new feature: near-field to far-field transform

pull/1/head
Sebastian Held 2010-12-20 13:15:51 +01:00
parent 661410cd66
commit 1aae16dc95
2 changed files with 420 additions and 0 deletions

208
matlab/AnalyzeNFFF2.m Normal file
View File

@ -0,0 +1,208 @@
function [E_theta,E_phi,Prad,Dmax] = AnalyzeNFFF2( Sim_Path, filenames_E, filenames_H, f, theta, phi, r )
% [E_theta,E_phi,Prad,Dmax] = AnalyzeNFFF2( Sim_Path, filenames_E, filenames_H, f, theta, phi, r )
%
% calculates the farfield via a near field to far field transformation
%
% input:
% Sim_Path: simulation directory
% filenames_E: cell array of filenames for the time domain fields on the NFFF contour (6 E-planes; hdf5)
% filenames_H: cell array of filenames for the time domain fields on the NFFF contour (6 H-planes; hdf5)
% f: frequency (Hz) for far field calculation
% theta: (degrees) vector of discrete theta values to calculate the far field for
% phi: (degrees) vector of discrete phi values to calculate the far field for
% r: (optional) Radius (m) at which the E-fields are calculated (default: 1 m)
%
% output:
% E_theta: E_theta(theta,phi); theta component of the electric field strength at radius r
% E_phi: E_phi(theta,phi); phi component of the electric field strength at radius r
% Prad: time averaged radiated power
% Dmax: maximum directivity
%
% example:
% see examples/NF2FF/infDipol.m
%
% (C) 2010 Sebastian Held <sebastian.held@gmx.de>
% check arguments
error( nargchk(7,7,nargin) );
if ~isscalar(f)
error 'Currently only one frequency is supported. Call this function multiple times.'
end
% read time domain field data and transform into frequency domain
for n=1:numel(filenames_E)
[Ef{n}, E_mesh{n}] = ReadHDF5Dump( [Sim_Path '/' filenames_E{n}], 'Frequency', f );
[Hf{n}, H_mesh{n}] = ReadHDF5Dump( [Sim_Path '/' filenames_H{n}], 'Frequency', f );
% reshape mesh into row vector
mesh{n}.x = reshape( E_mesh{n}.lines{1}, 1, [] );
mesh{n}.y = reshape( E_mesh{n}.lines{2}, 1, [] );
mesh{n}.z = reshape( E_mesh{n}.lines{3}, 1, [] );
end
% create a normal vector for every plane
% FIXME!!! this is dependent upon the order of filenames_*
n = {};
for a=1:6
temp = [(a<=2), ((a>=3)&&(a<=4)), (a>=5)];
n{a} = temp - 2*mod(a,2)*temp;
end
physical_constants
k = 2*pi*f/c0;
center = [0 0 0];
Umax = 0;
phi_idx = 0;
for phi_deg_aufpunkt = phi
phi_rad_aufpunkt = phi_deg_aufpunkt/180*pi; % radiant
phi_idx = phi_idx + 1;
theta_idx = 0;
for theta_deg_aufpunkt = theta
theta_rad_aufpunkt = theta_deg_aufpunkt/180*pi; % radiant
theta_idx = theta_idx + 1;
N_theta = 0;
N_phi = 0;
L_theta = 0;
L_phi = 0;
for a=1:6
[N_theta_,N_phi_,L_theta_,L_phi_] = process_plane( k, n{a}, center, mesh{a}, Ef{a}.FD.values{1}, Hf{a}.FD.values{1}, theta_rad_aufpunkt, phi_rad_aufpunkt );
N_theta = N_theta + N_theta_; N_phi = N_phi + N_phi_;
L_theta = L_theta + L_theta_; L_phi = L_phi + L_phi_;
end
% E-fields
erg_E_theta = -1i*k*exp(-1i*k*r) / (4*pi*r)*(L_phi+Z0*N_theta);
erg_E_phi = 1i*k*exp(-1i*k*r) / (4*pi*r)*(L_theta-Z0*N_phi);
% output
E_theta(theta_idx,phi_idx) = erg_E_theta;
E_phi(theta_idx,phi_idx) = erg_E_phi;
% directivity
U = r^2/(2*Z0) * sum(abs([erg_E_theta erg_E_phi]).^2);
Umax = max( [Umax U] );
end
end
% power
Prad = 0;
