Merge remote branch 'seb/master'

pull/1/head
Thorsten Liebig 2010-10-20 10:48:18 +02:00
commit 1586c76af6
17 changed files with 850 additions and 203 deletions

View File

@ -393,18 +393,54 @@ void Operator::DumpPEC2File( string filename )
double scaling = 1;
#endif
for (pos[0]=0; pos[0]<numLines[0]; pos[0]++) {
for (pos[1]=0; pos[1]<numLines[1]; pos[1]++) {
for (pos[2]=0; pos[2]<numLines[2]; pos[2]++) {
for (pos[0]=0; pos[0]<numLines[0]-1; pos[0]++) {
for (pos[1]=0; pos[1]<numLines[1]-1; pos[1]++) {
for (pos[2]=0; pos[2]<numLines[2]-1; pos[2]++) {
if ((pos[1] != 0) && (pos[2] != 0))
{
// PEC surrounds the computational area; do not output this
if ((GetVV(0,pos[0],pos[1],pos[2]) == 0) && (GetVI(0,pos[0],pos[1],pos[2]) == 0))
pec[0][pos[0]][pos[1]][pos[2]] = GetEdgeLength( 0, pos ) * scaling; // PEC-x found
}
if ((pos[0] != 0) && (pos[2] != 0))
{
// PEC surrounds the computational area; do not output this
if ((GetVV(1,pos[0],pos[1],pos[2]) == 0) && (GetVI(1,pos[0],pos[1],pos[2]) == 0))
pec[1][pos[0]][pos[1]][pos[2]] = GetEdgeLength( 1, pos ) * scaling; // PEC-y found
}
if ((pos[0] != 0) && (pos[1] != 0))
{
// PEC surrounds the computational area; do not output this
if ((GetVV(2,pos[0],pos[1],pos[2]) == 0) && (GetVI(2,pos[0],pos[1],pos[2]) == 0))
pec[2][pos[0]][pos[1]][pos[2]] = GetEdgeLength( 2, pos ) * scaling; // PEC-z found
}
}
}
}
// evaluate boundary conditions
for (int n=0; n<3; n++)
{
int nP = (n+1)%3;
int nPP = (n+2)%3;
for (pos[nP]=0; pos[nP]<numLines[nP]; pos[nP]++)
{
for (pos[nPP]=0; pos[nPP]<numLines[nPP]; pos[nPP]++)
{
pos[n] = 0;
if ((pos[nP] != numLines[nP]-1) && (m_BC[2*n] == 0))
pec[nP ][pos[0]][pos[1]][pos[2]] = GetEdgeLength( nP, pos ) * scaling;
if ((pos[nPP] != numLines[nPP]-1) && (m_BC[2*n] == 0))
pec[nPP][pos[0]][pos[1]][pos[2]] = GetEdgeLength( nPP, pos ) * scaling;
pos[n] = numLines[n]-1;
if ((pos[nP] != numLines[nP]-1) && (m_BC[2*n+1] == 0))
pec[nP ][pos[0]][pos[1]][pos[2]] = GetEdgeLength( nP, pos ) * scaling;
if ((pos[nPP] != numLines[nPP]-1) && (m_BC[2*n+1] == 0))
pec[nPP][pos[0]][pos[1]][pos[2]] = GetEdgeLength( nPP, pos ) * scaling;
}
}
}
#ifdef OUTPUT_IN_DRAWINGUNITS
scaling = 1;
@ -521,23 +557,23 @@ void Operator::Calc_ECOperatorPos(int n, unsigned int* pos)
unsigned int i = MainOp->SetPos(pos[0],pos[1],pos[2]);
if (EC_C[n][i]>0)
{
GetVV(n,pos[0],pos[1],pos[2]) = (1-dT*EC_G[n][i]/2/EC_C[n][i])/(1+dT*EC_G[n][i]/2/EC_C[n][i]);
GetVI(n,pos[0],pos[1],pos[2]) = (dT/EC_C[n][i])/(1+dT*EC_G[n][i]/2/EC_C[n][i]);
SetVV(n,pos[0],pos[1],pos[2], (1-dT*EC_G[n][i]/2/EC_C[n][i])/(1+dT*EC_G[n][i]/2/EC_C[n][i]) );
SetVI(n,pos[0],pos[1],pos[2], (dT/EC_C[n][i])/(1+dT*EC_G[n][i]/2/EC_C[n][i]) );
}
else
{
GetVV(n,pos[0],pos[1],pos[2]) = 0;
GetVI(n,pos[0],pos[1],pos[2]) = 0;
SetVV(n,pos[0],pos[1],pos[2], 0 );
SetVI(n,pos[0],pos[1],pos[2], 0 );
}
if (EC_L[n][i]>0)
{
GetII(n,pos[0],pos[1],pos[2]) = (1-dT*EC_R[n][i]/2/EC_L[n][i])/(1+dT*EC_R[n][i]/2/EC_L[n][i]);
GetIV(n,pos[0],pos[1],pos[2]) = (dT/EC_L[n][i])/(1+dT*EC_R[n][i]/2/EC_L[n][i]);
SetII(n,pos[0],pos[1],pos[2], (1-dT*EC_R[n][i]/2/EC_L[n][i])/(1+dT*EC_R[n][i]/2/EC_L[n][i]) );
SetIV(n,pos[0],pos[1],pos[2], (dT/EC_L[n][i])/(1+dT*EC_R[n][i]/2/EC_L[n][i]) );
}
else
{
GetII(n,pos[0],pos[1],pos[2]) = 0;
GetIV(n,pos[0],pos[1],pos[2]) = 0;
SetII(n,pos[0],pos[1],pos[2], 0 );
SetIV(n,pos[0],pos[1],pos[2], 0 );
}
}
@ -632,19 +668,19 @@ void Operator::ApplyElectricBC(bool* dirs)
for (pos[nPP]=0;pos[nPP]<numLines[nPP];++pos[nPP])
{
pos[n]=0;
GetVV(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetVI(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetVV(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetVI(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
SetVV(nP, pos[0],pos[1],pos[2], GetVV(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetVI(nP, pos[0],pos[1],pos[2], GetVI(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetVV(nPP,pos[0],pos[1],pos[2], GetVV(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetVI(nPP,pos[0],pos[1],pos[2], GetVI(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
pos[n]=numLines[n]-1;
GetVV(n,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1]; // these are outside the FDTD-domain as defined by the main disc
GetVI(n,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1]; // these are outside the FDTD-domain as defined by the main disc
SetVV(n, pos[0],pos[1],pos[2], GetVV(n, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] ); // these are outside the FDTD-domain as defined by the main disc
SetVI(n, pos[0],pos[1],pos[2], GetVI(n, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] ); // these are outside the FDTD-domain as defined by the main disc
GetVV(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
GetVI(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
GetVV(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
GetVI(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
SetVV(nP, pos[0],pos[1],pos[2], GetVV(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
SetVI(nP, pos[0],pos[1],pos[2], GetVI(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
SetVV(nPP,pos[0],pos[1],pos[2], GetVV(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
SetVI(nPP,pos[0],pos[1],pos[2], GetVI(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
}
}
}
@ -663,27 +699,27 @@ void Operator::ApplyMagneticBC(bool* dirs)
for (pos[nPP]=0;pos[nPP]<numLines[nPP];++pos[nPP])
{
pos[n]=0;
GetII(n,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetIV(n,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetII(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetIV(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetII(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
GetIV(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n];
SetII(n, pos[0],pos[1],pos[2], GetII(n, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetIV(n, pos[0],pos[1],pos[2], GetIV(n, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetII(nP, pos[0],pos[1],pos[2], GetII(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetIV(nP, pos[0],pos[1],pos[2], GetIV(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetII(nPP,pos[0],pos[1],pos[2], GetII(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
SetIV(nPP,pos[0],pos[1],pos[2], GetIV(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n] );
pos[n]=numLines[n]-2;
GetII(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
GetIV(nP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
GetII(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
GetIV(nPP,pos[0],pos[1],pos[2]) *= (FDTD_FLOAT)!dirs[2*n+1];
SetII(nP, pos[0],pos[1],pos[2], GetII(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
SetIV(nP, pos[0],pos[1],pos[2], GetIV(nP, pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
SetII(nPP,pos[0],pos[1],pos[2], GetII(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
SetIV(nPP,pos[0],pos[1],pos[2], GetIV(nPP,pos[0],pos[1],pos[2]) * (FDTD_FLOAT)!dirs[2*n+1] );
//the last current lines are outside the FDTD domain and cannot be iterated by the FDTD engine
// the last current lines are outside the FDTD domain and cannot be iterated by the FDTD engine
pos[n]=numLines[n]-1;
GetII(n,pos[0],pos[1],pos[2]) = 0;
GetIV(n,pos[0],pos[1],pos[2]) = 0;
GetII(nP,pos[0],pos[1],pos[2]) = 0;
GetIV(nP,pos[0],pos[1],pos[2]) = 0;
GetII(nPP,pos[0],pos[1],pos[2]) = 0;
GetIV(nPP,pos[0],pos[1],pos[2]) = 0;
SetII(n, pos[0],pos[1],pos[2], 0 );
SetIV(n, pos[0],pos[1],pos[2], 0 );
SetII(nP, pos[0],pos[1],pos[2], 0 );
SetIV(nP, pos[0],pos[1],pos[2], 0 );
SetII(nPP,pos[0],pos[1],pos[2], 0 );
SetIV(nPP,pos[0],pos[1],pos[2], 0 );
}
}
}
@ -1161,8 +1197,8 @@ bool Operator::CalcFieldExcitation()
}
if (elec->GetExcitType()==1) //hard excite
{
GetVV(n,pos[0],pos[1],pos[2]) = 0;
GetVI(n,pos[0],pos[1],pos[2]) = 0;
SetVV(n,pos[0],pos[1],pos[2], 0 );
SetVI(n,pos[0],pos[1],pos[2], 0 );
}
}
}
@ -1203,8 +1239,8 @@ bool Operator::CalcFieldExcitation()
}
if (elec->GetExcitType()==3) //hard excite
{
GetII(n,pos[0],pos[1],pos[2]) = 0;
GetIV(n,pos[0],pos[1],pos[2]) = 0;
SetII(n,pos[0],pos[1],pos[2], 0 );
SetIV(n,pos[0],pos[1],pos[2], 0 );
}
}
}
@ -1266,8 +1302,8 @@ bool Operator::CalcFieldExcitation()
}
if (elec->GetExcitType()==1) //hard excite
{
GetVV(n,pos[0],pos[1],pos[2]) = 0;
GetVI(n,pos[0],pos[1],pos[2]) = 0;
SetVV(n,pos[0],pos[1],pos[2], 0 );
SetVI(n,pos[0],pos[1],pos[2], 0 );
}
}
}
@ -1321,8 +1357,8 @@ void Operator::CalcPEC_Range(unsigned int startX, unsigned int stopX, unsigned i
{
if (prop->GetType()==CSProperties::METAL) //set to PEC
{
GetVV(n,pos[0],pos[1],pos[2]) = 0;
GetVI(n,pos[0],pos[1],pos[2]) = 0;
SetVV(n,pos[0],pos[1],pos[2], 0 );
SetVI(n,pos[0],pos[1],pos[2], 0 );
++counter[n];
// cerr << "CartOperator::CalcPEC: PEC found at " << pos[0] << " ; " << pos[1] << " ; " << pos[2] << endl;
}
@ -1359,8 +1395,8 @@ void Operator::CalcPEC_Curves()
for (size_t t=0;t<path.dir.size();++t)
{
// cerr << path.dir.at(t) << " " << path.posPath[0].at(t) << " " << path.posPath[1].at(t) << " " << path.posPath[2].at(t) << endl;
GetVV(path.dir.at(t),path.posPath[0].at(t),path.posPath[1].at(t),path.posPath[2].at(t)) = 0;
GetVI(path.dir.at(t),path.posPath[0].at(t),path.posPath[1].at(t),path.posPath[2].at(t)) = 0;
SetVV(path.dir.at(t),path.posPath[0].at(t),path.posPath[1].at(t),path.posPath[2].at(t), 0 );
SetVI(path.dir.at(t),path.posPath[0].at(t),path.posPath[1].at(t),path.posPath[2].at(t), 0 );
++m_Nr_PEC[path.dir.at(t)];
}
// cerr << "found path size: " << path.dir.size() << endl;

