(horn.radius) ')'];
disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e9) ' GHz']);
if (f_start<fc)
warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
end
%% setup FDTD parameter & excitation function %% setup FDTD parameter & excitation function
FDTD = InitFDTD( 30000, 1e-4 ); FDTD = InitFDTD( 30000, 1e-4 );
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
@ -112,31 +83,17 @@ CSX = AddRotPoly(CSX,'Conical_Horn',10,0,2,p);
% horn aperture % horn aperture
A = pi*((horn.radius + sin(horn.angle)*horn.length)*unit)^2; A = pi*((horn.radius + sin(horn.angle)*horn.length)*unit)^2;
% %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% xy-mode profile excitation located directly on top of pml (first 8 z-lines) start=[-horn.radius -horn.radius mesh.z(10) ];
CSX = AddExcitation(CSX,'excite',0,[1 1 0]); stop =[+horn.radius +horn.radius mesh.z(1)+horn.feed_length/2 ];
weight{1} = func_Ex; [CSX, port] = AddCircWaveGuidePort( CSX, 0, 1, start, stop, horn.radius*unit, 'TE11', 0, 1);
weight{2} = func_Ey;
weight{3} = 0;
CSX = SetExcitationWeight(CSX,'excite',weight);
start=[0 0 mesh.z(8)-0.1 ];
stop =[0 0 mesh.z(8)+0.1 ];
CSX = AddCylinder(CSX,'excite',0 ,start,stop,horn.radius);
%%
CSX = AddDump(CSX,'Exc_dump'); CSX = AddDump(CSX,'Exc_dump');
start=[-horn.radius -horn.radius mesh.z(8)-0.1 ]; start=[-horn.radius -horn.radius mesh.z(8)];
stop =[+horn.radius +horn.radius mesh.z(8)+0.1 ]; stop =[+horn.radius +horn.radius mesh.z(8)];
CSX = AddBox(CSX,'Exc_dump',0,start,stop); CSX = AddBox(CSX,'Exc_dump',0,start,stop);
%% voltage and current definitions using the mode matching probes %%%%%%%%%
%port 1
start = [-horn.radius -horn.radius mesh.z(1)+horn.feed_length/2];
stop = [ horn.radius horn.radius mesh.z(1)+horn.feed_length/2];
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%% nf2ff calc %% nf2ff calc
start = [mesh.x(9) mesh.y(9) mesh.z(9)]; start = [mesh.x(9) mesh.y(9) mesh.z(9)];
stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)]; stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)];
@ -159,16 +116,17 @@ CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
RunOpenEMS( Sim_Path, Sim_CSX); RunOpenEMS( Sim_Path, Sim_CSX);
%% postprocessing & do the plots %% postprocessing & do the plots
U = ReadUI( 'ut1', Sim_Path, freq ); % time domain/freq domain voltage freq = linspace(f_start,f_stop,201);
I = ReadUI( 'it1', Sim_Path, freq ); % time domain/freq domain current (half time step is corrected)
port = calcPort(port, Sim_Path, freq);
Zin = port.uf.tot ./ port.if.tot;
s11 = port.uf.ref ./ port.uf.inc;
P_in = 0.5 * port.uf.inc .* conj( port.if.inc ); % antenna feed power
% plot reflection coefficient S11 % plot reflection coefficient S11
figure figure
uf_inc = 0.5*(U.FD{1}.val + I.FD{1}.val .* ZL_a);
if_inc = 0.5*(I.FD{1}.val + U.FD{1}.val ./ ZL_a);
uf_ref = U.FD{1}.val - uf_inc;
if_ref = if_inc - I.FD{1}.val;
s11 = uf_ref ./ uf_inc;
plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 ); plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
ylim([-60 0]); ylim([-60 0]);
grid on grid on
@ -176,8 +134,6 @@ title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / GHz' ); xlabel( 'frequency f / GHz' );
ylabel( 'reflection coefficient |S_{11}|' ); ylabel( 'reflection coefficient |S_{11}|' );
P_in = 0.5*uf_inc .* conj( if_inc ); % antenna feed power