for a=1:6
[~,~,~,~,P] = process_plane( k, n{a}, center, mesh{a}, Ef{a}.FD.values{1}, Hf{a}.FD.values{1}, theta_rad_aufpunkt, phi_rad_aufpunkt );
Prad = Prad + P;
end
% directivity
Dmax = 4*pi*Umax / Prad;
% integrate over one plane
function [N_theta,N_phi,L_theta,L_phi,Prad] = process_plane( k, n, center, mesh, E_field, H_field, theta_rad_aufpunkt, phi_rad_aufpunkt )
% [N_theta,N_phi,L_theta,L_phi,Prad] = process_plane( k, n, center, mesh, E_field, H_field, theta_rad_aufpunkt, phi_rad_aufpunkt )
%
% k: wave number
% n: normal vector of the plane
% center: correction coordinates for the center of the antenna
% mesh: mesh info
% E_field: E field array ?x?x?x3
% H_field: H field array ?x?x?x3
% speed up
sin__theta_rad_aufpunkt = sin(theta_rad_aufpunkt);
cos__theta_rad_aufpunkt = cos(theta_rad_aufpunkt);
sin__phi_rad_aufpunkt = sin(phi_rad_aufpunkt);
cos__phi_rad_aufpunkt = cos(phi_rad_aufpunkt);
if abs(n(1)) == 1
% x-plane
x = mesh.x(1);
[y z] = ndgrid( mesh.y, mesh.z );
coord1 = mesh.y.';
coord2 = mesh.z.';
Ex = squeeze( E_field(1,:,:,1) );
Ey = squeeze( E_field(1,:,:,2) );
Ez = squeeze( E_field(1,:,:,3) );
Hx = squeeze( H_field(1,:,:,1) );
Hy = squeeze( H_field(1,:,:,2) );
Hz = squeeze( H_field(1,:,:,3) );
elseif abs(n(2)) == 1
% y-plane
y = mesh.y(1);
[x z] = ndgrid( mesh.x, mesh.z );
coord1 = mesh.x.';
coord2 = mesh.z.';
Ex = squeeze( E_field(:,1,:,1) );
Ey = squeeze( E_field(:,1,:,2) );
Ez = squeeze( E_field(:,1,:,3) );
Hx = squeeze( H_field(:,1,:,1) );
Hy = squeeze( H_field(:,1,:,2) );
Hz = squeeze( H_field(:,1,:,3) );
elseif abs(n(3)) == 1
% z-plane
z = mesh.z(1);
[x y] = ndgrid( mesh.x, mesh.y );
coord1 = mesh.x.';
coord2 = mesh.y.';
Ex = squeeze( E_field(:,:,1,1) );
Ey = squeeze( E_field(:,:,1,2) );
Ez = squeeze( E_field(:,:,1,3) );
Hx = squeeze( H_field(:,:,1,1) );
Hy = squeeze( H_field(:,:,1,2) );
Hz = squeeze( H_field(:,:,1,3) );
end
Jx = n(2) .* Hz - n(3) .* Hy;
Jy = n(3) .* Hx - n(1) .* Hz;
Jz = n(1) .* Hy - n(2) .* Hx;
Mx = -n(2) .* Ez + n(3) .* Ey;
My = -n(3) .* Ex + n(1) .* Ez;
Mz = -n(1) .* Ey + n(2) .* Ex;
r_cos_psi = x*sin__theta_rad_aufpunkt*cos__phi_rad_aufpunkt + y*sin__theta_rad_aufpunkt*sin__phi_rad_aufpunkt + z*cos__theta_rad_aufpunkt;
e_fkt = exp( +1i*k*r_cos_psi );
N_theta = dbltrapz( ( Jx*cos__theta_rad_aufpunkt*cos__phi_rad_aufpunkt + Jy*cos__theta_rad_aufpunkt*sin__phi_rad_aufpunkt - Jz*sin__theta_rad_aufpunkt) .* e_fkt, coord1, coord2 );
N_phi = dbltrapz( (-Jx*sin__phi_rad_aufpunkt + Jy*cos__phi_rad_aufpunkt) .* e_fkt, coord1, coord2 );
L_theta = dbltrapz( ( Mx*cos__theta_rad_aufpunkt*cos__phi_rad_aufpunkt + My*cos__theta_rad_aufpunkt*sin__phi_rad_aufpunkt - Mz*sin__theta_rad_aufpunkt) .* e_fkt, coord1, coord2 );
L_phi = dbltrapz( (-Mx*sin__phi_rad_aufpunkt + My*cos__phi_rad_aufpunkt) .* e_fkt, coord1, coord2 );
if nargout > 4
% Prad requested
% this is crap! recode it!
EH = zeros(size(Ex));
for i1 = 1:numel(coord1)
for i2 = 1:numel(coord2)
E = [Ex(i1,i2) Ey(i1,i2) Ez(i1,i2)];
H = [Hx(i1,i2) Hy(i1,i2) Hz(i1,i2)];
EH(i1,i2) = real( dot(cross(E,conj(H)),n) );
end
end
Prad = 0.5 * dbltrapz( EH, coord1, coord2 );
end
function Q = dbltrapz(matrix,a,b)
%DBLTRAPZ Trapezoidal numerical integration in two dimensions.