View File

@ -53,11 +53,17 @@ public:
virtual bool SetupExcitation(TiXmlElement* Excite, unsigned int maxTS) {return Exc->setupExcitation(Excite,maxTS);};
inline virtual FDTD_FLOAT& GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vv[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vi[n][x][y][z]; }
// the next four functions need to be reimplemented in a derived class
inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vv[n][x][y][z]; }
inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vi[n][x][y][z]; }
inline virtual FDTD_FLOAT GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return ii[n][x][y][z]; }
inline virtual FDTD_FLOAT GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return iv[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return ii[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return iv[n][x][y][z]; }
// the next four functions need to be reimplemented in a derived class
inline virtual void SetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { vv[n][x][y][z] = value; }
inline virtual void SetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { vi[n][x][y][z] = value; }
inline virtual void SetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { ii[n][x][y][z] = value; }
inline virtual void SetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { iv[n][x][y][z] = value; }
virtual void SetBoundaryCondition(int* BCs) {for (int n=0;n<6;++n) m_BC[n]=BCs[n];}
virtual void ApplyElectricBC(bool* dirs); //applied by default to all boundaries

View File

@ -207,8 +207,8 @@ void Operator_Cylinder::ApplyElectricBC(bool* dirs)
{
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
GetVV(1,pos[0],pos[1],pos[2]) = 0;
GetVI(1,pos[0],pos[1],pos[2]) = 0;
SetVV(1,pos[0],pos[1],pos[2], 0 );
SetVI(1,pos[0],pos[1],pos[2], 0 );
}
}
}

View File

@ -63,7 +63,7 @@ bool Operator_Ext_Cylinder::BuildExtension()
C+=inEC[0]*0.5;
G+=inEC[1]*0.5;
}
m_Op->GetVV(2,0,0,pos[2]) = 1;
m_Op->SetVV(2,0,0,pos[2], 1);
vv_R0[pos[2]] = (1-dT*G/2/C)/(1+dT*G/2/C);
vi_R0[pos[2]] = (dT/C)/(1+dT*G/2/C);
}