drawnow drawnow
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -43,37 +43,12 @@ f_stop = 20e9;
f0 = 15e9; f0 = 15e9;
%waveguide TE-mode definition %waveguide TE-mode definition
m = 1; TE_mode = 'TE10';
n = 0;
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% by David M. Pozar, Microwave Engineering, third edition, page 113
freq = linspace(f_start,f_stop,201);
a = horn.width; a = horn.width;
b = horn.height; b = horn.height;
k = 2*pi*freq/c0;
kc = sqrt((m*pi/a/unit)^2 + (n*pi/b/unit)^2);
fc = c0*kc/2/pi; %cut-off frequency
beta = sqrt(k.^2 - kc^2); %waveguide phase-constant
ZL_a = k * Z0 ./ beta; %analytic waveguide impedance
% mode profile E- and H-field
x_pos = ['(x-' num2str(a/2) ')'];
y_pos = ['(y-' num2str(b/2) ')'];
func_Ex = [num2str( n/b/unit) '*cos(' num2str(m*pi/a) '*' x_pos ')*sin(' num2str(n*pi/b) '*' y_pos ')'];
func_Ey = [num2str(-m/a/unit) '*sin(' num2str(m*pi/a) '*' x_pos ')*cos(' num2str(n*pi/b) '*' y_pos ')'];
func_Hx = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*' x_pos ')*cos(' num2str(n*pi/b) '*' y_pos ')'];
func_Hy = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*' x_pos ')*sin(' num2str(n*pi/b) '*' y_pos ')'];
disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e9) ' GHz']);
if (f_start<fc)
warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
end
%% setup FDTD parameter & excitation function %% setup FDTD parameter & excitation function
FDTD = InitFDTD( 30000, 1e-4 ); FDTD = InitFDTD('EndCriteria', 1e-4);
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC ); FDTD = SetBoundaryCond( FDTD, BC );
@ -138,25 +113,10 @@ CSX = AddLinPoly( CSX, 'horn', 10, 0, -horn.thickness/2, p, horn.thickness, 'Tra
% horn aperture % horn aperture
A = (a + 2*sin(horn.angle(1))*horn.length)*unit * (b + 2*sin(horn.angle(2))*horn.length)*unit; A = (a + 2*sin(horn.angle(1))*horn.length)*unit * (b + 2*sin(horn.angle(2))*horn.length)*unit;
% %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% xy-mode profile excitation located directly on top of pml (first 8 z-lines)
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
weight{1} = func_Ex;
weight{2} = func_Ey;
weight{3} = 0;
CSX = SetExcitationWeight(CSX,'excite',weight);
start=[-a/2 -b/2 mesh.z(8) ]; start=[-a/2 -b/2 mesh.z(8) ];
stop =[ a/2 b/2 mesh.z(8) ]; stop =[ a/2 b/2 mesh.z(1)+horn.feed_length/2 ];
CSX = AddBox(CSX,'excite',0 ,start,stop); [CSX, port] = AddRectWaveGuidePort( CSX, 0, 1, start, stop, 2, a*unit, b*unit, TE_mode, 1);
%% voltage and current definitions using the mode matching probes %%%%%%%%%
%port 1
start(3) = mesh.z(1)+horn.feed_length/2;
stop(3) = start(3);
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%% nf2ff calc %% nf2ff calc
start = [mesh.x(9) mesh.y(9) mesh.z(9)]; start = [mesh.x(9) mesh.y(9) mesh.z(9)];
@ -180,16 +140,14 @@ CSXGeomPlot([Sim_Path '/' Sim_CSX]);
RunOpenEMS(Sim_Path, Sim_CSX); RunOpenEMS(Sim_Path, Sim_CSX);
%% postprocessing & do the plots %% postprocessing & do the plots
U = ReadUI( 'ut1', Sim_Path, freq ); % time domain/freq domain voltage freq = linspace(f_start,f_stop,201);
I = ReadUI( 'it1', Sim_Path, freq ); % time domain/freq domain current (half time step is corrected)
port = calcPort(port, Sim_Path, freq);
Zin = port.uf.tot ./ port.if.tot;
s11 = port.uf.ref ./ port.uf.inc;