% Z = DBLTRAPZ(MATRIX,A,B) computes an approximation of the double integral
% of MATRIX via the trapezoidal method (with respect to A and B). A and B must be
% column vectors of the same length.
% index like this: MATRIX(A,B)
if nargin < 3, error('MATLAB:dblquad:NotEnoughInputs',...
'Requires at least three inputs.'); end
if size(a,2) ~= 1, error('column vectors required'); end
if size(b,2) ~= 1, error('column vectors required'); end
temp = zeros(size(b));
for i = 1:length(b)
temp(i) = trapz( a, matrix(:,i) );
end
Q = trapz( b, temp );

View File

@ -0,0 +1,212 @@
function infDipol
%
% infinitesimal dipole example
%
close all
clear
clc
drawnow
postprocessing_only = 0;
global g
setup
dipole_orientation = 3; % 1,2,3: x,y,z
CSX = createStructure(dipole_orientation);
if ~postprocessing_only
writeCSX( CSX );
CSXGeomPlot( [g.Sim_Path '/' g.Sim_CSX] )
run;
end
postprocess;
function setup
global g
physical_constants
% setup the simulation
g.drawingunit = 1e-6; % specify everything in um
g.Sim_Path = 'tmp';
g.Sim_CSX = 'tmp.xml';
g.f_max = 1e9;
g.lambda = c0/g.f_max;
% setup geometry values
g.dipole_length = g.lambda/50 /g.drawingunit;
function CSX = createStructure(dipole_orientation)
global g
physical_constants
CSX = InitCSX();
% create an equidistant mesh
mesh.x = -g.dipole_length*10:g.dipole_length/2:g.dipole_length*10;
mesh.y = -g.dipole_length*10:g.dipole_length/2:g.dipole_length*10;
mesh.z = -g.dipole_length*10:g.dipole_length/2:g.dipole_length*10;
mesh = AddPML( mesh, [8 8 8 8 8 8] ); % add space for PML
CSX = DefineRectGrid( CSX, g.drawingunit, mesh );
% excitation
ex_vector = [0 0 0];
ex_vector(dipole_orientation) = 1;
start = ex_vector * -g.dipole_length/2;
stop = ex_vector * g.dipole_length/2;
CSX = AddExcitation( CSX, 'infDipole', 1, ex_vector );
CSX = AddBox( CSX, 'infDipole', 1, start, stop );
% NFFF contour
s1 = [-4.5, -4.5, -4.5] * g.dipole_length/2;
s2 = [ 4.5, 4.5, 4.5] * g.dipole_length/2;
CSX = AddBox( AddDump(CSX,'Et_xn','DumpType',0,'DumpMode',2,'FileType',1), 'Et_xn', 0, s1, [s1(1) s2(2) s2(3)] );
CSX = AddBox( AddDump(CSX,'Et_xp','DumpType',0,'DumpMode',2,'FileType',1), 'Et_xp', 0, [s2(1) s1(2) s1(3)], s2 );
CSX = AddBox( AddDump(CSX,'Et_yn','DumpType',0,'DumpMode',2,'FileType',1), 'Et_yn', 0, s1, [s2(1) s1(2) s2(3)] );
CSX = AddBox( AddDump(CSX,'Et_yp','DumpType',0,'DumpMode',2,'FileType',1), 'Et_yp', 0, [s1(1) s2(2) s1(3)], s2 );
CSX = AddBox( AddDump(CSX,'Et_zn','DumpType',0,'DumpMode',2,'FileType',1), 'Et_zn', 0, s1, [s2(1) s2(2) s1(3)] );
CSX = AddBox( AddDump(CSX,'Et_zp','DumpType',0,'DumpMode',2,'FileType',1), 'Et_zp', 0, [s1(1) s1(2) s2(3)], s2 );
CSX = AddBox( AddDump(CSX,'Ht_xn','DumpType',1,'DumpMode',2,'FileType',1), 'Ht_xn', 0, s1, [s1(1) s2(2) s2(3)] );
CSX = AddBox( AddDump(CSX,'Ht_xp','DumpType',1,'DumpMode',2,'FileType',1), 'Ht_xp', 0, [s2(1) s1(2) s1(3)], s2 );
CSX = AddBox( AddDump(CSX,'Ht_yn','DumpType',1,'DumpMode',2,'FileType',1), 'Ht_yn', 0, s1, [s2(1) s1(2) s2(3)] );
CSX = AddBox( AddDump(CSX,'Ht_yp','DumpType',1,'DumpMode',2,'FileType',1), 'Ht_yp', 0, [s1(1) s2(2) s1(3)], s2 );
CSX = AddBox( AddDump(CSX,'Ht_zn','DumpType',1,'DumpMode',2,'FileType',1), 'Ht_zn', 0, s1, [s2(1) s2(2) s1(3)] );
CSX = AddBox( AddDump(CSX,'Ht_zp','DumpType',1,'DumpMode',2,'FileType',1), 'Ht_zp', 0, [s1(1) s1(2) s2(3)], s2 );
function writeCSX(CSX)
global g
% setup FDTD parameters & excitation function