View File

@ -378,8 +378,8 @@ bool Operator_Ext_UPML::BuildExtension()
//modify the original operator to perform eq. (7.85) by the main engine (EC-FDTD: equation is multiplied by delta_n)
//the engine extension will replace the original voltages with the "voltage flux" (volt*eps0) prior to the voltage updates
//after the updates are done the extension will calculate the new voltages (see below) and place them back into the main field domain
m_Op->GetVV(n,pos[0],pos[1],pos[2]) = (2*__EPS0__ - kappa_v[nP]*dT) / (2*__EPS0__ + kappa_v[nP]*dT);
m_Op->GetVI(n,pos[0],pos[1],pos[2]) = (2*__EPS0__*dT) / (2*__EPS0__ + kappa_v[nP]*dT) * m_Op->GetEdgeLength(n,pos) / m_Op->GetEdgeArea(n,pos);
m_Op->SetVV(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_v[nP]*dT) / (2*__EPS0__ + kappa_v[nP]*dT) );
m_Op->SetVI(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_v[nP]*dT) * m_Op->GetEdgeLength(n,pos) / m_Op->GetEdgeArea(n,pos) );
//operators needed by eq. (7.88) to calculate new voltages from old voltages and old and new "voltage fluxes"
@ -392,7 +392,7 @@ bool Operator_Ext_UPML::BuildExtension()
{
//disable upml
GetVV(n,loc_pos) = m_Op->GetVV(n,pos[0],pos[1],pos[2]);
m_Op->GetVV(n,pos[0],pos[1],pos[2]) = 0;
m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
GetVVFO(n,loc_pos) = 0;
GetVVFN(n,loc_pos) = 1;
}
@ -405,8 +405,8 @@ bool Operator_Ext_UPML::BuildExtension()
//modify the original operator to perform eq. (7.89) by the main engine (EC-FDTD: equation is multiplied by delta_n)
//the engine extension will replace the original currents with the "current flux" (curr*mu0) prior to the current updates
//after the updates are done the extension will calculate the new currents (see below) and place them back into the main field domain
m_Op->GetII(n,pos[0],pos[1],pos[2]) = (2*__EPS0__ - kappa_i[nP]*dT) / (2*__EPS0__ + kappa_i[nP]*dT);
m_Op->GetIV(n,pos[0],pos[1],pos[2]) = (2*__EPS0__*dT) / (2*__EPS0__ + kappa_i[nP]*dT) * m_Op->GetEdgeLength(n,pos,true) / m_Op->GetEdgeArea(n,pos,true);
m_Op->SetII(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_i[nP]*dT) / (2*__EPS0__ + kappa_i[nP]*dT) );
m_Op->SetIV(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_i[nP]*dT) * m_Op->GetEdgeLength(n,pos,true) / m_Op->GetEdgeArea(n,pos,true) );
//operators needed by eq. (7.90) to calculate new currents from old currents and old and new "current fluxes"
GetII(n,loc_pos) = (2*__EPS0__ - kappa_i[nPP]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT);
@ -418,7 +418,7 @@ bool Operator_Ext_UPML::BuildExtension()
{
//disable upml
GetII(n,loc_pos) = m_Op->GetII(n,pos[0],pos[1],pos[2]);
m_Op->GetII(n,pos[0],pos[1],pos[2]) = 0;
m_Op->SetII(n,pos[0],pos[1],pos[2], 0 );
GetIIFO(n,loc_pos) = 0;
GetIIFN(n,loc_pos) = 1;
}

View File

@ -32,11 +32,15 @@ public:
virtual void DumpOperator2File(string filename);
inline virtual FDTD_FLOAT& GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_vv[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT& GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_vi[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_vv[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_vi[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_ii[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_iv[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT& GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_ii[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT& GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_iv[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual void SetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { f4_vv[n][x][y][z%numVectors].f[z/numVectors] = value; }
inline virtual void SetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { f4_vi[n][x][y][z%numVectors].f[z/numVectors] = value; }
inline virtual void SetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { f4_ii[n][x][y][z%numVectors].f[z/numVectors] = value; }
inline virtual void SetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { f4_iv[n][x][y][z%numVectors].f[z/numVectors] = value; }
protected:
//! use New() for creating a new Operator

View File

@ -49,11 +49,15 @@ public:
virtual int CalcECOperator();
inline virtual FDTD_FLOAT& GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) { if (m_Use_Compression) return f4_vv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetVV(n,x,y,z);}
inline virtual FDTD_FLOAT& GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) { if (m_Use_Compression) return f4_vi_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetVI(n,x,y,z);}
inline virtual FDTD_FLOAT GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { if (m_Use_Compression) return f4_vv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetVV(n,x,y,z);}
inline virtual FDTD_FLOAT GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { if (m_Use_Compression) return f4_vi_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetVI(n,x,y,z);}
inline virtual FDTD_FLOAT GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { if (m_Use_Compression) return f4_ii_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetII(n,x,y,z);}
inline virtual FDTD_FLOAT GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { if (m_Use_Compression) return f4_iv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetIV(n,x,y,z);}
inline virtual FDTD_FLOAT& GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) { if (m_Use_Compression) return f4_ii_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetII(n,x,y,z);}
inline virtual FDTD_FLOAT& GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) { if (m_Use_Compression) return f4_iv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors]; else return Operator_sse::GetIV(n,x,y,z);}
inline virtual void SetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { if (m_Use_Compression) f4_vv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors] = value; else Operator_sse::SetVV(n,x,y,z,value);}
inline virtual void SetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { if (m_Use_Compression) f4_vi_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors] = value; else Operator_sse::SetVI(n,x,y,z,value);}
inline virtual void SetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { if (m_Use_Compression) f4_ii_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors] = value; else Operator_sse::SetII(n,x,y,z,value);}
inline virtual void SetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value ) { if (m_Use_Compression) f4_iv_Compressed[n][m_Op_index[x][y][z%numVectors]].f[z/numVectors] = value; else Operator_sse::SetIV(n,x,y,z,value);}
virtual void ShowStat() const;

View File

@ -111,7 +111,7 @@ int ProcessEField::Process()
field *= m_weight;
for (size_t n=0;n<m_FD_Samples.size();++n)
{
FD_Values[pol].at(n) += (double)field * std::exp( -2.0 * II * M_PI * m_FD_Samples.at(n) * T );
FD_Values[pol].at(n) += (double)field * std::exp( -2.0 * _I * M_PI * m_FD_Samples.at(n) * T );
}
++m_FD_SampleCount;
}

View File

@ -95,7 +95,7 @@ int ProcessHField::Process()
field *= m_weight;
for (size_t n=0;n<m_FD_Samples.size();++n)
{
FD_Values[pol].at(n) += (double)field * std::exp( -2.0 * II * M_PI * m_FD_Samples.at(n) * T );
FD_Values[pol].at(n) += (double)field * std::exp( -2.0 * _I * M_PI * m_FD_Samples.at(n) * T );
}
++m_FD_SampleCount;
}

View File

@ -20,7 +20,7 @@
#include <complex>
typedef std::complex<double> double_complex;
#define II double_complex(0.0,1.0)
#define _I double_complex(0.0,1.0)
#include <iostream>
#include <fstream>