P_in = 0.5 * port.uf.inc .* conj( port.if.inc ); % antenna feed power
% plot reflection coefficient S11
figure
uf_inc = 0.5*(U.FD{1}.val + I.FD{1}.val .* ZL_a);
if_inc = 0.5*(I.FD{1}.val + U.FD{1}.val ./ ZL_a);
uf_ref = U.FD{1}.val - uf_inc;
if_ref = if_inc - I.FD{1}.val;
s11 = uf_ref ./ uf_inc;
plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 ); plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
ylim([-60 0]); ylim([-60 0]);
grid on grid on
@ -197,8 +155,6 @@ title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / GHz' ); xlabel( 'frequency f / GHz' );
ylabel( 'reflection coefficient |S_{11}|' ); ylabel( 'reflection coefficient |S_{11}|' );
P_in = 0.5*uf_inc .* conj( if_inc ); % antenna feed power
drawnow drawnow
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View File

@ -6,9 +6,9 @@
% %
% Tested with % Tested with
% - Matlab 2011a / Octave 3.4.3 % - Matlab 2011a / Octave 3.4.3
% - openEMS v0.0.26 % - openEMS v0.0.31
% %
% (C) 2010-2012 Thorsten Liebig <thorsten.liebig@gmx.de> % (C) 2010-2013 Thorsten Liebig <thorsten.liebig@gmx.de>
close all close all
clear clear
@ -17,7 +17,6 @@ clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
physical_constants; physical_constants;
unit = 1e-3; %drawing unit in mm unit = 1e-3; %drawing unit in mm
numTS = 50000; %max. number of timesteps
% waveguide dimensions % waveguide dimensions
length = 5000; length = 5000;
@ -29,35 +28,12 @@ f_start = 300e6;
f_stop = 500e6; f_stop = 500e6;
%waveguide TE-mode definition %waveguide TE-mode definition
m = 1; TE_mode = 'TE11';
n = 1;
mesh_res = [10 10 10]; %targeted mesh resolution mesh_res = [10 10 10]; %targeted mesh resolution
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% by David M. Pozar, Microwave Engineering, third edition, page 113
freq = linspace(f_start,f_stop,201);
k = 2*pi*freq/c0;
kc = sqrt((m*pi/a/unit)^2 + (n*pi/b/unit)^2);
fc = c0*kc/2/pi; %cut-off frequency
beta = sqrt(k.^2 - kc^2); %waveguide phase-constant
ZL_a = k * Z0 ./ beta; %analytic waveguide impedance
% mode profile E- and H-field
func_Ex = [num2str( n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
func_Ey = [num2str(-m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
func_Hx = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
func_Hy = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e6) ' MHz']);
if (f_start<fc)
warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
end
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(numTS,1e-5); FDTD = InitFDTD();
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
% boundary conditions % boundary conditions
@ -71,35 +47,14 @@ mesh.y = SmoothMeshLines([0 b], mesh_res(2));
mesh.z = SmoothMeshLines([0 length], mesh_res(3)); mesh.z = SmoothMeshLines([0 length], mesh_res(3));
CSX = DefineRectGrid(CSX, unit,mesh); CSX = DefineRectGrid(CSX, unit,mesh);
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% apply the waveguide port %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% xy-mode profile excitation located directly on top of pml (first 8 z-lines) start=[mesh.x(1) mesh.y(1) mesh.z(8)];
CSX = AddExcitation(CSX,'excite',0,[1 1 0]); stop =[mesh.x(end) mesh.y(end) mesh.z(15)];
weight{1} = func_Ex; [CSX, port{1}] = AddRectWaveGuidePort( CSX, 0, 1, start, stop, 2, a*unit, b*unit, TE_mode, 1);
weight{2} = func_Ey;