max_timesteps = 2000;
min_decrement = 1e-6;
FDTD = InitFDTD( max_timesteps, min_decrement, 'OverSampling',10 );
FDTD = SetGaussExcite( FDTD, g.f_max/2, g.f_max/2 );
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
FDTD = SetBoundaryCond( FDTD, BC );
% Write openEMS compatible xml-file
[~,~,~] = rmdir(g.Sim_Path,'s');
[~,~,~] = mkdir(g.Sim_Path);
WriteOpenEMS([g.Sim_Path '/' g.Sim_CSX],FDTD,CSX);
function run
global g
% define openEMS options and start simulation
openEMS_opts = '';
openEMS_opts = [openEMS_opts ' --engine=fastest'];
RunOpenEMS( g.Sim_Path, g.Sim_CSX, openEMS_opts );
function postprocess
global g
disp( ' ' );
disp( ' ********************************************************** ' );
disp( ' ' );
% NFFF contour
filenames_E = {'Et_xn.h5','Et_xp.h5','Et_yn.h5','Et_yp.h5','Et_zn.h5','Et_zp.h5'};
filenames_H = {'Ht_xn.h5','Ht_xp.h5','Ht_yn.h5','Ht_yp.h5','Ht_zn.h5','Ht_zp.h5'};
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = 0:2:359;
r = 1; % evaluate fields at radius r
disp( 'calculating far field at phi=[0 90] deg...' );
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNFFF2( g.Sim_Path, filenames_E, filenames_H, g.f_max, thetaRange, [0 90], r );
% display power and directivity
disp( ['radiated power: Prad = ' num2str(Prad)] );
disp( ['directivity: Dmax = ' num2str(Dmax)] );
% calculate the e-field magnitude for phi = 0 deg
E_phi0_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi0_far(n) = norm( [E_far_theta(n,1) E_far_phi(n,1)] );
end
% display polar plot
figure
polar( thetaRange/180*pi, E_phi0_far );
ylabel( 'theta / deg' );
title( ['electrical far field (V/m) @r=' num2str(r) ' m phi=0 deg'] );
legend( 'e-field magnitude', 'Location', 'BestOutside' );
% calculate the e-field magnitude for phi = 90 deg
E_phi90_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi90_far(n) = norm([E_far_theta(n,2) E_far_phi(n,2)]);
end
% display polar plot
figure
polar( thetaRange/180*pi, E_phi90_far );
ylabel( 'theta / deg' );
title( ['electrical far field (V/m) @r=' num2str(r) ' m phi=90 deg'] );
legend( 'e-field magnitude', 'Location', 'BestOutside' );
% calculate the far field at theta=90 degrees
phiRange = 0:2:359;
r = 1; % evaluate fields at radius r
disp( 'calculating far field at theta=90 deg...' );
[E_far_theta,E_far_phi] = AnalyzeNFFF2( g.Sim_Path, filenames_E, filenames_H, g.f_max, 90, phiRange, r );
E_theta90_far = zeros(1,numel(phiRange));
for n=1:numel(phiRange)
E_theta90_far(n) = norm([E_far_theta(1,n) E_far_phi(1,n)]);
end
% display polar plot
figure
polar( phiRange/180*pi, E_theta90_far );
ylabel( 'phi / deg' );
title( ['electrical far field (V/m) @r=' num2str(r) ' m theta=90 deg'] );
legend( 'e-field magnitude', 'Location', 'BestOutside' );
% calculate 3D pattern
phiRange = 0:15:360;
thetaRange = 0:10:180;
r = 1; % evaluate fields at radius r
disp( 'calculating 3D far field...' );
[E_far_theta,E_far_phi] = AnalyzeNFFF2( g.Sim_Path, filenames_E, filenames_H, g.f_max, thetaRange, phiRange, r );
E_far = sqrt( abs(E_far_theta).^2 + abs(E_far_phi).^2 );
E_far_normalized = E_far / max(E_far(:));
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
x = E_far_normalized .* sin(theta) .* cos(phi);
y = E_far_normalized .* sin(theta) .* sin(phi);
z = E_far_normalized .* cos(theta);
figure
surf( x,y,z, E_far_normalized );
axis equal
xlabel( 'x' );
ylabel( 'y' );
zlabel( 'z' );