View File

@ -77,7 +77,7 @@ int ProcessIntegral::Process()
double T = time;
for (size_t n=0;n<m_FD_Samples.size();++n)
{
FD_Values.at(n) += (double)integral * std::exp( -2.0 * II * M_PI * m_FD_Samples.at(n) * T );
FD_Values.at(n) += (double)integral * std::exp( -2.0 * _I * M_PI * m_FD_Samples.at(n) * T );
}
++m_FD_SampleCount;
if (m_Flush)

View File

@ -6,9 +6,9 @@ function pass = cavity
CLEANUP = 1; % if enabled and result is PASS, remove simulation folder
STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error
% engines = {'' '--engine=sse' '--engine=sse-compressed' '--engine=multithreaded' '--engine=sse-compressed-linear'};
engines = {'--engine=sse-compressed' '--engine=sse-compressed-linear'};
engines = {'' '--engine=sse-compressed'};
engines = {'' '--engine=sse' '--engine=sse-compressed' '--engine=multithreaded'};
% engines = {'--engine=sse-compressed' '--engine=sse-compressed-linear'};
% engines = {'' '--engine=sse-compressed'};
isOctave = exist('OCTAVE_VERSION','builtin') ~= 0;
if isOctave
@ -66,7 +66,7 @@ f_stop = 10e9;
% setup FDTD parameter
FDTD = InitFDTD( 1000, 0 );
FDTD = SetGaussExcite(FDTD,(f_stop-f_start)/2,(f_stop-f_start)/2);
BC = {'PEC' 'PEC' 'PEC' 'PEC' 'PEC' 'PEC'}; % PEC boundaries
BC = {'MUR' 'PML_8' 'PEC' 'PEC' 'PEC' 'PEC'}; % PEC boundaries
FDTD = SetBoundaryCond(FDTD,BC);
% setup CSXCAD geometry

View File

@ -1,5 +1,5 @@
function [CSX,port] = AddMSLPort( CSX, portnr, materialname, start, stop, dir, evec, refplaneshift, excitename )
% [CSX,port] = AddMSLPort( CSX, portnr, materialname, start, stop, dir, evec, excitename )
% [CSX,port] = AddMSLPort( CSX, portnr, materialname, start, stop, dir, evec, refplaneshift, excitename )
%
% CSX: CSX-object created by InitCSX()
% portnr: (integer) number of the port
@ -152,6 +152,7 @@ port.direction = direction;
% port.idx_height = idx_height;
port.excite = 0;
port.refplaneshift = 0;
port.measplanepos = abs(v2_start(idx_prop) - start(idx_prop));
if (nargin >= 8) && (~isempty(refplaneshift))
% refplaneshift counts from start of port

View File

@ -12,7 +12,7 @@ function [S11,beta,ZL] = calcMSLPort( portstruct, SimDir, f, ref_shift )
% ref_shift: (optional) reference plane shift measured from start of port (in drawing units)
%
% output:
% S11: reflection coefficient
% S11: reflection coefficient (normalized to ZL)
% beta: propagation constant
% ZL: characteristic line impedance
%
@ -21,7 +21,7 @@ function [S11,beta,ZL] = calcMSLPort( portstruct, SimDir, f, ref_shift )
%
% openEMS matlab interface
% -----------------------
% Sebastian Held <sebastian.held@uni-due.de>
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
% See also AddMSLPort
% check
@ -90,15 +90,10 @@ S11 = (-1i * dEt + Et .* temp) ./ (Et .* temp + 1i * dEt); % solution 1
% determine ZL
ZL = sqrt(Et .* dEt ./ (Ht .* dHt));
% reference plane shift
% reference plane shift (lossless)
if (nargin > 3)
% renormalize the shift to the measurement plane
if (portstruct.stop(portstruct.idx_prop) - portstruct.start(portstruct.idx_prop) > 0)
dir = +1;
else
dir = -1;
end
ref_shift = ref_shift - dir*(portstruct.v2_start(portstruct.idx_prop) - portstruct.start(portstruct.idx_prop));
ref_shift = ref_shift - portstruct.measplanepos;
ref_shift = ref_shift * portstruct.drawingunit;
S11 = S11 .* exp(2i*real(beta)*ref_shift);
S11_corrected = S11_corrected .* exp(2i*real(beta)*ref_shift);

View File

@ -180,8 +180,6 @@ xlabel( 'frequency f / MHz' );
ylabel( 'characteristic impedance Z / Ohm' );
legend( 'real', 'imag' );
%% visualize electric and magnetic fields
% you will find vtk dump files in the simulation folder (tmp/)
% use paraview to visualize them