weight{3} = 0;
CSX = SetExcitationWeight(CSX,'excite',weight);
start=[mesh.x(1) mesh.y(1) mesh.z(8) ];
stop =[mesh.x(end) mesh.y(end) mesh.z(8) ];
CSX = AddBox(CSX,'excite',0 ,start,stop);
%% voltage and current definitions using the mode matching probes %%%%%%%%% start=[mesh.x(1) mesh.y(1) mesh.z(end-13)];
%port 1 stop =[mesh.x(end) mesh.y(end) mesh.z(end-14)];
start = [mesh.x(1) mesh.y(1) mesh.z(15)]; [CSX, port{2}] = AddRectWaveGuidePort( CSX, 0, 2, start, stop, 2, a*unit, b*unit, TE_mode);
stop = [mesh.x(end) mesh.y(end) mesh.z(15)];
CSX = AddProbe(CSX, 'ut1', 10, 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
CSX = AddProbe(CSX,'it1', 11, 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%port 2
start = [mesh.x(1) mesh.y(1) mesh.z(end-14)];
stop = [mesh.x(end) mesh.y(end) mesh.z(end-14)];
CSX = AddProbe(CSX, 'ut2', 10, 'ModeFunction',{func_Ex,func_Ey,0});
CSX = AddBox(CSX, 'ut2', 0 ,start,stop);
CSX = AddProbe(CSX,'it2', 11, 'ModeFunction',{func_Hx,func_Hy,0});
CSX = AddBox(CSX,'it2', 0 ,start,stop);
port_dist = mesh.z(end-14) - mesh.z(15);
%% define dump box... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% define dump box... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,4'); CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,4');
@ -108,7 +63,7 @@ stop = [mesh.x(end) mesh.y(end) mesh.z(end)];
CSX = AddBox(CSX,'Et',0 , start,stop); CSX = AddBox(CSX,'Et',0 , start,stop);
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Sim_Path = 'tmp'; Sim_Path = 'tmp_mod';
Sim_CSX = 'rect_wg.xml'; Sim_CSX = 'rect_wg.xml';
[status, message, messageid] = rmdir(Sim_Path,'s'); [status, message, messageid] = rmdir(Sim_Path,'s');
@ -119,29 +74,16 @@ WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
RunOpenEMS(Sim_Path, Sim_CSX) RunOpenEMS(Sim_Path, Sim_CSX)
%% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq); freq = linspace(f_start,f_stop,201);
I = ReadUI({'it1','it2'},[Sim_Path '/'],freq); port = calcPort( port, Sim_Path, freq);
Exc = ReadUI('et',Sim_Path,freq);
uf1 = U.FD{1}.val./Exc.FD{1}.val; s11 = port{1}.uf.ref./ port{1}.uf.inc;
uf2 = U.FD{2}.val./Exc.FD{1}.val; s21 = port{2}.uf.ref./ port{1}.uf.inc;
if1 = I.FD{1}.val./Exc.FD{1}.val; ZL = port{1}.uf.tot./port{1}.if.tot;
if2 = I.FD{2}.val./Exc.FD{1}.val; ZL_a = port{1}.ZL; % analytic waveguide impedance
uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a );
if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a );
uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a );
if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a );
uf1_ref = uf1 - uf1_inc;
if1_ref = if1_inc - if1;
uf2_ref = uf2 - uf2_inc;
if2_ref = if2_inc - if2;
%% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure figure
s11 = uf1_ref./uf1_inc;
s21 = uf2_inc./uf1_inc;
plot(freq*1e-6,20*log10(abs(s11)),'k-','Linewidth',2); plot(freq*1e-6,20*log10(abs(s11)),'k-','Linewidth',2);
xlim([freq(1) freq(end)]*1e-6); xlim([freq(1) freq(end)]*1e-6);
grid on; grid on;
@ -154,7 +96,6 @@ xlabel('frequency (MHz) \rightarrow','FontSize',12);
%% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%% %% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%%
figure figure
ZL = uf1./if1;
plot(freq*1e-6,real(ZL),'Linewidth',2); plot(freq*1e-6,real(ZL),'Linewidth',2);
hold on; hold on;
grid on; grid on;