View File

@ -1,139 +1,114 @@
%
% microstrip line example
%
% this example shows how to use a MSL port
% EXAMPLE / microstrip / MSL2
%
% This example shows how to use the MSL-port.
% The MSL is excited at the center of the computational volume. The
% boundary at xmin is an absorbing boundary (Mur) and at xmax an electric
% wall. The reflection coefficient at this wall is S11 = -1.
% Direction of propagation is x.
%
% This example demonstrates:
% - simple microstrip geometry (made of PEC)
% - MSL port
% - MSL analysis
%
%
% Tested with
% - Matlab 2009b
% - Octave 3.3.52
% - openEMS v0.0.14
%
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
close all
clear
clc
physical_constants
postprocessing_only = 0;
%% switches
postproc_only = 0;
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
drawingunits = 1e-6; % specify everything in um
physical_constants;
unit = 1e-6; % specify everything in um
MSL_length = 10000;
MSL_width = 1000;
substrate_thickness = 254;
substrate_epr = 3.66;
mesh_res = [200 0 0];
max_timesteps = 20000;
min_decrement = 1e-6;
f_max = 8e9;
% mesh_res = [200 0 0];
%% prepare simulation folder
Sim_Path = 'tmp';
Sim_CSX = 'msl2.xml';
if ~postproc_only
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
end
%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
max_timesteps = 20000;
min_decrement = 1e-6;
f_max = 7e9;
FDTD = InitFDTD( max_timesteps, min_decrement, 'OverSampling', 10 );
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
BC = [2 0 0 0 0 1];
BC = {'MUR' 'PEC' 'PEC' 'PEC' 'PEC' 'PMC'};
FDTD = SetBoundaryCond( FDTD, BC );
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = -MSL_length : mesh_res(1) : MSL_length;
mesh.y = linspace(-MSL_width/2,MSL_width/2,10); % discretize the width of the MSL with 10 cells
temp1 = linspace(-4*MSL_width,mesh.y(1),20);
temp2 = linspace(mesh.y(end),4*MSL_width,20);
mesh.y = [temp1(1:end-1), mesh.y, temp2(2:end)]; % add coarser discretization
mesh.z = linspace(0,substrate_thickness,5); % discretize the substrate with 5 cells
temp1 = linspace(substrate_thickness,2*substrate_thickness,5);
mesh.z = [mesh.z temp1(2:end)]; % add same space above the strip
temp1 = linspace(2*substrate_thickness,5*substrate_thickness,10);
mesh.z = [mesh.z temp1(2:end)]; % coarser discretization
CSX = DefineRectGrid( CSX, drawingunits, mesh );
%% Material definitions
CSX = AddMetal( CSX, 'PEC' );
CSX = AddMaterial( CSX, 'RO4350B' );
resolution = c0/(f_max*sqrt(substrate_epr))/unit /50; % resolution of lambda/50
mesh.x = SmoothMeshLines( [-MSL_length MSL_length], resolution );
mesh.y = SmoothMeshLines( [-4*MSL_width -MSL_width/2 MSL_width/2 4*MSL_width], resolution );
mesh.z = SmoothMeshLines( [linspace(0,substrate_thickness,5) 10*substrate_thickness], resolution );
CSX = DefineRectGrid( CSX, unit, mesh );
%% substrate
CSX = SetMaterialProperty( CSX, 'RO4350B', 'Epsilon', 3.66 );
CSX = AddMaterial( CSX, 'RO4350B' );
CSX = SetMaterialProperty( CSX, 'RO4350B', 'Epsilon', substrate_epr );
start = [mesh.x(1), mesh.y(1), 0];
stop = [mesh.x(end), mesh.y(end), substrate_thickness];
CSX = AddBox( CSX, 'RO4350B', 0, start, stop );
%% MSL port
CSX = AddExcitation( CSX, 'excite', 0, [0 0 1]);
CSX = AddMetal( CSX, 'PEC' );
portstart = [ 0, -MSL_width/2, substrate_thickness];
portstop = [ MSL_length, MSL_width/2, 0];
[CSX,portstruct] = AddMSLPort( CSX, 1, 'PEC', portstart, portstop, [1 0 0], [0 0 1], 'excite' );
[CSX,portstruct] = AddMSLPort( CSX, 1, 'PEC', portstart, portstop, [1 0 0], [0 0 1], [], 'excite' );
%% MSL
start = [-MSL_length, -MSL_width/2, substrate_thickness];
stop = [ 0, MSL_width/2, substrate_thickness];
CSX = AddBox( CSX, 'PEC', 0, start, stop );
CSX = AddBox( CSX, 'PEC', 999, start, stop ); % priority needs to be higher than
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_','DumpType',0,'DumpMode',0);
start = [mesh.x(1) , mesh.y(1), substrate_thickness/2];
%% define dump boxes
start = [mesh.x(1), mesh.y(1), substrate_thickness/2];
stop = [mesh.x(end), mesh.y(end), substrate_thickness/2];
CSX = AddBox(CSX,'Et_',0 , start,stop);
CSX = AddDump( CSX, 'Et_', 'DumpType', 0,'DumpMode', 2 ); % cell interpolated
CSX = AddBox( CSX, 'Et_', 0, start, stop );
CSX = AddDump( CSX, 'Ht_', 'DumpType', 1,'DumpMode', 2 ); % cell interpolated
CSX = AddBox( CSX, 'Ht_', 0, start, stop );
CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',0);
CSX = AddBox(CSX,'Ht_',0,start,stop);
%% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_opts = '';
openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-operator'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --engine=sse-compressed'];
% openEMS_opts = [openEMS_opts ' --engine=multithreaded'];
openEMS_opts = [openEMS_opts ' --engine=fastest'];
Sim_Path = 'tmp';
Sim_CSX = 'MSL2.xml';
if ~postprocessing_only
rmdir(Sim_Path,'s');
end
mkdir(Sim_Path);
%% Write openEMS compatible xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd;
cd(Sim_Path); %cd to working dir
args = [Sim_CSX ' ' openEMS_opts];
if ~postprocessing_only
invoke_openEMS(args);
end
cd(savePath);
%% show the structure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
U = ReadUI({'port_ut1A','port_ut1B','et'},'tmp/');
I = ReadUI({'port_it1A','port_it1B'},'tmp/');
delta_t_2 = I.TD{1}.t(1) - U.TD{1}.t(1); % half time-step (s)
% create finer frequency resolution
f = linspace( 0, f_max, 1601 );
for n=1:numel(U.FD)
U.FD{n}.f = f;
U.FD{n}.val = DFT_time2freq( U.TD{n}.t, U.TD{n}.val, f );
end
for n=1:numel(I.FD)
I.FD{n}.f = f;
I.FD{n}.val = DFT_time2freq( I.TD{n}.t, I.TD{n}.val, f );
I.FD{n}.val = I.FD{n}.val .* exp(-1i*2*pi*I.FD{n}.f*delta_t_2); % compensate half time-step advance of H-field
%% run openEMS
openEMS_opts = '';
openEMS_opts = [openEMS_opts ' --engine=fastest'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --debug-PEC'];
if ~postproc_only
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
end
% interpolate et to the time spacing of the voltage probes
et = interp1( U.TD{3}.t, U.TD{3}.val, U.TD{1}.t );
f = U.FD{1}.f;
%% postprocess
f = linspace( 1e6, f_max, 1601 );
U = ReadUI( {'port_ut1A','port_ut1B','et'}, 'tmp/', f );
I = ReadUI( {'port_it1A','port_it1B'}, 'tmp/', f );
% Z = (U.FD{1}.val+U.FD{2}.val)/2 ./ I.FD{1}.val;
% plot( f*1e-9, [real(Z);imag(Z)],'Linewidth',2);
@ -143,23 +118,30 @@ f = U.FD{1}.f;
% legend( {'real','imaginary'}, 'location', 'northwest' )
% title( 'line impedance (will fail in case of reflections!)' );
% figure
% plotyy(U.TD{1}.t/1e-6,[U.TD{1}.val;U.TD{2}.val],U.TD{1}.t/1e-6,et);
% xlabel('time (us)');
% ylabel('amplitude (V)');
% grid on;
% title( 'Time domain voltage probes and excitation signal' );
%
% figure
% plot(I.TD{1}.t/1e-6,[I.TD{1}.val;I.TD{2}.val]);
% xlabel('time (us)');
% ylabel('amplitude (A)');
% grid on;
% title( 'Time domain current probes' );
figure
ax = plotyy( U.TD{1}.t/1e-6, [U.TD{1}.val;U.TD{2}.val], U.TD{3}.t/1e-6, U.TD{3}.val );
xlabel( 'time (us)' );
ylabel( 'amplitude (V)' );
grid on
title( 'Time domain voltage probes and excitation signal' );
legend( {'ut1A','ut1B','excitation'} );
% now make the y-axis symmetric to y=0 (align zeros of y1 and y2)
y1 = ylim(ax(1));
y2 = ylim(ax(2));
ylim( ax(1), [-max(abs(y1)) max(abs(y1))] );
ylim( ax(2), [-max(abs(y2)) max(abs(y2))] );
figure
plot( I.TD{1}.t/1e-6, [I.TD{1}.val;I.TD{2}.val] );
xlabel( 'time (us)' );
ylabel( 'amplitude (A)' );
grid on
title( 'Time domain current probes' );
legend( {'it1A','it1B'} );
%% port analysis
% port analysis
[S11,beta,ZL] = calcMSLPort( portstruct, Sim_Path, f );
% attention! the reflection coefficient S11 is normalized to ZL!
figure
plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', [.7 .7 .7] );
@ -180,8 +162,9 @@ title( 'Reflection coefficient S11 at the measurement plane' );
figure
plotyy( f/1e9, 20*log10(abs(S11)), f/1e9, angle(S11)/pi*180 );
legend( {'abs(S11)', 'angle(S11)'} );
legend( {'|S11|', 'angle(S11)'} );
xlabel( 'frequency (GHz)' );
ylabel( '|S11| (dB)' );
title( 'Reflection coefficient S11 at the measurement plane' );
figure
@ -198,7 +181,6 @@ ylabel('impedance (Ohm)');
grid on;
legend( {'real','imaginary'}, 'location', 'northeast' )
title( 'Characteristic line impedance ZL' );
ylim( [-2*mean(real(ZL)) 2*mean(real(ZL))] );
% reference plane shift (to the end of the port)
ref_shift = abs(portstop(1) - portstart(1));
@ -219,3 +201,7 @@ plot( S11, 'k' );
plot( real(S11(1)), imag(S11(1)), '*r' );
axis equal
title( 'Reflection coefficient S11 at the reference plane (at the electric wall)' );
%% visualize electric and magnetic fields
% you will find vtk dump files in the simulation folder (tmp/)
% use paraview to visualize them

617
paraview/view_debug-PEC.cpd Normal file
View File

@ -0,0 +1,617 @@
<CustomFilterDefinitions>
<CustomProxyDefinition name="view_debug-PEC" group="filters">
<CompoundSourceProxy id="30284" servers="1">
<Proxy group="filters" type="Calculator" id="27263" servers="1" compound_name="Calculator1">
<Property name="AttributeMode" id="27263.AttributeMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27263.AttributeMode.enum">
<Entry value="1" text="point_data"/>
<Entry value="2" text="cell_data"/>
<Entry value="5" text="field_data"/>
</Domain>
</Property>
<Property name="CoordinateResults" id="27263.CoordinateResults" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27263.CoordinateResults.bool"/>
</Property>
<Property name="Function" id="27263.Function" number_of_elements="1">
<Element index="0" value="PEC_X+PEC_Y+PEC_Z"/>
</Property>
<Property name="Input" id="27263.Input" number_of_elements="1">
<Domain name="groups" id="27263.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_type" id="27263.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="ReplaceInvalidValues" id="27263.ReplaceInvalidValues" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27263.ReplaceInvalidValues.bool"/>
</Property>
<Property name="ReplacementValue" id="27263.ReplacementValue" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27263.ReplacementValue.range"/>
</Property>
<Property name="ResultArrayName" id="27263.ResultArrayName" number_of_elements="1">
<Element index="0" value="Result"/>
</Property>
</Proxy>
<Proxy group="filters" type="Calculator" id="27278" servers="1" compound_name="Calculator2">
<Property name="AttributeMode" id="27278.AttributeMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27278.AttributeMode.enum">
<Entry value="1" text="point_data"/>
<Entry value="2" text="cell_data"/>
<Entry value="5" text="field_data"/>
</Domain>
</Property>
<Property name="CoordinateResults" id="27278.CoordinateResults" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27278.CoordinateResults.bool"/>
</Property>
<Property name="Function" id="27278.Function" number_of_elements="1">
<Element index="0" value="PEC_X*iHat"/>
</Property>
<Property name="Input" id="27278.Input" number_of_elements="1">
<Proxy value="27271" output_port="0"/>
<Domain name="groups" id="27278.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_type" id="27278.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="ReplaceInvalidValues" id="27278.ReplaceInvalidValues" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27278.ReplaceInvalidValues.bool"/>
</Property>
<Property name="ReplacementValue" id="27278.ReplacementValue" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27278.ReplacementValue.range"/>
</Property>
<Property name="ResultArrayName" id="27278.ResultArrayName" number_of_elements="1">
<Element index="0" value="Result"/>
</Property>
</Proxy>
<Proxy group="filters" type="Calculator" id="27318" servers="1" compound_name="Calculator3">
<Property name="AttributeMode" id="27318.AttributeMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27318.AttributeMode.enum">
<Entry value="1" text="point_data"/>
<Entry value="2" text="cell_data"/>
<Entry value="5" text="field_data"/>
</Domain>
</Property>
<Property name="CoordinateResults" id="27318.CoordinateResults" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27318.CoordinateResults.bool"/>
</Property>
<Property name="Function" id="27318.Function" number_of_elements="1">
<Element index="0" value="PEC_Y*jHat"/>
</Property>
<Property name="Input" id="27318.Input" number_of_elements="1">
<Proxy value="27271" output_port="0"/>
<Domain name="groups" id="27318.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_type" id="27318.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="ReplaceInvalidValues" id="27318.ReplaceInvalidValues" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27318.ReplaceInvalidValues.bool"/>
</Property>
<Property name="ReplacementValue" id="27318.ReplacementValue" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27318.ReplacementValue.range"/>
</Property>
<Property name="ResultArrayName" id="27318.ResultArrayName" number_of_elements="1">
<Element index="0" value="Result"/>
</Property>
</Proxy>
<Proxy group="filters" type="Calculator" id="27354" servers="1" compound_name="Calculator4">
<Property name="AttributeMode" id="27354.AttributeMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27354.AttributeMode.enum">
<Entry value="1" text="point_data"/>
<Entry value="2" text="cell_data"/>
<Entry value="5" text="field_data"/>
</Domain>
</Property>
<Property name="CoordinateResults" id="27354.CoordinateResults" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27354.CoordinateResults.bool"/>
</Property>
<Property name="Function" id="27354.Function" number_of_elements="1">
<Element index="0" value="PEC_Z*kHat"/>
</Property>
<Property name="Input" id="27354.Input" number_of_elements="1">
<Proxy value="27271" output_port="0"/>
<Domain name="groups" id="27354.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_type" id="27354.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="ReplaceInvalidValues" id="27354.ReplaceInvalidValues" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27354.ReplaceInvalidValues.bool"/>
</Property>
<Property name="ReplacementValue" id="27354.ReplacementValue" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27354.ReplacementValue.range"/>
</Property>
<Property name="ResultArrayName" id="27354.ResultArrayName" number_of_elements="1">
<Element index="0" value="Result"/>
</Property>
</Proxy>
<Proxy group="filters" type="Glyph" id="27306" servers="1" compound_name="Glyph1">
<Property name="Input" id="27306.Input" number_of_elements="1">
<Proxy value="27278" output_port="0"/>
<Domain name="groups" id="27306.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_array1" id="27306.Input.input_array1">
<InputArray attribute_type="point" number_of_components="1"/>
</Domain>
<Domain name="input_array2" id="27306.Input.input_array2">
<InputArray attribute_type="point" number_of_components="3"/>
</Domain>
<Domain name="input_type" id="27306.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="MaximumNumberOfPoints" id="27306.MaximumNumberOfPoints" number_of_elements="1">
<Element index="0" value="5000"/>
<Domain name="range" id="27306.MaximumNumberOfPoints.range">
<Min index="0" value="0"/>
</Domain>
</Property>
<Property name="RandomMode" id="27306.RandomMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27306.RandomMode.bool"/>
</Property>
<Property name="SelectInputScalars" id="27306.SelectInputScalars" number_of_elements="5">
<Element index="0" value=""/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value=""/>
<Domain name="array_list" id="27306.SelectInputScalars.array_list"/>
</Property>
<Property name="SelectInputVectors" id="27306.SelectInputVectors" number_of_elements="5">
<Element index="0" value="1"/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value="Result"/>
<Domain name="array_list" id="27306.SelectInputVectors.array_list">
<String text="PEC"/>
<String text="Result"/>
</Domain>
</Property>
<Property name="SetOrient" id="27306.SetOrient" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27306.SetOrient.bool"/>
</Property>
<Property name="SetScaleFactor" id="27306.SetScaleFactor" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bounds" id="27306.SetScaleFactor.bounds">
<Min index="0" value="0"/>
<Max index="0" value="0"/>
</Domain>
<Domain name="scalar_range" id="27306.SetScaleFactor.scalar_range"/>
<Domain name="vector_range" id="27306.SetScaleFactor.vector_range">
<Min index="0" value="0"/>
<Min index="1" value="0"/>
<Min index="2" value="0"/>
<Min index="3" value="0"/>
<Max index="0" value="0.000444444"/>
<Max index="1" value="0"/>
<Max index="2" value="0"/>
<Max index="3" value="0.000444444"/>
</Domain>
</Property>
<Property name="SetScaleMode" id="27306.SetScaleMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27306.SetScaleMode.enum">
<Entry value="0" text="scalar"/>
<Entry value="1" text="vector"/>
<Entry value="2" text="vector_components"/>
<Entry value="3" text="off"/>
</Domain>
</Property>
<Property name="Source" id="27306.Source" number_of_elements="1">
<Proxy value="27285" output_port="0"/>
<Domain name="groups" id="27306.Source.groups">
<Group value="sources"/>
<Group value="glyph_sources"/>
</Domain>
<Domain name="input_type" id="27306.Source.input_type">
<DataType value="vtkPolyData"/>
</Domain>
<Domain name="proxy_list" id="27306.Source.proxy_list">
<Proxy value="27285"/>
<Proxy value="27288"/>
<Proxy value="27291"/>
<Proxy value="27294"/>
<Proxy value="27297"/>
<Proxy value="27300"/>
<Proxy value="27303"/>
</Domain>
</Property>
<Property name="UseMaskPoints" id="27306.UseMaskPoints" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27306.UseMaskPoints.bool"/>
</Property>
</Proxy>
<Proxy group="filters" type="Glyph" id="27342" servers="1" compound_name="Glyph2">
<Property name="Input" id="27342.Input" number_of_elements="1">
<Proxy value="27318" output_port="0"/>
<Domain name="groups" id="27342.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_array1" id="27342.Input.input_array1">
<InputArray attribute_type="point" number_of_components="1"/>
</Domain>
<Domain name="input_array2" id="27342.Input.input_array2">
<InputArray attribute_type="point" number_of_components="3"/>
</Domain>
<Domain name="input_type" id="27342.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="MaximumNumberOfPoints" id="27342.MaximumNumberOfPoints" number_of_elements="1">
<Element index="0" value="5000"/>
<Domain name="range" id="27342.MaximumNumberOfPoints.range">
<Min index="0" value="0"/>
</Domain>
</Property>
<Property name="RandomMode" id="27342.RandomMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27342.RandomMode.bool"/>
</Property>
<Property name="SelectInputScalars" id="27342.SelectInputScalars" number_of_elements="5">
<Element index="0" value=""/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value=""/>
<Domain name="array_list" id="27342.SelectInputScalars.array_list"/>
</Property>
<Property name="SelectInputVectors" id="27342.SelectInputVectors" number_of_elements="5">
<Element index="0" value="1"/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value="Result"/>
<Domain name="array_list" id="27342.SelectInputVectors.array_list">
<String text="PEC"/>
<String text="Result"/>
</Domain>
</Property>
<Property name="SetOrient" id="27342.SetOrient" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27342.SetOrient.bool"/>
</Property>
<Property name="SetScaleFactor" id="27342.SetScaleFactor" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bounds" id="27342.SetScaleFactor.bounds"/>
<Domain name="scalar_range" id="27342.SetScaleFactor.scalar_range"/>
<Domain name="vector_range" id="27342.SetScaleFactor.vector_range"/>
</Property>
<Property name="SetScaleMode" id="27342.SetScaleMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27342.SetScaleMode.enum">
<Entry value="0" text="scalar"/>
<Entry value="1" text="vector"/>
<Entry value="2" text="vector_components"/>
<Entry value="3" text="off"/>
</Domain>
</Property>
<Property name="Source" id="27342.Source" number_of_elements="1">
<Proxy value="27321" output_port="0"/>
<Domain name="groups" id="27342.Source.groups">
<Group value="sources"/>
<Group value="glyph_sources"/>
</Domain>
<Domain name="input_type" id="27342.Source.input_type">
<DataType value="vtkPolyData"/>
</Domain>
<Domain name="proxy_list" id="27342.Source.proxy_list">
<Proxy value="27321"/>
<Proxy value="27324"/>
<Proxy value="27327"/>
<Proxy value="27330"/>
<Proxy value="27333"/>
<Proxy value="27336"/>
<Proxy value="27339"/>
</Domain>
</Property>
<Property name="UseMaskPoints" id="27342.UseMaskPoints" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27342.UseMaskPoints.bool"/>
</Property>
</Proxy>
<Proxy group="filters" type="Glyph" id="27378" servers="1" compound_name="Glyph3">
<Property name="Input" id="27378.Input" number_of_elements="1">
<Proxy value="27354" output_port="0"/>
<Domain name="groups" id="27378.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_array1" id="27378.Input.input_array1">
<InputArray attribute_type="point" number_of_components="1"/>
</Domain>
<Domain name="input_array2" id="27378.Input.input_array2">
<InputArray attribute_type="point" number_of_components="3"/>
</Domain>
<Domain name="input_type" id="27378.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="MaximumNumberOfPoints" id="27378.MaximumNumberOfPoints" number_of_elements="1">
<Element index="0" value="5000"/>
<Domain name="range" id="27378.MaximumNumberOfPoints.range">
<Min index="0" value="0"/>
</Domain>
</Property>
<Property name="RandomMode" id="27378.RandomMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27378.RandomMode.bool"/>
</Property>
<Property name="SelectInputScalars" id="27378.SelectInputScalars" number_of_elements="5">
<Element index="0" value=""/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value=""/>
<Domain name="array_list" id="27378.SelectInputScalars.array_list"/>
</Property>
<Property name="SelectInputVectors" id="27378.SelectInputVectors" number_of_elements="5">
<Element index="0" value="1"/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value="Result"/>
<Domain name="array_list" id="27378.SelectInputVectors.array_list">
<String text="PEC"/>
<String text="Result"/>
</Domain>
</Property>
<Property name="SetOrient" id="27378.SetOrient" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bool" id="27378.SetOrient.bool"/>
</Property>
<Property name="SetScaleFactor" id="27378.SetScaleFactor" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="bounds" id="27378.SetScaleFactor.bounds">
<Min index="0" value="0"/>
<Max index="0" value="0"/>
</Domain>
<Domain name="scalar_range" id="27378.SetScaleFactor.scalar_range"/>
<Domain name="vector_range" id="27378.SetScaleFactor.vector_range">
<Min index="0" value="0"/>
<Min index="1" value="0"/>
<Min index="2" value="0"/>
<Min index="3" value="0"/>
<Max index="0" value="0"/>
<Max index="1" value="0"/>
<Max index="2" value="0.000410997"/>
<Max index="3" value="0.000410997"/>
</Domain>
</Property>
<Property name="SetScaleMode" id="27378.SetScaleMode" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="enum" id="27378.SetScaleMode.enum">
<Entry value="0" text="scalar"/>
<Entry value="1" text="vector"/>
<Entry value="2" text="vector_components"/>
<Entry value="3" text="off"/>
</Domain>
</Property>
<Property name="Source" id="27378.Source" number_of_elements="1">
<Proxy value="27357" output_port="0"/>
<Domain name="groups" id="27378.Source.groups">
<Group value="sources"/>
<Group value="glyph_sources"/>
</Domain>
<Domain name="input_type" id="27378.Source.input_type">
<DataType value="vtkPolyData"/>
</Domain>
<Domain name="proxy_list" id="27378.Source.proxy_list">
<Proxy value="27357"/>
<Proxy value="27360"/>
<Proxy value="27363"/>
<Proxy value="27366"/>
<Proxy value="27369"/>
<Proxy value="27372"/>
<Proxy value="27375"/>
</Domain>
</Property>
<Property name="UseMaskPoints" id="27378.UseMaskPoints" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27378.UseMaskPoints.bool"/>
</Property>
</Proxy>
<Proxy group="filters" type="Threshold" id="27271" servers="1" compound_name="Threshold1">
<Property name="AllScalars" id="27271.AllScalars" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27271.AllScalars.bool"/>
</Property>
<Property name="Input" id="27271.Input" number_of_elements="1">
<Proxy value="27263" output_port="0"/>
<Domain name="groups" id="27271.Input.groups">
<Group value="sources"/>
<Group value="filters"/>
</Domain>
<Domain name="input_array" id="27271.Input.input_array">
<InputArray attribute_type="any" number_of_components="1"/>
</Domain>
<Domain name="input_type" id="27271.Input.input_type">
<DataType value="vtkDataSet"/>
</Domain>
</Property>
<Property name="SelectInputScalars" id="27271.SelectInputScalars" number_of_elements="5">
<Element index="0" value=""/>
<Element index="1" value=""/>
<Element index="2" value=""/>
<Element index="3" value="0"/>
<Element index="4" value="Result"/>
<Domain name="array_list" id="27271.SelectInputScalars.array_list">
<String text="Result"/>
</Domain>
<Domain name="field_list" id="27271.SelectInputScalars.field_list">
<Entry value="0" text="Point Data"/>
</Domain>
</Property>
<Property name="ThresholdBetween" id="27271.ThresholdBetween" number_of_elements="2">
<Element index="0" value="1e-10"/>
<Element index="1" value="9e+99"/>
<Domain name="range" id="27271.ThresholdBetween.range">
<Min index="0" value="0"/>
<Max index="0" value="0.000945444"/>
</Domain>
</Property>
</Proxy>
<Proxy group="sources" type="ArrowSource" id="27285" servers="1" compound_name="auto_27285">
<Property name="Invert" id="27285.Invert" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27285.Invert.bool"/>
</Property>
<Property name="ShaftRadius" id="27285.ShaftRadius" number_of_elements="1">
<Element index="0" value="0.1"/>
<Domain name="range" id="27285.ShaftRadius.range">
<Min index="0" value="0"/>
<Max index="0" value="5"/>
</Domain>
</Property>
<Property name="ShaftResolution" id="27285.ShaftResolution" number_of_elements="1">
<Element index="0" value="10"/>
<Domain name="range" id="27285.ShaftResolution.range">
<Min index="0" value="0"/>
<Max index="0" value="128"/>
</Domain>
</Property>
<Property name="TipLength" id="27285.TipLength" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27285.TipLength.range">
<Min index="0" value="0"/>
<Max index="0" value="1"/>
</Domain>
</Property>
<Property name="TipRadius" id="27285.TipRadius" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27285.TipRadius.range">
<Min index="0" value="0"/>
<Max index="0" value="10"/>
</Domain>
</Property>
<Property name="TipResolution" id="27285.TipResolution" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="range" id="27285.TipResolution.range">
<Min index="0" value="1"/>
<Max index="0" value="128"/>
</Domain>
</Property>
</Proxy>
<Proxy group="sources" type="ArrowSource" id="27321" servers="1" compound_name="auto_27321">
<Property name="Invert" id="27321.Invert" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27321.Invert.bool"/>
</Property>
<Property name="ShaftRadius" id="27321.ShaftRadius" number_of_elements="1">
<Element index="0" value="0.1"/>
<Domain name="range" id="27321.ShaftRadius.range">
<Min index="0" value="0"/>
<Max index="0" value="5"/>
</Domain>
</Property>
<Property name="ShaftResolution" id="27321.ShaftResolution" number_of_elements="1">
<Element index="0" value="10"/>
<Domain name="range" id="27321.ShaftResolution.range">
<Min index="0" value="0"/>
<Max index="0" value="128"/>
</Domain>
</Property>
<Property name="TipLength" id="27321.TipLength" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27321.TipLength.range">
<Min index="0" value="0"/>
<Max index="0" value="1"/>
</Domain>
</Property>
<Property name="TipRadius" id="27321.TipRadius" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27321.TipRadius.range">
<Min index="0" value="0"/>
<Max index="0" value="10"/>
</Domain>
</Property>
<Property name="TipResolution" id="27321.TipResolution" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="range" id="27321.TipResolution.range">
<Min index="0" value="1"/>
<Max index="0" value="128"/>
</Domain>
</Property>
</Proxy>
<Proxy group="sources" type="ArrowSource" id="27357" servers="1" compound_name="auto_27357">
<Property name="Invert" id="27357.Invert" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="bool" id="27357.Invert.bool"/>
</Property>
<Property name="ShaftRadius" id="27357.ShaftRadius" number_of_elements="1">
<Element index="0" value="0.1"/>
<Domain name="range" id="27357.ShaftRadius.range">
<Min index="0" value="0"/>
<Max index="0" value="5"/>
</Domain>
</Property>
<Property name="ShaftResolution" id="27357.ShaftResolution" number_of_elements="1">
<Element index="0" value="10"/>
<Domain name="range" id="27357.ShaftResolution.range">
<Min index="0" value="0"/>
<Max index="0" value="128"/>
</Domain>
</Property>
<Property name="TipLength" id="27357.TipLength" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27357.TipLength.range">
<Min index="0" value="0"/>
<Max index="0" value="1"/>
</Domain>
</Property>
<Property name="TipRadius" id="27357.TipRadius" number_of_elements="1">
<Element index="0" value="0"/>
<Domain name="range" id="27357.TipRadius.range">
<Min index="0" value="0"/>
<Max index="0" value="10"/>
</Domain>
</Property>
<Property name="TipResolution" id="27357.TipResolution" number_of_elements="1">
<Element index="0" value="1"/>
<Domain name="range" id="27357.TipResolution.range">
<Min index="0" value="1"/>
<Max index="0" value="128"/>
</Domain>
</Property>
</Proxy>
<ExposedProperties>
<Property name="Input" proxy_name="Calculator1" exposed_name="Input"/>
</ExposedProperties>
<OutputPort name="Output1" proxy="Glyph1" port_index="0"/>
<OutputPort name="Output2" proxy="Glyph2" port_index="0"/>
<OutputPort name="Output3" proxy="Glyph3" port_index="0"/>
</CompoundSourceProxy>
</CustomProxyDefinition>
</CustomFilterDefinitions>